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Terrestrial water storage (TWS) is a key element in the global and continental water cycle. Since 2002, the Gravity Recovery and
Climate Experiment (GRACE) has provided a highly valuable dataset, which allows the study of TWS over larger river basins
worldwide. However, the lifetime of GRACE is too short to demonstrate long-term variability in TWS. In the Beishan area of
northwestern China, which is selected as the most prospective site for high-level radioactive waste (HLRW) disposal, the
assessment of long-term TWS changes is crucial to understand disposal safety. Monthly and annual TWS changes during the
past 35 years are reconstructed using GRACE data, other remote sensing products, and the water balance method. Hydrological
flux outputs from multisource remote sensing products are analyzed and compared to select appropriate data sources. The
results show that a decreasing trend is found for GRACE-filtered and Center for Space Research (CSR) mascon solutions from
2003 to 2015, with slopes of −2.30± 0.52 and −1.52± 0.24mm/year, respectively. TWS variations independently computed from
the water balance method also show a similar decreasing trend with the GRACE observations, with a slope of −0.94mm/year
over the same period. Overall, the TWS anomalies in the Beishan area change seasonally within 10mm and have been
decreasing since 1980, keeping a desirable dry condition as a HLRW disposal site.

1. Introduction

As a critical state variable in the hydrological cycle, terrestrial
water storage (TWS) integrates surface water storage (SWS,
including canopy interception, reservoirs, wetlands and lakes,
rivers, and snow water equivalent), soil moisture storage
(SMS), and groundwater storage (GWS) [1]. TWS changes
also reflect changes in accumulated precipitation, evapotrans-
piration, and surface and subsurface runoffwithin a given area
or basin [2]. Therefore, the accurate estimation of TWS
changes is essential to understand behaviors of the hydrologi-
cal cycle and improve the accuracy of predictions under the
influence of human activities. For the past few decades, quan-
tification of TWS variability has been accessible from hydro-
logical modeling only. The construction and calibration of

hydrological models require ground-based observations.
However, establishment and maintenance of observation sta-
tions are time and money consuming, and the distribution
of stations is usually uneven in terms of spatial resolution.
In addition, hydrological information is subject to parame-
ter uncertainties due to the lack of field measurements
[3]. Satellite remote sensing offers new ways of measuring
hydrological fluxes at unprecedented spatial coverage and
resolution, especially useful for regions where in situ mea-
surements are sparse or nonexistent [4, 5]. Strategies that
merge in situ model and satellite observations within a frame-
work that result in consistent water cycle records are essential.

Large variations in water mass alter the gravity field of a
region, which can be measured by the Gravity Recovery
and Climate Experiment (GRACE). The advent of GRACE,
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launched in March 2002, provides an effective and useful
method for the detection of variations in TWS at large
scales [6]. Many previous studies have demonstrated that
seasonal and interannual changes in water storage for
continental-scale patterns and large river basins can be
inferred from GRACE observations with unprecedented
accuracy [7–9]. However, limited by its coarse spatial resolu-
tion (~70,000 km2), the GRACE data uncertainty increases
for small basins because the required noise reduction by
filtering leads to undesired damping of signals. In addition,
the GRACE lifetime is still short and does not allow the study
of long-term historical variability in TWS [10, 11].

Nuclear energy is considered as an additional dependable
and clean energy source all over the world. The production of
nuclear energy will result in high-level radioactive waste
(HLRW), which brings potential environmental dangers
[12, 13]; thus, the selection of a proper disposal repository
for nuclear waste is very important. The characteristics of
water storage variations and movement play an important
role in the site selection for nuclear waste disposals. In China
(specifically the Beishan area), there is tectonically stable rock
and an arid climate; therefore, the Beishan area was selected
as one of the most prospective site for a disposal repository
of HLRWs in 1993 [14]. Due to wide areas and limited
ground-based observations in remote areas, the understand-
ing of long-term water storage changes in the Beishan area is
very limited. Up to now, GRACE satellites may be the only
method to detect TWS changes particularly in remote
regions. The area of Beishan regions is large enough to use
GRACE data considering its native spatial resolution.

The objective of this study is to reconstruct long-term
water storage changes in the Beishan area to better under-
stand patterns in water storage change for assisting the site
selection of HLRW. This paper is organized into the follow-
ing sections: (1) assessment of the applicability of different
products from four land surface models (LSMs); (2) analysis
of the interannual and seasonal variation of hydrological
fluxes using the water balance equation (i.e., precipitation
and evapotranspiration from multisource remote sensing
datasets); (3) calculation of TWS variations from GRACE
observations and the water balance method, then a compar-
ison of the differences among them; and (4) characterization
of the multidecadal TWS variations reconstructed in the
Beishan area.

