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A series of samples including natural gas, formation water, and rocks were collected from volcanic rock reservoirs in the Niudong
area of the Santanghu Oilfields and analyzed for their mineral and/or chemical compositions and sulfur and carbon isotopes in
order to investigate the occurrence and origin of hydrogen sulfide (H2S). H2S was mostly dissolved in the formation water along
with petroleum production in the study area. The δ34S values of on-well H2S samples varied in a range of 9.2‰ to 20.5‰,
probably indicating thermochemical sulfate reduction (TSR) and/or thermal decomposition of organic sulfur-bearing
compounds (TDS) as the genetic process for H2S. However, the chemical composition of formation waters from the Kalagang
Formation (C2k) and their coefficient of desulfurization also revealed that TSR could be the main principle for H2S formation.
Considering the regional geological background, especially the tectonic structures and thermal evolution features of the basin, it
was concluded that H2S in the study area was dominantly produced by thermal genesis with TSR as a domain through
interactions between hydrocarbons and aqueous sulfate dissolved from sulfate minerals.

1. Introduction

Hydrogen sulfide (H2S) is one of the most perilous constitu-
ents of natural gases and also hazardous in several aspects
such as diluting the proportion of hydrocarbons in natural
gas, gravely altering its economic vitality, and being
extremely lethal and corrosive to equipment used for oil
and gas exploration and development [1, 2]. It is significantly
important to study and get a better understanding of H2S’s
occurrence and its origin for the reduction of health-related
risks and to ensure safety, proper management of reservoirs,
suitable construction facilities, and drilling-well design [3–5].

According to the literature, there are four major sources in
geology for H2S from a viewpoint of genesis: (1) inorganic
(volcanic) source [6], (2) bacterial sulfate reduction (BSR)
[7, 8], (3) thermal decomposition of organic sulfur-bearing
compounds (TDS) in oil or kerogen [5, 9], and (4) thermo-
chemical sulfate reduction (TSR) [7, 10, 11]. Inorganic (vol-
canic) H2S genesis always occurs through volcanic activities
and leads to a higher concentration of H2S, whose sulfur iso-
tope is normally in a range of −1‰ to −6-7‰V-CDT [6, 11].
BSR is the typical and important source of H2S genesis in
sediments and many gas and oil reservoirs, being common
in a low proportion of H2S contribution (sulfur
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concentration < 3–5%). The BSR source for H2S genesis is
generally considered to be active at temperatures below 80–
100°C, and their sulfur isotopic ratios are mostly in a range
of -5‰ and +5‰ V-CDT [7, 8, 11]. TDS normally takes
place in the heating periods of organic matters and following
petroleum formation. However, the H2S contribution of TDS
is very low and the isotopic ratios of sulfur range from 4‰ to
12‰ V-CDT, being always related to the secondary recovery
of petroleum by using steam and/or hot water [7, 11]. Finally,
the most influential source for H2S production is TSR, con-
tributing massive proportions of H2S in natural gases and
presenting in numerous petroliferous basins and even in
some metal sulfide deposits [5, 7, 9, 12, 13]. Their sulfur
isotopic ratios are normally between 8‰ and 25‰ V-CDT
[3, 14]. The TSR reactions often occur along with interactions
between hydrocarbons and aqueous sulfate which is always
derived from the dissolution of sulfate minerals (primarily
anhydrite and also barite and celestite). Both experimental
studies and field inspections have revealed that the TSR pro-
cess was kinetically practicable at outset temperatures > 10
0°C. Suitable temperature and pH values are the important
essential factors to control the reaction rate and degree of
TSR [8, 15–21]. A common chemical reaction of TSR can
be summarized as follows [22].

sulphate + petroleum⟶ calcite + H2S ± H2O ± CO2
± S ± altered petroleum

1

With the progression of petroleum exploitation, uncon-
ventional oil and gas resources are the vital sources for explo-
ration. Besides clastic and carbonate rocks, volcanic rocks as
reservoirs are a potential target for oil and gas exploration as
well in recent times [23]. Therefore, in the current scenario,
the occurrence and origin of H2S in volcanic reservoirs
should be an important topic for exploration and as a supple-
ment to the basic theory. About 100 ppm of H2S was found in
several wellheads in the Niudong area, Santanghu Basin, dur-
ing the oil and gas development in 2010. Since then, growing
concerns on the influence of H2S on workers’ health have led
to the study on H2S and measures were set up to reduce the
negative influences on health and equipment. However,
before controlling H2S in these reservoirs, its occurrence
and origin should be properly revealed. Therefore, a series
of samples, including oil and gas, formation water, drilling
core rocks, and on-well H2S precipitant were collected and
analyzed for this purpose.

