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The study of particle transport in porous media is of great significance for pollution mitigation, grouting reinforcement, municipal
solid waste landfill management, and groundwater exploitation. We developed an analytical solution for a corrected convection-
dispersion model that takes into account the effects of dispersion on deposition kinetics with regard to the particle
concentration decay type. The rationality and correctness of the solution were verified using time, distance, deposition
coefficient, diffusion coefficient, and decay coefficient. As the time increased, the particle concentration increased from zero to
the peak value, then decreased to zero. However, as distance increased, the peak value of particle concentration gradually
decreased. The deposition coefficient affected the magnitude of the peak value and the distance corresponding to the peak value.
In addition, the greater the attenuation coefficient, the smaller the peak value. Overall, our method’s prediction results showed
that considering the effect of dispersion on deposition kinetics produces better results than when this is not considered.

1. Introduction

Rapid global socioeconomic development is increasing
groundwater pollution, which has a serious impact on
human lives and productivity. As underground aquifers have
complex structures and groundwater flow rates tend to be
slow, groundwater pollution is difficult to find and mitigate.
It was previously thought that pollutants in aquifers could
only be transported via liquids and gases, but it is now under-
stood that pollutants can be adsorbed by small particles car-
ried in water; thus, the presence of such particles promotes
the diffusion of pollutants [1–3]. Biological particles (e.g.,
bacteria, protozoa, and viruses) in aquifers can affect water
safety and human health; these are primarily sourced from
septic tanks, underground pipeline leaks, sewage leakage,
and sludge [4–6]. Thus, the study of particle transport char-
acteristics in porous media is very important for human
and ecological health.

The conventional particle transportation model has
obtained many analytical solutions regarding the direct pre-
diction and inverse problems [7–13], in which the particle

flux in porous media is the sum of advective and dispersive
fluxes. Nevertheless, this model only considers hydrody-
namic particle dispersion in the mass balance equation but
does not consider the effect of dispersive flux on retention
kinetics. Laboratory tests can provide useful context for the
ways in which this model’s deficiencies make prediction
results inaccurate [14]. Increasing numbers of experimental
studies [12] show that when conditions are not conducive
to adsorption, particle deposition along the depth profile
appears in a superexponential form, different from the pre-
diction results of the conventional model. In pulse-injected
tracers or suspension to the porous medium, conventional
model results suggest that the maximum value of the pulse
velocity is the same as that of the flow rate and that the con-
centration curve is symmetrically distributed on both sides of
the maximum. However, many test results [13] show that the
first half of the concentration distribution is much larger than
the second half and that the transport of the maximum con-
centration is far less than the flow rate.

Previous research contains a general framework for solu-
tions to solute transport problems subject to time-dependent
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boundary conditions that is useful for many applications in
science and engineering [15]. However, in this framework,
the initial moment of the porous medium is clean (far from
the actual situation), limiting its practical and accurate use.
In this paper, we present an analytical solution for corrected
convection-dispersion models that take into account the
effects of dispersion on deposition kinetics and the initial
particle concentration, obtained for particle concentration
decay types. The solutions were verified using time, distance,
deposition coefficient, diffusion coefficient, and decay
coefficient [3, 5, 11]. This method is useful for providing
benchmarks for complex transport processes, conducting
sensitivity analyses of various parameters for particle trans-
port, and estimating parameters for laboratory experiments.
Therefore, our results can be widely applied to the treatment
of pollutants, grouting reinforcement, municipal solid waste
landfill management, and groundwater exploitation.

