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Induced by coal mining, the fractures constantly occur in geologic strata until failure occurs, which provide channels for water flow.
Therefore, it is essential to investigate the permeability evolution of rocks under load. Borehole sampling was conducted in a
bedrock layer beneath an aquifer, and the permeability evolution of sandstone specimens under different confining pressures
was tested in rock mechanics testing laboratories. The results indicated that the permeability gradually decreases with the
increasing confining pressures, while the peak strength increases with the increase of confining pressures. The minimum and
maximum permeabilities occurred in the sandstone specimens that were subjected to elastic deformation and strain-softening
stages, respectively. The failure, and maximum permeability, of these sandstone specimens did not occur simultaneously. To
prevent the flow channel being formed due to the development and failure of rock fractures, a method of backfill gob was
proposed and also the influence of backfill on fracture development was discussed.

1. Introduction

During coal mining, the strata motion occurs beneath the
effect of mine ground pressures which further produce frac-
tures [1–3]. In this context, the water-conducting channels
are formed once the fractures are connected with each other
so that water in an aquifer flows to the mined panel, which
causes a water inrush [4, 5]. In recent years, there have been
many water-inrush accidents beneath an aquifer caused by
coal mining, which lead to economic loss and threaten safe
production in coal mines [6, 7]. Moreover, fractures are con-
stantly being developed and extended, while permeability
also varies under the effect of mining-induced stress. There-
fore, it is necessary to explore the evolution of permeability
in rocks during deformation failure which can provide exper-
imental data revealing the mechanism of water inrush of coal
seams beneath an aquifer.

Researchers have carried out plenty of studies on the per-
meability of coals and rocks by experimental [8–12] and

numerical methods [13–15]. Coli et al. [16] presented a
new practical technical approach for the evaluation of
hydraulic conductivity and tunnel water inflow in complex
fractured rock masses, which was used to evaluate water flow
into tunnels planned along the new highway project.
Bukharov and Ilyushin [17] proposed a method for deter-
mining permeability of fractures in hard rocks in seepage
problems in dams, and Zhang et al. [18] investigated the rela-
tionships between deformation and permeability of brittle
rocks. Parisa [19] estimated the permeability of rocks by
using a neural network model; Wang et al. [20] studied the
characteristic of gas permeability of low-permeability rocks
by applying a triaxial test, which provides guidance when
constructing underground oil storage facilities. Guo et al.
[21] suggested that the permeability of rocks is positively
correlated with temperature and pressure after studying
the influence of temperature on the permeability of rocks.
Meng and Li [22] examined changes in the permeability of
high-quality coal. Głowacki and Selvadurai [23] tested the
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permeability of limestone under different stresses and pro-
posed an empirical spatial model of permeability evolution.
The researches on the permeability evolution in rocks during
seepage process can greatly contribute to reveal the seepage
mechanism of rocks.

Besides, the water inrush induced by coal mining usually
occurs because of the strata breakage during coal mining,
which will form the seepage channel for the underground
water. For this problem, some methods were proposed to
control the water inrush in coal mining; also, the good
application effects have been obtained on site. Li et al. [24]
discovered a water-inrush mechanism suitable for specific
geological and hydrogeological conditions and applied the
grouting control measures. In order to prevent the water
inrush in coal mine, Wu et al. [25] proposed the vulnerability
index approach by coupling the analytic hierarchy process
and geographic information system for evaluating the
water-inrush risk. Moreover, the coal seams under built-up
structures and especially beneath water bodies can be
extracted through proper planning for the optimization of
coal recovery and systematic strata control investigations
[26]. However, the above control methods could not
guarantee the strata integrity during coal mining, which will
destroy the ecological environment and underground water.
Meanwhile, little research is available on combining the rock
seepage and the mechanism of water inrush, with a lack of
focus to date on permeability evolution in bedrock beneath
an aquifer.

Therefore, this study is aimed at investigating the water
seepage mechanism of rock strata and proposing the effective
control method. Borehole sampling was conducted in bed-
rock beneath an aquifer to test the permeability evolution
of rock specimens under different confining pressures and
reveal the causes of water inrush in mining seams therein.
Through experimental study on the rock seepage, the
relationships between the permeability evolution and failure
process of rock can be obtained accurately. Finally, a backfill
control method for preventing water-inrush-induced disas-
ters in coal mines was suggested and discussed.