2. Geological Settings

The Santanghu Basin, bordered by the Junggar Basin to the
west, the Tuha Basin to the south, and the Mongolia Gebi
to the northeast, is a special petroleum-bearing basin with
volcanic rocks as reservoirs in NW China (Figure 1(a)). The
basin in an area of 2 3 × 104 km2 and with accumulative
petroleum reserves of more than 3 × 108 tons has been dis-
covered at present. Since the initial formation in the Silurian
period, this basin has experienced several tectonic move-
ments, inducing well-developed regional faults and strongly

weathered local rocks [23–25]. Volcanic eruptions frequently
occurred in and around the basin during the late Palaeozoic
era which probably produced some fracture channels by
faulting. However, the process of volcanism was extremely
intensive during the Middle Permian period. A basalt layer
in a thickness of 200–600m was developed in several parts
of the basin, mainly due to crustal thinning, lithospheric sub-
sidence, and asthenosphere upwelling [25]. The present tec-
tonic units of the Santanghu Basin can be divided into the
northern thrust uplift zone, central depression zone, and
southern thrusting nappe zone. The Niudong area belongs
to the central depression in the front edge of the Tiaoshan
uplift and pitches the Malang depression in the northwest-
southeast direction with an area of 260 km2.

The Carboniferous sequences in the study area can be
classified into five formations (from bottom to top,
Figure 1(b)): the Donggulubasitao Formation (C1d), Jiangba-
sitao Formation (C1j), Bashan Formation (C2b), Harjiawu
Formation (C2h), and Kalagang Formation (C2k). The Kala-
gang Formation is primarily composed of fundamental inter-
mediate volcanic lava that is incorporated within basalt,
andesite, and transitional rock types [24]. Beneath the Kala-
gang Formation is the Haerjiawu Formation which contains
hydrocarbon source rocks. Hydrocarbons from these source
rocks migrated vertically into the weathered volcanic crust
through faults. Reservoirs developed oil wells in the areas
where there were abundant faults, and the hydrocarbons
are distributed mainly in the weathered volcanic crust near
the faults. The volcanic rocks of the Haerjiawu Formation
alternate with source rocks. Hydrocarbons were generated
from these source rocks, migrated into the weathered volca-
nic crust directly or through the faults, and then accumulated
to construct the petroleum reservoir in the study area [23].

The maximum burial depth of the Kalagang Formation
reached 1637m in the study area, and the present strata tem-
perature is about 55°C [26]. Since the Santanghu Basin is just
located at the junction of several major tectonic belts such as
the Tianshan and Altai Mountains tectonic zones, the geo-
thermal conditions should be changed in geological evolu-
tion history. The ancient geothermal gradient could be
higher than that at present [27]. The geothermal history of
the study area indicates the Middle Permian magmatism
which caused locally thermal anomalies, and both the Late
Indosinian movement (Late Triassic and Early Jurassic
period) and Late Yanshan movement (Late Jurassic period)
contributed to the increase of ancient geothermal gradients
in the basin and led to the maturation of organic matters in
the source rocks [26]. The temperature in oil and gas reser-
voirs of the Kalagang Formation (C2k) reached more than
110°C during the Permian-Triassic period [26, 27].

3. Samples and Analysis

3.1. Sample Collection. Seventeen rock samples were selected
from drilling cores of the Niudong area for the present study
on geochemical and mineralogical characteristics of the vol-
canic rocks (Table 1). All the cored samples were rocks in
the reservoir of Kalagang formation (C2k), including 9
basalts, 4 andesites, 2 volcanic breccia, and 2 tuff samples.
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The basalts were characterized by greyish-green and brown-
ness and contained oil spots, air holes, and cracks. The andes-
ites contained few and small purple oil spots and holes. The
volcanic breccia and tuff were pyroclastic rocks with

greyish-green and taupe, respectively. Six samples with clear
veins were selected, and the vein fillings were extracted by
indoor drilling for sulfur and carbon isotope analysis
(Table 2 and Figure 2). The veins were in white color and
transparent, some of which were characterized in an X-type
of joints.

The samples for H2S isotopes were obtained from twelve
production wells and one gas gathering station. For sampling,
the mixture of natural gases was introduced into a pre-
prepared cadmium acetate solution (Cd (CH3COO)2·3H2O),
and then the precipitant of cadmium sulfide (CdS) was col-
lected in situ by filtration for laboratory analysis.

