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The effect of fractal dimension (Df ) on the determination of representative elementary volume (REV) was investigated through
numerical experimentations, in which a new method was adopted to extract submodels that have different length-width ratios
from original discrete facture networks (DFNs). Fluid flow in 1610 DFNs with different geometric characteristics of fractures
and length-width ratios was simulated, and the equivalent permeability was calculated. The results show that the average
equivalent permeability (KREV) at the REV size for DFNs increases with the increase in Df . The KREV shows a downward trend
with increasing length-width ratio of the submodel. A strong exponent functional relationship is found between the REV size
and Df . The REV size decreases with increasing Df . With the increment of the length-width ratio of submodels, the REV size
shows a decreasing trend. The effects of length-width ratio and Df on the REV size can be negligible when Df ≥ 1 5, but are
significant when Df < 1 5.

1. Introduction

Fractures play a dominating role in the mechanical and
hydraulic properties of rock masses and are sources of
discontinuity, anisotropy, and heterogeneity. Therefore, to
analyze the performance of structure characteristics in
fractured rock masses, it is important to accurately select
an appropriate model volume to determine the relevant
rock properties. In recent years, numerical simulation
techniques such as the Monte Carlo method have been
developed for modeling fluid flow in models containing
complex fracture systems [1–5]. It is definite that the per-
meability of a fractured rock mass changes significantly
depending on the size of the model [6]. Beyond a certain
sample size (area in two dimensions and/or volume in
three dimensions), the average permeability tends to attain
a critical value and the variation in permeability will be
very small and can be negligible. In such a situation, this
size can be termed as REV size for a fractured rock mass
with respect to fluid flow behavior [1, 6].

The previous works have documented the effectiveness of
fracture geometry parameters and average strength in deter-
mining REV [1, 7, 8]. The REV size decreases with increasing
joint density and joint size [1]. The permeability change at
low stress levels is more sensitive to model size than at high
stress levels due to the nonlinear fracture normal stress-
displacement relation [2, 7]. The determination of REV
becomes more difficult for fracture network models subjected
to a lower stress environment. The application of the com-
posite element method can greatly facilitate the preprocess
and enable a large number of stochastic tests for the fractured
rock samples [9]. The existence of REV is illustrated by
changing the sizes and orientations of the samples. The
REV is used to overcome the obstacle that small models
contain only a few joints while the large models contain
hundreds of joints that lead to impractical computation run
time [10]. The REV designation embeds a sufficient number
of joints in REV-size models. These innovations can reduce
computation time by two orders of magnitude from
hundreds of hours to a few hours.
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The studies of REV in three dimensions have previ-
ously been performed. A new method that gives through
thorough consideration to the fracture features of rock
masses was proposed based on models of 3D fracture net-
works [11]. Subsequently, the REV size was determined by
volumetric joint count calculation. The specimens, which
are generated by collecting structure data, were introduced
into a 3D particle flow code (PFC3D) to create synthetic
rock mass (SRM) samples. A series of T-tests and F-tests
were carried out to determine the REV size, in which
the T-test was used to assess the difference of samples
and the F-test was used to describe the calculated variance
[12]. The basic assumptions were that the rock matrix is
impermeable and linearly elastic and that the fluid flows
only in fractures [7].

Fractal characterization of complex fracture networks
has been proven to be effective through statistical analysis
of natural geological rock masses [13, 14]. The index of
fracture density, which is fractal and often scale-invariant,
can be predicted through fractal geometry [15]. The
analytical expression for gas permeability is derived based
on dual-porosity media [16]. In the dual porosity, the
original channel diameter of embedded fractal-like tree
networks follows a fractal distribution. A percolation term
(ρ′ − ρc′) was obtained using a series of geometric properties
of fracture networks and had a high correlation coefficient
between the actual and the predicted equivalent fracture
network permeability.

However, most of the previous studies on REV are
focused on square submodels in both 2D and 3D. Few of the
studies consider the relationship between fractal dimension
and REV. A method is presented to compute the equivalent
permeability of submodels extracted from original discrete
fracture networks (DFNs) that are generated using theMonte
Carlo method. Finally, the relationship between fractal
dimension and REV size is established, considering different
model length-width ratios.

2. Theory

Fractures in DFNs are typically treated as parallel plates, in
which the flow rate is proportional to the cube of aperture,
as follows [17]:

Q = ρge3

12μ
Δh
Lf

W, 1

where Q is the flow rate, e is the hydraulic aperture of a
fracture, μ is the dynamic viscosity, g is the gravitational
acceleration, Δh is the hydraulic head difference, Lf is the
length of a fracture, and W is the aperture of a fracture.