2. Method and Data

2.1. Study Area. The Beishan area is located in the northwest-
ern remote region of China and covers a total area of approx-
imately 122,374 km2 (Figure 1). The longitude is 96°-100°E,
and the latitude is 40°-43°N. The region is surrounded by
Mongolia to the north and Yumen City to the south. The area
includes the Shule River basin to the west and the Heihe
River basin to the east [13]. There are only seasonal rivers
in the study area, so no hydrological station is established
within the study area, as shown in Figure 1. The average
annual precipitation ranges from 60 to 100mm, and approx-
imately 60% of the total precipitation occurs from June to
August [15]. The average annual potential evaporation is

2900-3200mm, and the mean annual potential temperature
is 4-5°C [12]. The study area is divided by using the USGS/-
NASA Shuttle Radar Topography Mission data in the spatial
resolution of 30m and Arc Hydro Tools in ArcGIS software,
which includes procedures such as Digital Elevation Model
(DEM) pretreatment, determination of the direction of flow,
extraction of flow accumulation, channel network, water-
sheds, and watershed division. Very small fluxes are present
in the parts of northeastern and southern boundaries.
According to the studies [11], the flux at the boundaries of
the study area is very small when compared with precipita-
tion and the variations of the flux are negligible, and thus,
the study area is considered to be a drainage basin.

2.2. Data

2.2.1. Precipitation Products. Different precipitation data
sources are available to verify their consistency and calcu-
late the total water storage change (TWSC) based on the
water balance method. Precipitation (P) products, includ-
ing GPCP-2, TRMM 3B43, and weather observation data-
sets, were evaluated in this study. GPCP-2 incorporates
precipitation estimates derived from low-orbit microwave
data, geosynchronous infrared data, and surface rain gauge
observations and is obtained from NOAA. TRMM 3B43 is
a standard monthly precipitation product that incorporates
the combination of precipitation datasets and is widely used
in climatological application [16]. Monthly weather precipi-
tation products are provided by the China Meteorological
Administration (CMA) (hereafter noted as P_CMA), which
are spatially interpolated based on 2472 gauge stations in
China [17]. Two CMA stations are found within the Beishan
area and many stations exist in the vicinity of the southern
part of the study area (Figure 1).

2.2.2. GLEAM ET Data. The Global Land Evaporation
Amsterdam Model (GLEAM) is a set of algorithms driven
by satellite-based observations that separately estimate daily
global ET changes at 0.25° resolution [18, 19]. Three datasets
produced using GLEAM v3 are currently available. GLEAM_
v3.1a is a global dataset spanning the 37-year period of
1980-2016, which is used in this study. There are 10 variables
available, including actual evaporation (E), potential evapo-
ration (Ep), and surface soil moisture (SMsurf). For more
detailed information about GLEAM data, see a previous
study by Miralles et al. [20].

2.2.3. GLDAS Model. The global land data assimilation
system (GLDAS) is a global, high-resolution, offline ter-
restrial modeling system that incorporates satellite and
ground-based observations in order to produce optimal
fields of land surface states and fluxes in near-real time. It
generates a series of global land surface states (e.g., soil mois-
ture and surface temperature) and fluxes (e.g., evaporation
and sensible heat flux) [21–23]. In this study, monthly pre-
cipitation, evapotranspiration, surface runoff, and subsurface
runoff from CLM, VIC, and Mosaic land surface models in
GLDAS-1 and from the Noah model in GLDAS-2 are used
to estimate TWS variations based on a water balance method
over the Beishan area.
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2.2.4. GRACE Gridded Data. The monthly 1° gridded
GRACE TWS datasets are available from the RL05
time-variable gravity field model, which is provided by the
Center for Space Research (CSR) at the University of Texas
(i.e., GRACE-filtered). The gridded products cover a total
period of 156 months and span from January 2003 to Decem-
ber 2015 [24]. Due to the sampling and postprocessing of
GRACE observations, surface mass variations at small spatial
scales tend to be attenuated. The scaling factor approach is
used to restore GRACE TWS changes and has been applied
to individual basins and regions globally. A separate file of
scaling factors derived from the NCAR CLM 4.0 is also
obtained to correct for GRACE signals during low-pass filter-
ing (i.e., destriping, truncating, and filtering) [25].

2.2.5. GRACE Mascon Solutions. To evaluate the monthly
GRACE-derived water mass variability, newly released
GRACE mascon (mass concentration) solutions from the
Center for Space Research (CSR-M) are also used. CSR mas-
con solutions are computed on an equal area geodesic grid
comprised of hexagonal tiles. Each mascon cell is related to
range-rate observations via partials with respect to the spher-
ical harmonic coefficient expansion and truncated to a degree
and order of 120 [26]. Mass anomalies in each mascon tile are
computed from satellite range-rate observations via their
partial derivatives. The resulting mascon solutions are pro-
vided at a 0.5° × 0.5° grid. No additional spatial or temporal
constraint beyond regularization is applied to the CSR mas-
con data. In addition, the CSR-M solutions have no strip
errors and capture all of the signals observed by GRACE

within the measurement noise level. Therefore, no post-
processing filtering is necessary for the solution. A detailed
process of the mascon solutions is in Save et al. [27]. All
data used in this study are listed in Table 1.