3.2. Analytical Methods. All the rock samples without chem-
ical pretreatment were crushed into powder by using an agate
mortar and pestle. Mineralogical measurements were carried
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Figure 1: (a) Location of the study area, structure units, and section map of the Santanghu Basin. (b) Lithological column and sedimentary
evolution of the Carboniferous (modified after Song et al. [24]).

Table 1: General property of study samples from the Kalagang
Formation in the Santanghu Basin.

Sample no. Depth (m) Description

NDYX-01 1401.59-1401.80 Dark grey basalt

NDYX-02 1402.25-1402.39 Dark grey basalt with oil infected

NDYX-03 1403.38-1403.51 Tauro fluorescence basalt

NDYX-04 1410.81-1411.07 Tauro fluorescence basalt

NDYX-05 1416.44-1416.59 Purple basalt

NDYX-06 1420.84-1420.94 Brown basalt with oil infected

NDYX-07 1423.48-1423.62 Greyish-green breccia

NDYX-08 1429.38-1429.61 Purple oil spot andesite

NDYX-09 1429.61-1429.72 Purple oil spot andesite

NDYX-10 1430.05-1430.20 Purple oil spot andesite

NDYX-11 1433.82-1433.91 Taupe oil spot basalt

NDYX-12 1437.36-1437.51 Purple oil spot andesite

NDYX-13 1439.38-1439.49 Greyish-green breccia

NDYX-14 1444.68-1444.85 Brown-grey fluorescent basalt

NDYX-15 1447.23-1447.37 Brown-grey fluorescent basalt

NDYX-16 1508.63-1508.75 Taupe tuff

NDYX-17 1509.48-1509.56 Taupe tuff

Table 2: General properties of fillings in the crack of core samples
obtained from the Kalagang Formation in the Santanghu Basin.

Sample no. Depth (m) Filling feature Core

NDCT-01 1457.56-1457.68 Taupe Dark grey basalt

NDCT-02 1552.85-1553.00 Transparent
Greyish-green

basalt

NDCT-03 1540.69-1540.93 Greyish-green Grey-brown basalt

NDCT-04 1508.63-1508.75 White Taupe tuff

NDCT-05 1509.48-1509.56 White vein Taupe tuff

NDCT-06 1430.05-1430.20 Milky white Purple andesite
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out by the powder X-ray diffraction (XRD) method, using a
D/Max-3B X-ray diffraction (XRD) Bruker diffractometer
equipped with a graphite monochromator and operated at
40 kV and 100mA using Cu Kα radiation. A small portion
of finely powdered sample crushed again in a clean mortar
was properly mounted on a plastic holder (ϕ25mm, depth
1mm). Scanning of samples was performed over an interval
of 2–60° (2θ) at a scanning speed of 2°/min for every 0.03°

(2θ) step. Divergence, scattering, and receiving slits were
0.5°, 0.5, and 0.10mm, respectively.

Sulfur K-edge XANES analysis of well-crushed either
cored rock or drilled vein samples were performed at beam-
line 4B7A of the Beijing Synchrotron Radiation Facility
(BSRF), Beijing. Both the beam path and samples were
positioned in a vacuum to overcome the scattering of X-
ray and their absorption by air when the crushed samples
were exposed to the X-ray beam with an incident angle of
45°. The X-ray fluorescence emitted during analysis was
quantified by using a solid-state detector (Si). As a refer-
ence, the spectrum of the blank filter was also measured
for the comparison purpose and the absorption of sulfur
was negligible [28].

The isotopic composition of sulfur (S) was analyzed by
using an isotope mass spectrograph (Model MAT271) pro-
duced by Finnigan MAT Company. The mass range is 1 to
700 amu, and the mass resolution is 220 to 3000 used for
gas composition and stable isotope analysis. CdS and CuO
(copper oxide) obtained through precipitation were mixed
in a 1 : 3 weight ratio into a quartz tube and rapidly heated
to 850°C inside the reaction furnace for 30 minutes. Subse-
quently, the released gas was collected inside the cold trap
by using liquid nitrogen for freezing the gas, and the vacuum
pump was started to eliminate the impurities and pure SO2
was released. The obtained gas was introduced into the
instrument for isotope analysis and the δ34S value of sulfide
was ultimately obtained by using an international standard
(CDT), with an accuracy of ±0.5‰.