In the deep fractured rock masses, the fluid flow is com-
monly in the linear regime and obeys the cubic law, which is a
kind of Darcy’s flow [18–21]. Therefore, we just calculated
the laminar flow and did not consider turbulent flow. The
permeability of the rock matrix can be negligible when
comparing to the permeability of fractures in tight rock
masses, i.e., granite and basalt. The fractal dimension Df

can be calculated using gauge method and grid method. A
fractal permeability model for bi-dispersed porous media is
developed based on the fractal characteristics of pores in
the media, and a series of functions are derived to establish
the fractal permeability model [22]. Besides, many studies
have successfully proven that the fracture length distribution
follows the fractal scaling law ([23–25]; Miao et al. 2015). The
total number of fractures, N t, can be calculated as follows:

N t L ≥ lmin = lmax
lmin

D f /2
, 2

where N t is the cumulative number of fractures, lmin is the
minimum fracture length, and lmax is the maximum fracture
length. In addition, lmin ≪ lmax is the necessary condition for
the fracture length distribution to follow the fractal scaling
law. lmin/lmax ≪ 10−3 is used in the present study. The length
of the ith fracture can be calculated as:

li =
lmin

1 − Ri
2/D f

, 3

where li is the length of the ith fracture, i = 1, 2, 3,… ,N t, N t
is the total number which has been obtained from (2), and Ri
is a uniformly distributed random number that varies from 0
to 1. Based on a series of assumptions and derivations, the
formula of new total number of fractures corresponding to
any side length Ln of DFNs can be expressed as [24, 25]:

N t =
1 73N tL

2
nD

7 14
f

∑
N t

i=1
li

4

After updating the total number of fractures from N t
to N t′, the fractal length distribution of fractures in any
Ln of a DFN model can be generated using (3). Thus, a
series of stochastic DFNs are generated using the Monte
Carlo method and fluid flow is modeled by solving the
cubic law (see (1)).

3. Generation of DFNs

3.1. Fracture System Description. Stochastic models provide
validate ways for representing fracture networks based on
available structural data. It was noted that fracture system
models can be treated as an entity to represent rock mass
geometry [26]. They further described the Orthogonal,
Baecher, Veneziano, Dershowitz, and Mosaic Tessellation
models. The paper [27] suggested an incrementally linear
elastic, orthotropic constitutive model to represent the
equivalent continuum prefailure mechanical behavior of
the jointed rock masses.

In general, two fundamental approaches are suggested
for modeling fluid flow through fractured rock masses:
[28] equivalent continuum flow model [17, 29–32] and
[13] discrete fracture flow model ([20]; Oda 1985; [28,
33]). The first approach assumes that the combined
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hydraulic effect of fractures and rock matrix can be repre-
sented by an equivalent continuum model. The second
approach treats fractures as separate elements having
significantly higher hydraulic conductivity compared to
that of the rock matrix. The former model is used to sim-
ulate fractures of small size and having a great quantity,
while the latter is applicable for large-scale fractures [9].
More reasonable models such as continuum-discrete cou-
pling model are also explored. This approach takes the
permeability of fractures and capillary in the matrix into
account. This model is close to reality, but the workload
of numerical simulation is commonly unavailable.

In most cases, fracture locations are stochastically
distributed and fracture length is specified directly or indi-
rectly [1, 12, 18, 24, 34]. Many models can accommodate
a large quantity of fractures that are intersected and/or
terminated in rock masses. A number of fractures can be

located in the same plane in 2D. Some sophisticated
models can exhibit not only geometric characteristics but
also geological structures [35].

The previous studies have shown that the permeability
predicted using the 2D model is slightly less than that
predicted using the 3D model, i.e., less than one order of
magnitude [36, 37]. Besides, although the 3D model can
characterize the spatial distributions of geometric parameters
of fractures, these parameters are difficult to obtain because
the fractures are buried in rock masses and are nonvisual.
In contrast, the 2D model can use the data from outcrops
to calculate parameters such as fracture length, aperture,
and orientation. Therefore, the 2D model is currently widely
accepted by engineers and hydrologists.

3.2. Discrete Fracture Network Generation. The Monte Carlo
simulation technique is used for the generation of the DFNs.

Table 1: Two sides of rectangular submodels compared to the length of square submodels with the same area when Df = 1.6.