2.3. Methods

2.3.1. Water Balance Method. The equation for evaluating
TWS changes using hydrological flux variables was based
on a water balance equation as shown in

ΔS
Δt = P − ET − R, 1

where ΔS/Δt represents the change in terrestrial water storage
ΔS for a given time period Δt ; P is the monthly precipita-
tion (mm/month); ET is evapotranspiration (mm/month)
and R is the streamflow, which includes both surface water
and subsurface water [28]. In this study, the time interval is
set as a month. P, R, and ET are obtained with various
satellite-based products, LSM products, and in situ measure-
ments, which are explained in Section 2.2.

However, TWS changes inferred from this water balance
approach are subject to uncertainties in the flux variables
(particularly, uncertainties in evapotranspiration and pre-
cipitation) [29]. Alternatively, streamflow records are diffi-
cult to obtain in most parts of the world, particularly over
underdeveloped regions and transboundary river basins
with sensitive water issues. The time derivative of water
storage (TWSC) in Equation (1) can be estimated from

40º N

41º N

42º N

43º N

40º N

39º N
96º E

Meteorological stations
Hydrological stations
Boundary of study area

DEM (m)

Rivers

High : 5639
Low : 5639

97º E 98º E 99º E 100º E 101º E

96º E 97º E 98º E 99º E 100º E 101º E

41º N

42º N

43º N

Figure 1: Location and a digital elevation of the Beishan area and distribution of meteorological and hydrological stations across the region.
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the centered difference based on GRACE-derived TWS
anomalies (TWSA), as shown in

ΔS
Δt ≈

dTWSA
dt

≈
TWSA t + 1 − TWSA t − 1

2Δt 2

Firstly, monthly and annual multiple datasets, which
includes precipitation, evaporation, and runoff from differ-
ent remote sensing products, are compared to find the opti-
mal data sources in our study region. Two water budget
estimates of TWS variations are calculated based on different
combinations from 2003 to 2015, noted as WB-CMA and
WB-Noah, respectively. Secondly, for verification of the
approach, the results from WB-Noah estimate are com-
pared with the sum of three components from GLDAS
Noah model, which includes soil moisture (SM), snow
water equivalent (SWE), and plant canopy surface water
(PCSW) within the time from 2003 to 2015. Thirdly,
GRACE-derived TWS anomalies, which are used as a refer-
ence of TWS changes by previous studies [10, 30], are com-
pared with results from WB-CMA estimate. Lastly, changes
of TWS variations in the past 35 years are reconstructed.
The overall workflow is shown in Figure 2.

2.3.2. Multiple Linear Regression (MLR) Analysis of
Time-Series Data. Since water storage changes have seasonal
and secular signals, a multiple linear regression analysis
(MLRA) can be applied to examine the temporal variability
of TWS [6]. For a given time series, the regression model
used can be expressed as follows:

X t = β1 + β2t + β3 sin
πt
6

+ β4 cos
πt
6

+ β5 sin
πt
3

+ β6 cos
πt
3

+ ε,
3

where X t is the time series of TWS, and β1, β2, β3, β4, β5,
and β6 are the constant offset, linear trend, annual signals
(β3 and β4), and semiannual signals (β5 and β6), respectively.
ε represents the model bias and/or data error. Then, the
annual amplitude and semiannual amplitude of the
time-series datasets were written as

Annual amplitude = β3
2 + β4

2, 4

Semi‐annual amplitude = β5
2 + β6

2 5

Table 1: Data sources used in this study.

Flux/state
variables

Sources
Spatial

resolution
Spatial extent

Temporal
resolution

Time span Website

Precipitation

P_CMA 0.5°
Contiguous China

(18°N-54°N, 72°E-136°E)
Monthly 1961-present

http://data.cma.cn/data/detail/dataCode/
SURF_CLI_CHN_PRE_MON_

GRID_0.5.html

TRMM
3B43

0.25°
Global (50°N-50°S,

180°N-180°S)
Monthly 1998-present

https://disc.gsfc.nasa.gov/datasets/
TRMM_3B43_V7/summary

GPCP 2.5°
Global (88.75°N-88.75°S,

1.25°E-358.75°E)
Monthly 1979-present

http://www.esrl.noaa.gov/psd/data/
gridded/data.gpcp.html

Evaporation GLEAM 0.25°
Global (90°N-90°S,

180°S-180°N)
Monthly 1980–2014 https://www.gleam.eu/

P/ET/R

Output of
NOAH
from the
GLDAS-2

1°

Global (59.5°S-89.5°N,
179.5°S-179.5°N)