Calcite presented inside the vein fillings of rock samples
was extracted by using a small driller and was subjected to
carbon and oxygen isotopic analysis. About 50–100mg of
calcite samples was treated with pure phosphoric acid for
4 hours at 72°C under a vacuumed container. The released
CO2 was analyzed for carbon and oxygen isotopes by
using a Finnigan MAT253 plus mass spectrometer

standardized with GBW04416. The obtained data of car-
bon and oxygen were reported in units/mL relative to
the V-PDB standard. The precision for both δ13C and
δ18O measurements was ±0.5‰.

The composition of formation water and the concentra-
tion of H2S were measured by the Sangtanghu Oil Production
Plant of Tuha Oilfield Company. A portable hydrogen sulfide
detector was used to monitor the H2S concentration at the
wellhead of Oilfield, the precision being better than 5%.

4. Results and Discussion

4.1. Occurrence of H2S. During the first recovery of oil in the
Santanghu Oilfield, the H2S content was reported in the oil-
wellhead as 10–120 ppm/m3air in 2010, and the relative con-
tent of H2S in the dissolved air of formation water reached
0.19%. The average pressure value of reservoir strata C2k in
the study area was 10.5MPa, of which the H2S-bearing wells
were mostly located in the area with low pressure (3–9MPa)
[29], and fractures were strongly developed in the surround-
ing rocks. Furthermore, the oil-wells containing H2S more
than 100 ppm were always characterized with a higher water
cut (65–100%) while other oil-wells in lower H2S concentra-
tion (<30ppm) were assigned to a lower water cut (<60%).
Thus, H2S was mainly distributed in oil-wells with low for-
mation pressure, high water cut, and fractures developed
and mostly dissolved in formation water.

4.2. Minerals and Sulfur Characteristics of Reservoir Rocks.
The reservoir rocks of the Santanghu Oilfields are typical vol-
canic rocks of the Carboniferous Kalagang Formation, which
are dominated by basalt, andesite, volcanic breccia, and tuff
[23]. The SiO2 content of the volcanic rocks is 44% to 65%.
There are a number of air holes and almond constructs in
the rocks so that these rocks have relatively high porosity
and proper connectivity; the porosity is 6% to 11% [23].
Weathering and leaching during the cessation of deposition
should be the major controlling factor of favorable reservoirs
in the Carboniferous volcanic rocks, and the secondary min-
erals such as clay minerals could be largely formed. The
hydrolysis belt was mainly composed of mudstone and
tiny volcanic grains, most of which were broken down
into clay minerals [23]. The cracks or vein fillings in the

NDCT-05 
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NDCT-06NDCT-04

NDCT-02NDCT-01

Figure 2: Photos showing the veins of cored samples.

4 Geofluids



core of volcanic rocks were widely developed and mainly con-
sisted of volcanic zeolites, quartz, and/or calcite (Figure 3).

Sulfur species were herein referred to as the chemical
status of sulfur, which was identified using XANES in this
study by comparison of the obtained spectra for samples with
those of selected sulfur-containing reference materials such
as pyrite (FeS2), pyrrhotite (FeS), calcium sulfate (CaSO4),
and sulfur (S0). The impact of self-absorption associated with
reference materials was investigated by using well-crushed
mixtures of boron nitride in various concentrations of sulfur.
The self-absorption impact was not detected in sulfur
concentration < 0 5wt % [28]. The peak positions obtained
from the cored samples were mostly positioned at two series
of comparable energy range to those presented in the spectra
of pyrite, pyrrhotite, and calcium sulfate, signifying that the
foremost sulfur species were sulfide and sulfate, respectively.
The absorbing peaks presented on the left (in range of 2.470–
2.474 keV) indicate the presence of S2-, S2

2-, and also possibly
elemental sulfur (S0). On the other hand, the peak presented
on the right (in range of 2.481–2.484 keV) denotes SO4

2- spe-
cies (Figure 4). The spectra thus obtained for all samples are
shown in Figure 4, in which several composite variations
within numerous sulfur species are displaced based on their
spectrum structures as well as the location of the peak that
is signified as sulfides and/or sulfate, respectively. In this
study, it was found that both the sulfate (more than 90%)
and sulfide minerals widely coexisted in the reservoir rocks,
which could provide an effective sulfur source for the genesis
of H2S gas within the reservoirs.