2. Materials and Methods

2.1. Assumptions

(1) The porous medium is saturated, homogeneous, and
isotropic

(2) The study area is a semi-infinite porous medium

(3) The flow is a one-dimensional steady flow, and the
convection and dispersion of the particles are also
one-dimensional

(4) The deposition of particles is irreversible, and the
release of deposited particles is neglected

2.2. Mathematical Model. Under one-dimensional steady
flow conditions, the mass balance equation for particle trans-
port is [10–16]

∂C
∂t

=D
∂2C
∂x2

− u
∂C
∂x

−
ρ

ϕ

∂σ
∂t

, 1

where C is the particle concentration in seepage (ML-3), φ
is the porosity, D is the diffusion coefficient (L2T-1), u is
the average flow rate in the pore space between the cross
sections (LT-1), t is the transport time (T), x is the trans-
port distance (L), ρ is the particle density (ML-3), and σ is
the ratio of particle volume deposit on the particle surface
to solid medium volume (dimensionless). The deposition
kinetic equation that takes into account dispersion [14,
16, 17] gives

ρ

ϕ

∂σ
∂t

= kdep ⋅ C − kdep ⋅
D
u
⋅
∂C
∂x

, 2

where kdep is the deposition coefficient (T-1). Assuming
that the dispersivity D = αD ⋅ u, substitution of equation
(2) into equation (1) gives

∂C
∂t

=D ⋅
∂2C
∂X2 + D1 − u

∂C
∂X

− kdep ⋅ C, 3

where αD is the longitudinal dispersivity (L). D1 are coef-
ficients given by

D1 = kdep ⋅
D
u

4

For decay concentration injection, the initial state and
boundary conditions are

C x, 0 = Ci, 0 ≤ x < +∞, 5

C 0, t = C0 exp −α′t , 6

∂C ∞,t
∂x

= 0, 7

where Ci is the initial constant concentration in the
porous media (M/L), C0 is the initial injection concentra-
tion (ML-3), and α′ is the decay coefficient (T-1).

2.3. Solving the Model. Laplace transformation of t for equa-
tion (3) on both sides and substitution of the initial condition
(5) are obtained by

∂2C
∂X2 + D1

D
−

u
D

∂C
∂X

−
kdep + s

D
C = −

Ci

D
, 8

where s is a complex variable corresponding to t and C is the
Laplace transformation of C.

The solution to equation (8) can be obtained by

C = C1 ⋅ exp
u
2D −

D1
2D x + x

D1
2D −

u
2D

2
+
kdep + s

D

1/2

+ C2 ⋅ exp
u
2D −

D1
2D x − x

D1
2D −

u
2D

2
+
kdep + s

D

1/2

−
Ci

Dk1k2
9

From the boundary conditions of equations (6) and (7),
the values of C1 and C2 can be obtained; thus,

C = C0
p + α′

−
Ci

p + kdep
⋅ exp u

2D −
D1
2D x − x

D1
2D −

u
2D

2
+
kdep + p

D

1/2

+ Ci

p + kdep
, 10
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where p is a complex variable corresponding to t in equations
(6) and (7). Assuming that

I1 =
C0

p + α′
⋅ exp u

2D −
D1
2D x − x

D1
2D −

u
2D

2

+
kdep + p

D

1/2

,
11

I2 = −
Ci

p + kdep
⋅ exp u

2D −
D1
2D x − x

D1
2D −

u
2D

2

+
kdep + p

D

1/2

,

12

I3 =
Ci

kdep + p
, 13

by first letting α = D1 − u 2/4D + kdep − α′, k =D, in

equation (19) of Carslaw and Jaeger [18] and then using a

= − D1 − u 2/4D − kdep in equation (29.2.12) of Abramo-
witz and Stegun [19], the inverse Laplace transformation
of the first term in equation (11) is

L−1 I1 = C0
2 ⋅ exp u

2D −
D1
2D x − α′t

⋅ exp −x
D1 − u 2

4D2 +
kdep − α′

D

⋅ erfc x

2 Dt
−

D1 − u 2

4D t + kdept − α′t

+ exp x
D1 − u 2

4D2 +
kdep − α′

D

⋅ erfc x

2 Dt
+ D1 − u 2

4D t + kdept − α′t

14

Hence, the result of the inverse Laplace transformation
of the second term in equation (12) is given by

L−1 I2 = −
Ci

2 ⋅ exp u
2D −

D1
2D x − kdept exp −x

D1 − u
2D

⋅ erfc x

2 D ⋅ t
−

D1 − u 2t
4D + exp x
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2D

⋅ erfc x

2 D ⋅ t
+ D1 − u 2t

4D

15

The result of the inverse Laplace transformation of the
second term in equation (13) is given by