Monthly 2000-present

http://disc.gsfc.nasa.gov/hydrology/
data-holdings

Output of
VIC

from the
GLDAS-1

1° Monthly 1979-present

Output of
CLM

from the
GLDAS-1

1° Monthly 1979-present

Output of
MOS

from the
GLDAS-1

1° Monthly 1979-present

TWS

GRACE
CSR

1°
Global (89.5°S-89.5°N,

0.5°E-359.5°E)
Monthly 2003-present

http://www2.csr.utexas.edu/
grace/RL05.html

CSR mascon 0.5°
Global (89.75°S-89.75°N,

0.25°E-359.75°E)
Monthly 2003-present

http://www2.csr.utexas.edu/grace/
RL05_mascons.html
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2.3.3. Data Comparison and Error Analysis. Because different
remote sensing datasets were used to calculate TWS changes
based on Equation (1), three indexes (i.e., the relative mean
error (bias), the Nash coefficient (NSE), and the correlation
coefficient R2 , which were expressed in Equations (6)–(8))
were adopted to quantitatively compare different datasets.
The bias reflects the extent of the deviation from one dataset
to a reference dataset [31]. The NSE indicates the amount of
agreement between two datasets [32]. The R2 measures the
degree of correlation between different datasets. The higher
the R2 is, the higher the degree of correlation. There is a sta-
tistically significant correlation if R2 was >0.7 (which is also
in the acceptable range).

bias =
∑N

i=1 Yi − Xi

∑N
i=1Xi

, 6

NSE = 1 −
∑N

i=1 Yi − Xi
2

∑N
i=1 Xi − X 2 , 7

R2 =
∑N

i=1 Yi − Y Xi − X

∑N
i=1 Yi − Y 2 ∑N

i=1 Xi − X 2
, 8

where Xi represents the reference-measured datasets, Yi rep-
resents the satellite-derived datasets, X is the average value
over N for X, and N is the total number of samples from
the satellite-based product.

Uncertainties in the change of terrestrial water storage
are obtained from each component of water balance method.

If the components are independent of each other (no covari-
ance between any two components), the uncertainties can be
simplified as Gaussian error propagation [33].

σTWS = σ2P + σ2
ET + σ2

R, 9

where σ is the error estimated to each component.

3. Comparison of Different Land Surface
Models and Remote Sensing Datasets

3.1. Evaluation of Different Data from Four LSM Products.
Figure 3 shows evapotranspiration (ET) and streamflow
products from four LSMs in the GLDAS at monthly and sea-
sonal scales. It is noted that the precipitation products are the
identical forcing variables among the four LSMs, which is the
sum of rain and snow precipitation rates. Different ET prod-
ucts show good agreement in timing in monthly scales
(Figure 3(a)). However, the amplitude of Noah ET variation
is considerably larger than other LSM results.

In the GLDAS products, streamflow represents the total
runoff for both surface and subsurface flow. The magnitude
of the streamflow (R) varies up to 3mm, which is much
smaller than that of precipitation and ET. It is also observed
that the streamflow in the CLMmodel is significantly overes-
timated during the period from 2003 to 2015 due to different
model structures (Figure 3(c)), which is consistent with the
conclusions from the previous study [34]. The monthly max-
imum values are 0.61, 0.65, 2.95, and 0.28mm for the Noah,

Multi-source datasets include
Precipitation (obtained from CMA, GPCP, TRMM, GLDAS four models)
Evaporation (obtained from GLEAM, GLDAS four models)
Runoff (obtained from GLDAS four models)

Two water budget estimates obtained based on selected datasets:
WB-Noah (Precipitation, evaporation and runoff from Noah)
WB-CMA (Precipitation from CMA, ET from GLEAM and runoff from Noah)

WB-Noah

WB-CMA

Prolong the time span of WB-CMA from 2003-2015 to 1980-2015
based on proven datasets and reconstruction method

Calculate TWS based on SM,
SWE and PCSW from GLDAS

Noah model

Calculate TWS derived from
GRACE CSR mascon

�e first step: analyze multi-source datasets,
and select the optimal datasets to calculate
TWS based on water balance method

�e second step: validate WB-Noah with
GLDAS-TWS to prove the reliability of
water balance method

�e third step: validate WB-CMA with
GRACE-derived TWS to prove the
accuracy of WB-CMA

�e fourth step: reconstruct long-term
time series of TWS variations from 1980 to
2015

Figure 2: Workflow of the water balance method in this study.
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VIC, CLM, and Mosaic model, respectively. Generally, the
runoff is expected to be only a couple of percentage of ET.