4.3. Characteristics of Formation Water. The chemical com-
positions of formation water are shown in Table 3 and
Figure 5. Relatively most samples belong to the group of

Na(K)-Cl or Ca-Cl2 water while the existence of Ca(Mg)-
SO4 waters indicates possible evolutionary trends toward
SO4-enriched waters. There are no samples belonging to
the Ca(Mg)-HCO3 and Na(K)-HCO3 groups in the study
area. In particular, the Na++K+ concentration of formation
water in Kalagang Formation (C2k) was in a range of 69–
1008mg/L and the Cl− concentration in a range of 309–
1955mg/L, respectively. The range of Mg2+ concentration
of C2k formation water was from 1 to 291mg/L with an aver-
age of 56.6mg/L. Generally, the higher the Mg2+ concentra-
tion, the higher would be the H2S yields, because ion Mg2+

could play a catalysis role in TSR [30–32]. The range of
SO4

2− concentration was from 27 to 1288mg/L. The coeffi-
cient of desulfurization (100 × r SO4

2-/Cl-) was in a range of
2–160 with a mean value of 30. This coefficient could be used
to reflect consumption of SO4

2- during TSR and the redox
conditions of formation water. The low mark means reduced
condition and active TSR reactions [32]. The H2S contraction
rose with a decrease in the coefficient of desulfurization
(Figure 6), exhibiting that TSR really occurred in the study
reservoirs. The CO3

2- concentration in most water samples
was low (mostly not detected), and the average of HCO3

-

was 335.8mg/L. In addition, the concentration of HCO3
-

decreased with the process of TSR reactions, strongly indicat-
ing the dilution of additional water under TSR conditions.
This kind of dilution might be lowering the concentration
of CO3

2- and HCO3
- in formation waters of volcanic

reservoirs.

4.4. Sulfur Isotopes of H2S. The sulfur isotopes of sulfates
and/or sulfides presented in the volcanic rocks from wells
ND89-9 and ND89-10 are quite close to each other, being
9.2‰ and 10.3‰, respectively. The natural gases at the
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Niudong pumping station have undergone a series of techno-
logical operations such as separation of oil and gas, whose sul-
fur isotopic ratios reached 20.5‰ (Table 4). As shown in

Figure 7, the δ34SV-CDT values for TSR-H2S in this study were
comparable with those in the Sichuan Basin (main frequency:
8‰ to 26‰) [14], the Tarim Basin (14‰ to 19‰) [17, 33],
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Figure 4: Spectra of sulfur species in the study samples. (a) Filling materials in the veins of cored rocks and (b) core samples. The absorbing
peak on the left with a lower energy range corresponds to sulfides whereas the peak on the right with a higher energy range corresponds to
sulfate.

Table 3: Hydrochemistry of the formation water from the Niudong area, Santanghu Basin.

Sample no. Stratum Sampling date H2S (ppm/m3 air)
mg/L

Type pH
K++Na+ Ca2+ Mg2+ Cl- SO4

2- HCO3
- CO3

2- Total salinity

ND8-14 C2k 2008/8/7 n.d. 410 864 291 1755 920 710 268 5218 CaCl2 9.3

ND78-9 C2k 2008/8/6 115 592 545 1 1652 32 164 n.d. 2986 NaCl2 7.3

ND78-812 C2k 2010/8/7 6 371 123 10 512 283 168 n.d. 1467 NaCl 6.0

ND89-10 C2k 2010/10/8 44 647 442 24 1375 329 397 n.d. 3214 CaCl2 7.0

ND8-11 C2k 2008/8/7 35 1008 683 67 1955 434 1171 n.d. 5318 NaCl 6.5

ND89-9 C2k 2008/11/4 31 592 521 14 1544 349 123 n.d. 3143 NaCl2 6.0

ND8-111 C2k 2010/5/1 13 194 566 98 1272 47 482 n.d. 2659 CaCl2 7.0

ND89-812 C2k 2010/8/24 25 69 315 21 309 495 85 n.d. 1294 CaSO4 6.0

ND9-9 C2k 2010/3/7 50 547 384 15 1393 188 57 n.d. 2584 CaCl2 7.0

ND89-91 C2k 2010/6/5 44 869 369 15 1324 495 596 n.d. 3668 NaCl 6.0

ND 8-71 C2k 2007/12/21 120 386 396 7 1264 27 36 10 2126 CaCl2 9.0

ND8-10 C2k 2007/10/16 13 394 873 122 1475 1288 143 n.d. 4295 CaCl2 7.7

ND8-8 C2k 2008/8/7 10 537 404 51 1368 255 234 n.d. 2849 NaCl2 6.5

Note: these data were provided by the Santanghu Oil Production Plant of Tuha Oilfield Company. pH was tested at room temperature.
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and the Ordos Basin (16‰ to 20‰) [14]. Such comparison
may indicate that H2S presented in the oil wells of the Niudong
area could probably be derived from TSR. δ34SV-CDT of TDS-
H2S in crude oils is usually from 3‰ to 15‰ [5]; thus, H2S

in the Niudong area could also be due to TDS. However, there
is lack of meaningful evidence for the possibility of inorganic
(volcanic) origin and BSR involvement for H2S in the study
area.