Length-width ratio (rectangular models)
Lx Ly = 1 1 Lx Ly = 1 2 Lx Ly = 1 1 5 Lx Ly = 1 5 1 Lx Ly = 2 1
Lx = Ly (m) Lx (m) Ly (m) Lx (m) Ly (m) Lx (m) Ly (m) Lx (m) Ly (m)

0.25 0.177 0.354 0.204 0.306 0.306 0.204 0.354 0.177

0.5 0.354 0.707 0.408 0.612 0.612 0.408 0.707 0.354

1 0.707 1.414 0.816 1.224 1.224 0.816 1.414 0.707

2 1.414 2.828 1.632 2.449 2.449 1.632 2.828 1.414

3 2.121 4.242 2.449 3.674 3.674 2.449 4.242 2.121

4 2.828 5.569 3.265 4.898 4.898 3.265 5.569 2.828

5 3.535 7.071 4.082 6.123 6.123 4.082 7.071 3.535

6 4.243 8.485 4.898 7.348 7.348 4.898 8.485 4.243

7 4.949 9.899 5.715 8.573 8.573 5.715 9.899 4.949

10 m
m

10 m

(a) Extraction of submodels from an original

DFNs

1:2
1:1.5

2:1

1.5:1

(b) Submodels that have different length-width ratios

Figure 1: Schematic view of the generation of submodels.
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The theory and technique of the issue have been well studied
and presented in previous studies [27, 38–40]. The process of
generation includes the following steps:

(1) Several parameters, such as lmin, lmax, Df , and Ln,
should be determined before DFNs are generated.
lmin and lmax are set to be 0.5 and 500m, respectively,
which satisfies the necessary condition for the size
distribution of fracture length to follow the fractal

Table 2: Comparison of the values of a and achievements in
previous studies.

Authors Year Value of a

Dverstop and Anderson 1989 1.7

Tsang et al. 1996 3.0

Bour and Davy 1997 1.0–3.0

De Dreuzy 2001 0.0–3.5

Richeng Liu 2016 1.17–3.39

Present study 2018 0.96–1.29
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Figure 2: Hydraulic boundary conditions.
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Figure 3: Correlation between fracture number and fracture length.
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scaling law. The fractures with lengths that are
smaller than 0.5m contribute negligibly to the flow
rate with respect to long fractures. The location of
fractures can be determined by setting the center
point, orientation, and fracture length. The fracture
orientation and center point distribution are
assumed to be uniformly and randomly distributed
in order to focus on the effects of fractal length
distribution. Original square DFNs having side
lengths (Ln) of 50m, 25m, 15m, 10m, 8m, and
4m are generated when Df = 1 3, 1.4, 1.5, 1.6,
and 1.7, respectively. Ln decreases with the increase

in Df . If a large Ln (i.e., 50m) is adopted when Df
is large (i.e., Df = 1 7), there would be many frac-
tures generated, which may cost a longer time for
solving fluid flow, comparing with that with a
smaller Df (i.e., Df = 1 3).

(2) The value of N t can be calculated using (1). The
length of the ith fracture can be calculated using
(3) after generating N t random numbers. N t′ can
be obtained by calculating (4). After that, the
lengths of all fracture with a number of N t′ can
be generated using (3).
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Figure 4: Variations in Kp and RMS with different Ln when Df = 1 3.
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(3) The DFNs are established using a DEM (discrete
element method) code based on a 2D open source
software (OSS) UDEC (Itasca Consulting Group
Inc. 2004), in which the fractures are represented
with line segments.

(4) Rectangular submodels are inserted into UDEC to
calculate REV with different Df . The submodels,
whose area is the square of Ln, are extracted from
original large models with Ln = 5~45m, 1~20m,
0.5~10m, 0.25~7m, and 0.25~4m, corresponding
to Df = 1 3, 1.4, 1.5, 1.6, and 1.7, respectively. The

aperture for each fracture is a constant (65μm) in
order to study the effect of fracture length on the
permeability. Here, we take Df = 1 6 as an example to
show the details of generation of original DFNs and
extraction of submodels as shown in Figure 1.
Figure 1(a) shows the process of extracting submodels
from an original DFN with Ln = 10m and Lx Ly =
1 5 1, in which Lx and Ly represent the length and
width of the submodels, respectively. Figure 1(b)
exhibits the extraction of submodels that have differ-
ent length-width ratios while maintaining the same
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Figure 5: Variations in Kp and RMS with different Ln when Df = 1 4.
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area. Table 1 shows the two sides of rectangular sub-
models compared to the length of square submodels
with the same area whenDf = 1.6.