In terms of seasonal scale, it can be observed that the four
LSMs exhibit an obvious seasonal cycle; the dry season occurs
from November of the current year to April of the following
year. More than 65% of the seasonal evaporation occurs from
June to September. In addition, discrepancies among the four
LSMs are generally larger during the warm seasons than
those in the cold seasons. To summarize, the phase and
amplitude of ET among the LSMs are consistent, except the
fact that ET from the Noah model is larger than the ones
from other models in the Beishan area.

Unfortunately, there is no runoff station within the study
area. We validated the Noah runoff model results only at the
nearest stations instead. The Heihe River is the largest inland
river in Gansu Province, which is located in the vicinity of the
eastern part of the study area. Two national hydrological sta-
tions in the Heihe River are chosen and their annual runoff
data were compared with the model results. The detailed
information and locations of these 2 hydrological stations
can be seen in Table 2 and Figure 1.

As shown in Figure 4, the observed runoff data in Gaoya
and Zhengyixia stations agree well with Noah-derived results
from 1980 to 2007 in these two stations, especially in recent
years. The magnitude of annual runoff from hydrological
stations and Noah model is consistent. Differences between

these results may be caused by the reason that Noah results
represent regional scale data (1° × 1°), and the observed
results are at point scales. Based on the above discussions,
we believe that the GLDAS/Noah model also can produce
reasonable runoff data in the Beishan area.

3.2. Evaluation of Precipitation Products. GLDAS Version 1
model (VIC, CLM, and Mosaic) produced unnatural trends
in the simulated variables because highly uncertain forcing
fields in 1995-1997 were introduced [35]. GLDAS Version
2 Noah model overcame these shortcomings and created
more climatologically consistent datasets using the Princeton
forcing dataset [36]. We also examine different precipitation
products from CMA, TRMM, and GPCP in addition to
GLDAS/Noah, as summarized in Table 1.

The P_CMA data are spatially interpolated based on
2472 stations in China, and many studies have found that
the dataset matches well with in situ observations [37]. Previ-
ous studies have illustrated that the TRMM 3B43 maintains
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Figure 3: Evapotranspiration and streamflow from the GLDAS four land surface models; (a) and (c) represent monthly scales, respectively,
and (b) and (d) represent mean seasonal cycles, respectively.

Table 2: Information of the hydrological stations.

Name Lon. (E) Lat. (N) Pixels areaa (km2)

Gaoya (GY) 100.39 39.14 G1 20,299

Zhengyi Xia (ZYX) 99.46 39.82 G2 35,634
aCatchment area upstream of the hydrological station.
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the best consistency with rain gauge observations compared
to other remote sensing precipitation products in regions of
northwest China [23].

The most important observation is that, at the annual and
interannual scales, the GLDAS/Noah precipitation is larger
than other datasets over the period from 2003 to 2015,
with biases of 65% and 33% with respect to the TRMM
and GPCP, respectively. The TRMM and CMA are most
consistent among others with the correlation coefficient
0.74 and 0.93 for interannual and monthly scales, respec-
tively (Figures 5(b) and 5(c)). The mean annual precip-
itation with standard deviations estimated from the CMA,
TRMM, GPCP, and GLDAS/Noah is 62.43±18.72mm,
66.06±16.12mm, 81.81±18.13mm, and 108.97±22.21mm,
respectively. In general, the standard deviation of different
monthly precipitation datasets is about 2.76mm.

In terms of seasonal cycles, all precipitation products
show peaks occurring in July (Figure 5(c)). Precipitation
mainly lasts from June to September, accounting for approx-
imately 70% of the annual precipitation, which is consistent
with the CMA observations. In addition, differences in pre-
cipitation estimates among these four different products are
generally larger in warm seasons than in cold seasons, with
the largest difference value occurring in July (10.45mm).

Among all satellite precipitation estimates, the seasonal
and annual cycle of the TRMM dataset follows most closely
with the CMA and has a comparatively low bias and RMSE
values. The results are consistent with Yang et al. [6]. How-
ever, the time series of the TRMM 3B43 covers the period
from 1998 to 2015, which is much shorter than other prod-
ucts. Besides, TRMM 3B43 only contains rainfall compo-
nent, and snowfall component is not taken into account.
Therefore, the CMA precipitation datasets are selected for
further discussion.