4.5. Carbon Isotopes of Calcite. The isotopic data of the calcite
matrix from the Kalagang Formation exhibited a relatively
wider range of carbon isotopic values between -10.7‰ and
-3.3‰ V-PDB and a narrower range of oxygen isotopic values
between -21.8‰ and -18.6‰ V-PDB, respectively (Table 4).
These relatively negative carbon isotopic values may suggest
a possible contribution of organic carbon into calcite, but the
carbon and oxygen isotopic values failed on the boundary of
TSR calcite [22] which was formed through TSR reactions.
In addition, these carbon and oxygen isotopic values of vein
calcite were also similar to those of primarily igneous carbona-
tite (δ13CV-PDB‰: -5.0‰ to -8.0‰, δ18OV-PDB‰: -21.7‰ to
-23.7‰) [34], indicating the calcite formation with fluids from
deep layers under low hydrothermal temperatures (<167°C)
[35]. Therefore, calcite in the rock veins was mostly of mag-
matic origin and very less produced due to TSR reactions.

4.6. Origin of H2S. As for the low concentration of H2S in
crude oils and natural gases, the BSR origin is always
regarded as the first originating mechanism that may be
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caused by bacterial loadings during water injection. The sul-
fur isotopes of H2S in the study area were 9.2‰ to 20.5‰,
suggesting that BSR was probably not the most possible
source in the Niudong Oilfield, where H2S was found in the
first recovery of oil without water injection in early oil and
gas exploration. Additionally, the values of sulfur isotopes
are not in favor of volcanic sources for the genesis of H2S.
Therefore, TSR and TDS should be their possible origins that
were supported by the sulfur isotopic data. However, TDS
usually occurred during the secondary recovery of oil under
a relatively higher temperature than under the initial temper-
ature of TSR [5], but no steam and/or hot water was utilized
during the secondary recovery of heavy oils in the study res-
ervoir and the heavy oils was typically low in sulfur content
(about 0.17%). Based on these facts, either TDS should not
be the origin or slightly contributed if TDS occurred. As for
TSR, although gypsum and/or anhydrite in the cored rocks
was not observed by naked eyes, trace sulfate and sulfide were
detected by XANES. Such sulfur-bearing materials in the res-
ervoir rocks could supply enough sulfur for TSR reactions

due to the huge volume of rocks. Secondly, the local geother-
mal temperature (>110°C) reached the reaction conditions
for TSR during the Permian-Triassic period as for the volca-
nic activity [27]. Finally, some increase in H2S concentration
was observed with a decrease in desulfurization coefficient,
which confirmed the occurrence of TSR. Such formed H2S
in the reservoir of volcanic rocks is easily dissolved in the for-
mation water. On the other hand, CO3

2- and HCO3
- concen-

trations in most samples were relatively low, indicating that
the additional water formed along with TSR may dilute the
concentrations of both CO3

2- and HCO3
-. Considering all

the evidences above, TSR should be the main source for
H2S in the natural gases of the Niudong Oilfield, but the
TDS origin could not also be excluded.

5. Conclusions

The volcanic reservoir rocks of the Carboniferous Kalagang
Formation are dominated by basalt and andesite, whose
cracks or vein fillings in the core are mainly composed of vol-
canic zeolites, quartz, and/or calcite. Both sulfate (more than
90%) and sulfide minerals extensively existed in the reservoir
rocks, which could provide a potential sulfur source for H2S
gas formation through TSR in the reservoirs.

H2S was distributed in the producing wells with low for-
mation pressure and high water cut of the oil wells, which
was mostly dissolved in the formation water. The sulfur iso-
topic data and ion compositions of formation water indicated
that TSR should be the main source for H2S genesis. The geo-
logical structures of the basin, the mineral compositions of
the reservoir rocks, and the evolution characteristics of the
paleogeothermal temperatures provided effective conditions
for TSR reactions in the study area.
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