L−1 I4 = Ci ⋅ e
−kdept 16

The inverse transformation of equation (3), which is the
solution to the present problem, is thus

C x, t = C0
2 ⋅ exp u

2D −
D1
2D x − α′t

⋅ exp −x
D1 − u 2

4D2 +
kdep − α′

D
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2 Dt
−
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D
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17

By letting Ci = 0, equation (17) is reduced to the follow-
ing form:

C x, t = C0
2 ⋅ exp u

2D −
D1
2D x − α′t

⋅ exp −x
D1 − u 2

4D2 +
kdep − α′

D
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2 Dt
−
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D
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2 Dt
+ D1 − u 2

4D t + kdept − α′t

18
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The analytical solution of the conventional convection-
dispersion model, in which the influence of the dispersion
on the deposition kinetics is not considered, can be
obtained by letting Ci = 0 and D1 = 0 in equation (17),
delivering the following result:

C x, t = C0
2 ⋅ exp ux

2D − α′t ⋅ exp −x
u2

4D2 +
kdep − α′

D

⋅ erfc x

2 Dt
−

u2

4D t + kdept − α′t

+ exp x
u2

4D2 +
kdep − α′

D

⋅ erfc x

2 Dt
+ u2

4D t + kdept − α′t

19

3. Results and Discussion

3.1. Calculation Examples. We assessed the analytical solu-
tions in terms of time, distance, dispersion coefficient, depo-
sition coefficient, and attenuation coefficient, using model
parameters selected from previous studies [20–23]. Figure 1
shows the relationship between particle concentration and
time for various distances predicted by equations (18) and
(19) using the parameters given in Table 1. Figure 2 shows
the relationship between particle concentration and distance
for various times predicted by equations (18) and (19) using
the parameters given in Table 1.

Figure 1 shows that particle concentration increases from
zero to peak concentration very quickly, then decreases back
to zero over a longer time period. In other words, the time
required for a concentration increase is far less than that
required for a concentration decrease and the peak concen-
tration value gradually decreases with increasing distance.
In addition, the prediction results from equation (18) are
consistently lower than those from equation (19). Figure 2
shows that the particle concentration gradually decreases
with increasing distance, while the greater the time, the
smaller the concentration at the same distance. The predic-
tion results from both equations (18) and (19) are very close.
Overall, neglecting dispersion in the deposition kinetic equa-
tion can result in larger errors in the relationship between
particle concentration and time.

Figure 3 shows the relationship between particle concen-
tration and time for two dispersion coefficients predicted by
equation (18) using the parameters given in Table 2.
Figure 4 shows the relationship between particle concentra-
tion and distance for the same two dispersion coefficients
using the parameters given in Table 3.

As the influence of the dispersion coefficient on the con-
centration curve is small, only two dispersion coefficients
were tested in Figures 3 and 4. Particle concentration rapidly
peaked with increasing time, then gradually decreased to
zero; the dispersion coefficients had little influence on

particle concentration. Particle concentration decreased with
increasing distance; again, the dispersion coefficients had lit-
tle influence.

Figure 5 shows the relationship between particle concen-
tration and time for four deposition coefficients predicted by
equation (18) using the parameters given in Table 4. Figure 6
shows the relationship between particle concentration and
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Figure 1: Relationship between particle concentration and time for
various distances predicted by equations (18) (solid curves) and (19)
(dashed curves), using parameters given in Table 1.

Table 1: Model parameters used for simulations shown in Figures 1
and 2.

kdep (s
-1) D (cm2/s) u (cm/s) C0 (mg/ml) α′ (s-1)

0.01 1 0.36 1 0.001
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Figure 2: Relationship between particle concentration and distance
for various times predicted by equations (18) (solid curves) and (19)
(dashed curves), using parameters given in Table 1.
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distance for the same four deposition coefficients using the
parameters given in Table 5.

Figure 5 shows that the particle concentration rapidly
peaked with increasing time, then gradually decreased to

zero. The peak value gradually decreased with increasing
deposition coefficient, showing that this has a very important
influence on particle transportation. Figure 6 shows that
when the deposition coefficient was zero, the particle concen-
tration gradually increased from about 0.35 to the peak with
increasing distance, then decreased to zero. When the depo-
sition coefficients were 0.004 and 0.006, the particle concen-
tration decreased from 0.35 to zero with increasing distance.