3.3. Evaluation of Evapotranspiration Products. The Noah ET
results are overestimated in comparison to other LSM results
and this is likely caused by the overestimated P compared to
CMA and TRMM [36, 38]. We also evaluated the Noah ET
with the independent remote sensing results. Figure 6 illus-
trates the ET from GLEAM and Noah model at different time
scales. It can be seen that the monthly ET products are

basically consistent in timing, with a correlation coefficient
of 0.86 (Figure 6(a)). However, Noah ET is always larger
than GLEAM ET with a bias of 71% during 2003 to 2015
(Figure 6(b)). Noah model reached its maximum annual ET
in 2010, with the value of 141.02mm. The maximum ET
occurred in 2012 for GLEAM, with the value of 86.33mm.
The larger ET in the Noah model is also observed in the com-
parison with other GLDAS LSM models (Figure 3). The
GLEAM ET data are more consistent with CLM, MOS, and
VIC ET results. The standard deviation of different monthly
ET datasets is about 2.71mm.

For seasonal scales, both ET products show peaks occur-
ring in JJA (June, July, and August) and the lowest occurring
in NDJ (November, December, and January). Previous stud-
ies have evaluated daily GLEAM ET products with in situ
eddy covariance ET data as a benchmark from eight sites
in the Chinese Flux Observation and Research Network
(ChinaFLUX), and the results show that the accuracy is
higher in specific river basins across China (e.g., the Liao
River Basin, the Yellow River Basin, and northwestern river
basins) [39]. This study area belongs to northwestern river
basins; therefore, ET products from the GLEAM model can
be applied in this study.

4. Results and Discussion

The study area is located in the northwestern remote region
of China. Field investigations in the Beishan area just began
after 1983, and observation wells were drilled after 2010.
Therefore, it is hard to obtain long-term time series of
ground-measured water level data despite its importance
regarding ground water contamination associated with
HLRW disposal. We present historical and contemporary
water storage variation from remote sensing data (such as
GRACE) and water balance approach and also examine the
uncertainties of the reconstructed water storage associated
with data and model errors.

4.1. GRACE Observation of TWS Variation. TWS variations in
our study region can be obtained from the GRACE-filtered
products, GRACE products restored by a scaling factor
from the CLM 4.0 model, and CSR mascon solution. A
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Figure 4: Comparison of measured runoff and Noah-derived results from 1980 to 2007.
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comparison of these monthly TWS variations is shown in
Figure 7. The TWS variations from the GRACE data with a
scaling factor applied are a few times smaller than other
GRACE data but still correlated with the others. This implies
that the empirical scaling factor is significantly underesti-
mated in this Beishan region, possibly due to the incor-
rect representation of TWS in the CLM 4.0 model. The
GRACE-filtered data (without the scaling factor) agree better
with the CSR mascon solution (Figure 7). Over the period
from 2003 to 2015, all TWS variations represent a decreasing
trend, as quantified in Table 3. Although no empirical post-
processing is required, mascon solutions can still provide
comparable TWS estimates as traditional spherical harmonic
products [26, 32]. Therefore, the CSR mason solutions are
selected to describe the characteristics of TWS variations in
the following discussions.

4.2. Comparisons among TWS Variations. Two different esti-
mates of TWS variations are calculated based on selected
remote sensing products through a water balance equation.
The first solution is derived by combining all hydrological
flux products (e.g., precipitation, ET, and runoff) from the
GLDAS/Noah model (termed as WB-Noah). The other solu-
tion is obtained by combining the CMA precipitation data

with GLEAM evaporation and Noah runoff (termed as
WB-CMA). Estimates of TWS variations are validated with
GRACE observations during 2003-2016.

The GLDAS/Noah soil moisture (SM), snow water equiv-
alent (SWE), and plant canopy water storage (PCSW) were
jointly used to calculate the TWS variations (noted as SM+
SWE+PCSW) [2, 40]. In order to verify the reconstruction
method, we added up GLDAS Noah data related to total
column SM, SWE, and PCSW within the time frame from
2003 to 2015 and then compared SM+SWE+PCSW with
the WB-Noah estimate. As shown in Figure 8, the results
from the WB-Noah are basically consistent with TWS varia-
tions from GLDAS model (SM+SWE+PCSW), confirming
the water balance imposed in the LSM computation.

The most notable observation is that the WB-CMA
estimates of TWS variations show a decreasing trend of
−0.94mm/year, which is consistent with the results of
CSR mascon solutions within the solution uncertainty,
while the WB-Noah presents the opposite increasing trend
of 1.28mm/year for the same period. However, the sea-
sonal variations of GRACE TWS are larger than those of
WB-CMA andWB-Noah. This may elucidate a possible con-
tribution of groundwater component which is not considered
in the Noah model. The uncertainty in the data sources will
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also lead to some discrepancies in results, including CMA P,
GLEAM ET, and GRACE-derived TWS. CMA P data used in
this paper are interpolated from in situ data in gauging sta-
tions; however, the in situ stations are limited, and the inter-
polation may cause errors. Moreover, CSR mascon solutions
are also contaminated with satellite data error and inherent
regularization effect [27].