(5) Constant hydraulic head boundary conditions are
applied, as shown in Figure 2, to numerically
calculate the permeability (Kp) along the direction

of the hydraulic gradient when fluid flow is in the
steady state. The upper and bottom sides are imper-
meable, and the horizontal flow from the left side to

the right side is set for the calculation. The hydraulic
pressure gradient is 10 kPa/m for each DFN.

When the geometric parameters such as fracture length,
aperture, and orientation are available, our model can simu-
late the fluid flow in real situations. However, characterizing
these parameters is not a simple work, especially for the 3D
model. Generally, for simplification, some functions are used
to generate fracture parameters. For example, fracture length
distribution follows a power law function [41, 42]; fracture
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aperture is correlated with fracture length [18, 19]; and frac-
ture orientation follows the Fisher distribution [2, 8]. By
doing so, the calculated results (i.e., permeability) are still
close to the in situ results.

3.3. Discrete Fracture Network Validation. A fundamental
concern is whether the generated DFNs are representative
of observed field conditions. This is often difficult to
quantify due to the limited available field data. This can
be overcome by comparing the statistical information of
generated fracture length distribution with those reported
in literature. The feasibility and effectiveness of fractal

length distribution of fractures are illustrated. Figure 3
shows the results of the relationship between the length
and numbers of fractures. It is obvious that each set of
length–number relationship corresponding to each Df
follows a power law function that can be expressed by:

n l, 0 5 = αl−a, 5

where α is the proportional coefficient, a is the power law
exponent, and n l, 0 5 represents the fracture number
with lengths in the range of l − 0 5, l + 0 5 .
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When Df varies from 1.3 to 1.7, a is in the range of
0 96, 1 29 , which fits well with the values reported in
previous studies as shown in Table 2. This verifies the
validity of (2) and (3), and indirectly verifies the validity
of the generated DFNs. In practice, the choice of the
model depends on how it can be correlated to the avail-
able field data and to be engineering needs of the project.
Therefore, the validity of the generated models still needs
further verification using in situ data collected from differ-
ent scales and different rock types.

4. Results and Analysis

4.1. Determinations of Equivalent Permeability and REV Size.
Using the abovementioned methods, the flow rates are
obtained under a fixed hydraulic pressure gradient for
models that have different Df . Next, the equivalent perme-
ability is back-calculated using Darcy’s law, as follows:

K f =
μQ
A∇P

, 6
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Figure 8: Variations in Kp and RMS with different Ln when Df = 1 7.
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where μ is the fluid viscosity, Q is the total flow rate, A is
the cross section of percolation, and ∇P is the hydraulic
pressure gradient that equals 10 kPa/m. For each DFN,
the average width of the cross section is assumed to be
1.0m because the DFN model is two-dimensional and
thus A equals the side length of the inlet boundary.

Based on the extracted DFNs with different length-width
ratios as shown in Section 3.2, the variations in K f and corre-
sponding root mean square (RMS) are plotted in Figures 4–8.
For each Df and each length-width ratio, 10 DFNs are gener-
ated using 10 sets of random numbers. Then, K f and its mean
value of the 10 DFNs are calculated. K f tends to stabilize with
increasing model size. Before the curve stabilizes, the perme-
ability of the models depends on the connectivity of the frac-
tures. The REV can be defined theoretically as the size beyond
which the permeability varies in a sufficiently small range. In
practice, the correspondingmodel scale, in which Ln increases
to a critical value and the change in K f is sufficiently slight,
can be regarded as the REV size. VK and RMS decrease with
the increment of Ln. Here, VK is defined as the difference in
equivalent permeability between the maximum and mini-
mum values. The RMS is determined by the ratio of standard
deviation of simulation results to the mean value of the
maximum and minimum equivalent permeability.

The RMS is introduced to quantify whether two datasets
agree well with each other [3], defined as:

RMS =
2 1

n
〠
n

1
Kavg − Ksim

2

Kmax + Kmin
, 7

where Kmax is the maximum equivalent permeability, Kmin is
the minimum equivalent permeability, Kavg is the average
equivalent permeability, and Ksim is the simulation result.

Taking the case of Df = 1 6 in Figure 6(a) for an example,
Kp ranges from 8.5E−14 to 5.5E−13m2 when Ln = 0 5m,
while for Ln = 10m, Kp ranges from 3.5E−13 to 3.1E−13m2.
Besides, VK decreases from 4.95E−13 to 4E−14 and RMS
decreases from 0.443 to 0.032, indicating that the connec-
tivity of the fractures tends to be homogeneous. However,
when the length-width ratio of submodels changes, the
number of connected fractures will change, and so does
the Kp of submodels with the same area.