Table 2: Model parameters used for simulations shown in Figure 3.

kdep (s
-1) x (cm) u (cm/s) C0 (mg/ml) α′ (s-1)

0.01 50 0.36 1 0.001
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Figure 4: Relationship between particle concentration and distance
for two dispersion coefficients, using parameters given in Table 3.

Table 3: Model parameters for simulations shown in Figure 4.

kdep (s
-1) t (s) u (cm/s) C0 (mg/ml) α′ (s-1)

0.01 1000 0.36 1 0.001
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Figure 5: Relationship between particle concentration and time for
four deposition rate coefficients, using parameters given in Table 4.

Table 4: Model parameters for simulations shown in Figure 5.

x (cm) D (cm2/s) u (cm/s) C0 (mg/ml) α′ (s-1)
100 1 0.36 1 0.001

0 100 200 300 400 500
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Figure 6: Relationship between particle concentration and distance
for four deposition rate coefficients, using parameters given in
Table 5.
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Figure 3: Relationship between particle concentration and time for
two dispersion coefficients, using parameters given in Table 2.

Table 5: Model parameters for simulations shown in Figure 6.

t (s) D (cm2/s) u (cm/s) C0 (mg/ml) α′ (s-1)
1000 1 0.36 1 0.001
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Furthermore, when the deposition coefficient was 0.002, the
particle concentration showed a transition period between
deposition coefficients of 0 and 0.004. Overall, the particle
concentration decreased with increasing deposition coeffi-
cient, showing that this has a great influence on the shape
of such curves.

Figure 7 shows the relationship between particle concen-
tration and time for four decay coefficients predicted by
equation (18) using the parameters given in Table 6.
Figure 8 shows the relationship between particle concentra-
tion and distance for the same decay coefficients using the
parameters given in Table 7.

Figure 7 shows that when the decay coefficient was zero,
the particle concentration peaked rapidly, then did not
change further. When the decay coefficient was greater than
zero, the concentration peaked rapidly, then gradually
decreased to zero over time. In addition, the peak value of
the particle concentration decreased with increasing decay
coefficient. Figure 8 shows that the particle concentration
decreased to zero with increasing distance and also decreased
with increasing decay coefficient. Overall, the decay coeffi-
cient has a significant effect on particle transport.

4. Conclusion

We developed an analytical solution for a corrected
convection-dispersion model that takes into account the
effect of dispersion on deposition kinetics with regard to
the particle concentration decay type. The rationality and
correctness of the solution were verified using the time, dis-
tance, deposition coefficient, diffusion coefficient, and decay
coefficient. The main conclusions are as follows:

(1) Particle concentration increased from zero to the
peak value with increasing time, then decreased
to zero. However, particle concentration gradually
reduced to zero with increasing transport distance

(2) Neglecting dispersion in the deposition kinetic
equation can result in large errors in the relationship
between particle concentration and time

(3) With regard to time, the peak value of the particle
concentration decreased gradually with increasing
deposition coefficient, but the time corresponding
to the peak value did not change

(4) With regard to distance, the deposition coefficient
affected the magnitude and distance of the peak value
of the particle concentration

(5) With regard to time, the peak value of the particle
concentration decreased with increasing decay
coefficient. With regard to distance, the peak value
decreased with increasing decay coefficient
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Figure 7: Relationship between particle concentration and time for
four decay factors, using parameters given in Table 6.

Table 6: Model parameters for simulations shown in Figure 7.

kdep (s
-1) D (cm2/s) u (cm/s) C0 (mg/ml) x (cm)

0.01 1 0.36 1 100
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Figure 8: Relationship between particle concentration and distance
for four decay factors, using parameters given in Table 7.

Table 7: Model parameters for simulations shown in Figure 8.

kdep (s
-1) D (cm2/s) u (cm/s) C0 (mg/ml) t (s)

0.01 1 0.36 1 500
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