4.3. Reconstruction of Long-Term TWS Variations. The
uncertainties in remote sensing precipitation, ET, and
streamflow data consequently result in uncertainties in water
budget estimates of TWS changes. However, as discussed in
Long et al. [29], the magnitude of these uncertainties seems
to be small such that meaningful TWS variations can be
determined at the basin scale. It is consistently found that
Noah P and ET flux data are overestimated in comparison
to other independent LSMs and datasets, and also, the TWS
from Noah does not agree with GRACE TWS particularly
in the interannual change. Instead, the agreement is found
from the balance between CMA precipitation and GLEAM
ET datasets.

We choose the monthly CMA precipitation, GLEAM ET,
and Noah total runoff (albeit very small) over the Beishan
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and remote sensing-based products (GLEAM).
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area from 1980 to 2015. The TWS anomalies are calculated
through integrating P, R, and ET data over the study
period and we call it WB-CMA. The annual fluxes and
the WB-CMA estimates are shown in Figure 9. The results
show the agreement of WB-CMA with the GRACE TWS
measurements from 2003 to 2015 (black and blue lines in
Figure 9(b)), while the GLDAS/Noah results (WB-Noah)
do not agree with GRACE. Unfortunately, no other water
storage measurement is available to validate the reconstructed
time series due to the remote location of the Beishan area.

These reconstructed datasets offer an opportunity for
understanding the long-term characteristics of TWS varia-
tions in the Beishan area in the past 35 years. During this
period, the TWS detects large decreasing trends between
1982-1987 and 1993-2005, with the annual mean precipita-
tion and evaporation of 75.08mm and 83.62mm, 52.78mm
and 55.81mm, respectively. However, the trend of TWS
variations weakens from 2003 to 2015 with the slope of
−0.94mm/year, and the mean annual precipitation and evap-
oration are 62.43mm and 62.78mm, respectively, shown
in Figure 9(a). To sum up, the annual mean evaporation
(68.26mm) is larger than precipitation (67.08mm) by
~1.2mm, which creates the decreasing TWS trend from
1980 to 2015. The annual precipitation from 1980 to 1993
is generally larger than the one from 1994 to 2000, possibly
due to the secular change in climate pattern in the study area.
The result is consistent with the conclusion of previous study
[41]. The reconstructed TWS variations are basically consis-
tent with CSR mascon between 2003 and 2015, which prove
that the reconstructed datasets are reasonable. It also can be
seen that the yearly WB-Noah shows the opposite trends
(Figure 9(b)). Overall, the decreasing precipitation and
TWS over the last 35 years and the annual changes of TWS

within ~10mm favorably suggest the Beishan area as a candi-
date site for the safety disposal of HLRW in terms of water
storage variations.

As a disposal repository, numerical simulations are help-
ful to quantitatively evaluate the risk of radionuclide trans-
port. The accuracy of the model is restricted by the lack of
measured data. The reconstructed long-term time series of
TWS variations can be used to calibrate the regional ground-
water model so that the calibrated model is used to evaluate
the influences of extreme climate and regional faults on the
groundwater flow pattern.

4.4. Uncertainty Analysis and Limitation. Uncertainties in
the GRACE-derived TWS anomalies include (1) inherent
GRACE data errors and (2) propagation of bias/leakage cor-
rections. In this paper, the scaled TWS anomalies were com-
puted using the scaling factor provided by GRACE TELLUS.
The measurement error and leakage error for the scaled TWS
anomalies over the Beishan area were computed using the
pseudocode and error estimates provided by GRACE
TELLUS (https://grace.jpl.nasa.gov/data/get-data/monthly-
mass-grids-land/). It is calculated that the GRACE-derived
TWS anomalies have a leakage error of 21.16mm and a mea-
surement error of 11.52mm. As to the uncertainty of CSR
mascon, a rigorous uncertainty analysis of these solutions is
still in progress. In the meantime, the users are recom-
mended to use an uncertainty of 2 cm in water height in each
0.5° grid globally. Therefore, the uncertainty of the study area
is as low as 6mm for the case of spatially uncorrelated errors.

As for uncertainties in hydrological fluxes, the errors are
calculated as one standard deviation from different simula-
tions. For example, uncertainty in ET was estimated by the
standard deviation of all ET products being used in this
study. Then, uncertainties in P, R, and ET were then in
quadrature to obtain the total uncertainty estimates of TWSC
from the water budget. It is calculated that the error of
precipitation is 2.76mm; the error of streamflow and evapo-
ration is 0.19 and 2.71mm, respectively. Therefore, it is
calculated that the uncertainties in TWSC are 3.87mm. At
present, there are limitations in this research. The Beishan
area is located in the northwestern remote region of China.
Only two meteorological stations and no hydrological station
are located within the study area, which bring certain difficul-
ties in obtaining observed data. Although the GRACE has
provided the only globally available solution for measuring
the TWS variations, the short lifetime of GRACE is destined
for its weakness in providing long-term TWS datasets for
better understanding TWS variability. This research recon-
structed long-term time series of TWS variation based on
appropriate product combinations and proven water balance
method. If more observed data are collected in the future, we

Table 3: Annual amplitude and phase of terrestrial water storage (TWS) from GRACE, mascon, and GLDAS from 2003 to 2014.