In this study, RMS = 0 1 is utilized as the threshold value,
and the corresponding side length of DFN (LREV) is treated as
the REV size. The variations in permeability change signifi-
cantly when RMS > 0 1 and therefore RMS = 0 1 is used here
rather than other values such as 0.2 [3]. The results show that
LREV gradually decreases with the increment of Df from 1.3
to 1.7 as shown in Figure 9. When Df is small (i.e., Df = 1 3),
the model length-width ratio can influence the magnitude
of LREV significantly (i.e., from 28.12 to 35.16m). When Df is
large (i.e., Df = 1 7), the influence of the model length-width
ratio on LREV can be negligible (i.e., from 1.32 to 1.36m).
Therefore, when calculating the REV of a fractured rock
mass, the shape of the submodels should be considered when
Df is small (i.e., Df ≤ 14). By fitting these datasets, an

exponential function is proposed between LREV and Df ,
written as:

LREV = 0 44 + 1 24E7∗ 4 88E − 5 D f 8

Thus, when Df of a fractured rock mass is calculated
using the geological survey data from the outcrops, the
REV size can be approximately estimated using (8). Besides,
the calculated results are compared with those in Liu et al.
[25], in which the REV size is analyzed using rectangular
submodels with Lx Ly = 1 1, showing an agreement with
each other. When Df is small (i.e., 1.3), the difference in
LREV between the predicted results and those in Liu et al.
[25] is relatively larger (i.e., 8.51m). However, with the incre-
ment of Df from 1.4 to 1.6, the difference is very small (from
2.39m to 0.43m). This is acceptable because when Df is
small, the randomness of fracture distribution is significant
and therefore LREV changes in a large extent. With the
increment of Df (i.e., Df > 1 4), the effect of randomness of
fracture distribution decreases, and as a result, LREV varies
slightly. This again verifies the validity of (8).

4.2. Effects of Df and Model Length-Width Ratio on KREV.
The variation of KREV is plotted against the length-width
ratio in Figure 10, where KREV is the equivalent permeability
at the REV size. As the model length-width ratio of submo-
dels increases, KREV gradually decreases. Besides, the rate
of permeability reduction also decreases with increasing
model length-width ratio. The effect of the model length-
width ratio on KREV when Df = 1 3 is much smaller than
that when Df = 1 7. The variation in KREV is plotted against
Df in Figure 11. The influence of Df is determinate, as what
have been observed for the influence of the model length-
width ratio. The reason may be that the DFNs with larger
Df have better connectivity and stronger conductivity/per-
meability. KREV increases with the increase in Df , while the
variations in the KREV increment for Df ≥ 1 6 are much
larger than those for Df < 1 6.
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Figure 9: Relationship between Df and LREV for different Lx:Ly.
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5. Conclusions

In this study, we calculated the equivalent permeability of
rock fracture networks that have different models length-
width ratios. This study, using a numerical method, shows
another possible way to study the permeability characteris-
tics of fractured rock masses. Submodels of different model
length-width ratios, instead of square submodels, are
extracted from original DFNs. Since this study requires a
large quantity of numerical computations, an effective and
reliable algorithm is essential. A DEM (discrete element
method) code based on a 2D open-source software (OSS)
UDEC is written to generate models and calculate flow rates.
Generated DFNs with different model length-width ratios
are used to simulate Darcy flow in rock fractures. Through
systematic and large quantity numerical computations, the
permeability characteristics of DFNs and the existence of
REV are identified. The agreement between the predicted
REV size and those reported in literatures verifies the
validity of the proposed method. In conclusion, a new

method using fractal dimension of the fracture networks
for calculating REV is proposed.

The REV size of the fractured rock mass decreases
with the increase in Df according to the exponential
relationship between the REV size and Df . The effect of
the length-width ratio of submodels on the REV size
decreases with increasing Df for Df < 1 5, but can be
negligible when Df ≥ 1 5. KREV decreases with the incre-
ments of the model length-width ratio of submodels and/
or Df . The influence of the model length-width ratio on
KREV when Df is small (i.e., Df = 1 3) is much smaller
than that when Df is large (i.e., Df = 1 7). Besides, the
variations in the increment of KREV when Df ≥ 1 6 are
much larger than those when Df < 1 6.

The above conclusions are obtained based on the 2D
DFNs using the assumption that the fluid flow obeys Darcy’s
law. Further investigations considering non-Darcy flow in
3D DFNs with variable fracture apertures will be performed
in order to enrich the results and strengthen the conclusions.
However, this requires a relatively high computation
capacity. In addition, laboratory and field tests as well as
engineering practices can be used to verify the feasibility
and effectiveness of the proposed method.
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