Annual amplitude (mm) Annual phase (degree) Trend (mm/year)

GRACE-filtered 13.20± 2.78 230.14± 14.02 −2.30± 0.52
GRACE applied with scaling factor 3.83± 0.83 222.82± 7.45 −0.78± 0.16
CSR mascon 11.86± 1.25 183.65± 6.05 −1.52± 0.24
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will further verify and improve the accuracy of the recon-
structed TWS variations.

5. Conclusions

Based on TWS time series acquired from the GRACE data,
in association with other remote sensing products, we
reconstructed the monthly, seasonal, and interannual vari-
ability of TWS variations during 1980-2015 based on the
water balance method over the Beishan area. Satellite prod-
ucts have widespread application potential for fields includ-
ing water resource managements, climate change research,
and hydrological modeling, due to their wide coverage and
high temporal-spatial resolution. Therefore, the precision of
satellite estimates needs to be evaluated before application.
The major conclusions drawn throughout this study can be
summarized as follows.

(1) As for hydrological flux outputs from the four LSMs
in the Beishan area, the phase and amplitude of three
ET products (VIC, CLM, and Mosaic) are basically
consistent at the monthly and seasonal scale, while
Noah ET is larger than others. There are large differ-
ences in streamflow products among the four LSMs.
The CLM significantly overestimates streamflow
from 2003 to 2015, and the monthly largest values
are 0.61, 0.65, 2.95, and 0.28mm for the Noah, VIC,
CLM, and Mosaic models, respectively

(2) In terms of different precipitation products, the sea-
sonal and annual cycle of the TRMM 3B43 follows
most closely with the P_CMA, which has the largest
NSE of 0.83. Precipitation in the GLDAS/Noah
model is consistently larger than other datasets over
the period from 2003 to 2015, with biases of 65%
and 33% for the TRMM and GPCP, respectively

(3) The GLEAM ET datasets are basically consistent
most of GLDAS/LSMs ET with a correlation coeffi-
cient of 0.86. However, the Noah ET is always larger
than that from GLEAM, while the differences some-
what increased after 2008, with a bias of 71%

(4) Amplitudes of TWS variations derived from GRACE
are greatly reduced after consideration of the scaling
factor (likely poorly estimated in this study area),
with annual changes from 13.20± 2.78mm to 3.83±
0.83mm. The GRACE-filtered solutions without the
scaling factor applied and the independent mascon
solutions agree with each other with a correlation
coefficient of ~0.9 and both present a decreasing
trend of −2.30 and −1.52mm/year, respectively, in
the Beishan area

(5) Our water budget estimates WB-CMA show the sim-
ilar decreasing trend with the CSR mascon results,
with a slope of −0.94mm/year. On the contrary, the
WB-Noah estimates exhibit the opposite, increasing
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trend of 1.28mm/year, likely due to overly estimated
precipitation and evapotranspiration as also shown
from the comparison with other data

(6) The WB-CMA exhibits a decreasing trend during
the extended period from 1980 to 2000, with a slope
of −2.40mm/year. The amplitude of the decreas-
ing trend weakens in recent years, with a slope of
−0.94mm/year, which is due to the more balanced
states between precipitation and evapotranspiration
in recent years. As a whole, the estimated TWS vari-
ations are only within 10mm since 2001, which sug-
gests that TWS in the Beishan area almost remains
stable, being favorable for site selection of HLRW

Our 35-year long TWS time series, reconstructed with
CMA and GLEAM datasets, agree with the GRACE obser-
vation for the last 13 years. They offer a unique opportu-
nity for understanding the long-term historical variation of
TWS variations in this large river basin during the past sev-
eral decades. Besides, the research also provides reference
for choosing the most appropriate methodology and datasets
to reconstruct long-term TWS variations in data-sparse
regions. Moreover, these reconstructed datasets can also be
used as auxiliary data to calibrate and validate the regional
groundwater flow model.

The validation of constructed results is a very difficult
work because few observation data are available. We firstly
validate the reliability of the method in the period from
2003 to 2015 and then reconstructed TWS variations from
1980 to 2015. The reliability of results is subject to the accu-
racy and resolution of GRACE data and the other P and ET
data sources. However, this study will provide a preliminary
reference to prove the Beishan area as a candidate site for
the safety disposal of HLRW.
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