2. Experimental Details

2.1. Experimental Material. The sandstone specimens were
taken from the bedrock layer of backfill panel of coal mine
in Anhui Province, China. The coal mining of this mine
was significantly influenced by an aquifer, because the
quaternary aquifer on the bottom of the unconsolidated
formation directly overlaid the bedrock layer, below which
there is no aquiclude. Moreover, the minimum distance
between the coal seam of backfill panel and the aquifer was
21.8m. The coal seam is affected by the aquifer, and it cannot
be excavated by the conventional mining method. The thick-
ness of the aquifer ranges from 6.12 to 39.19m with an aver-
age of 20.7m, and it contains materials including gravels,
grits, clayey gravels, coarse sands, medium sands, and clayed
sands. The immediate roof is comprised of siltstone and fine
sandstone with high associated wet and dry strengths and a
mean thickness of 5.8m. Core drilling was conducted in a
backfill panel to test the seepage characteristics of the

bedrock, providing experimental data aimed at preventing
future water-inrush risk caused by coal mining beneath an
aquifer. The minerals in this sandstone mainly include feld-
spar, quartz, kaolinite, illite, and chlorite. It has an average
density of 2570 kg/m3. Cylindrical specimens measuring
50mm in diameter, and 100mm in height, were cut from
bulk specimens.

By using a scanning electron microscope (SEM), the
microstructures of the sandstone specimens after 260x,
1400x, and 2400x magnification were obtained, as shown in
Figure 1. Most mineral particles appear as irregular blocks,
and they are interconnected; however, there are microscopic
defects in the mineral particles including micropores and
microcracks. The micropores and microcracks exhibit lower
tensile and compressive strengths compared with the intact
rock, and they are considered as having formed the original
seepage channels allowing constant fluid flow in the
specimens [27].

2.2. Experimental Apparatus and Test Method. The seepage
characteristics of the sandstone specimens were tested by
using a computer-controlled MTS815.03 test system. The
maximum axial load was 4600 kN. As shown in Figure 2,
both upper and lower ends of each specimen were capped
by a porous steel plate to ensure a uniform water pressure
was imposed over the whole specimen cross-section and to
guarantee uniform liquid penetration to the specimen from
its end surfaces. The upper and lower water pressures were
separately imposed on the upper and lower porous plates of
the specimen. A vertical hole was separately made in the cen-
tre of the porous plates so that the flow channel for water was
formed. A plastic insulation sleeve, and a heat-shrinkable
plastic sleeve, was used to seal the specimen.

The basic mechanism of the seepage experiment is shown
as follows: axial pressure P1, confining pressure P2, and pore
pressure P3 were imposed (keeping P3 < P2) and then pore
pressure P4, at the lower end of specimen, was decreased so
that the difference in osmotic pressure (△P = P3 − P4) can
be established across the two ends of the specimen. Thus,
water was forced into the specimen.

To investigate the influence of stress on the seepage
characteristics of sandstones at different burial depths, the
seepage characteristics of sandstone specimens under
confining pressures of 4, 6, 8, and 10MPa were separately
measured. Moreover, the axial stress was imposed on the
specimen, and then, the permeability k of the specimen was
calculated by using the following formula [28, 29]:

k = 1
5n〠

n

i=1
526 × 10−6 × lg ΔP i − 1ð Þ

ΔP ið Þ
� �

, ð1Þ

where n, ΔPði − 1Þ, and ΔPðiÞ refer to line numbers of data
acquisition, and differences in osmotic pressures between
the ði − 1Þth and ith lines, respectively.

Before conducting the seepage experiment, it is necessary
that the specimen was fully saturated in advance because the
seepage process was blocky if the specimen was partially
saturated; moreover, the cylindrical sandstone specimens
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were sealed during testing, or water inside the specimen was
mixed with oil inside the triaxial cell itself.

3. Analysis of Experimental Results

The relationships between the axial stress and permeability
with the axial strain in the sandstone under different confin-
ing pressures is shown in Figure 3: it was similar to that
between the permeability and axial strain under different
confining pressures. Under different confining pressures,

primary microcracks and micropores were in a densification
and closure stage before the sandstone specimens reached the
elastic limit under constantly increasing stress. Moreover,
there was a linear relationship between the axial stress
and strain: after this elastic deformation, new fractures in
the sandstone specimens developed and extended so that
plastic deformation occurred. After the sandstone specimens
reached their peak strength, the stresses rapidly decreased,
showing strain-softening. Thereafter, the sandstone speci-
mens dilated further until reaching their residual strength.

Owing to primary micropores and microcracks in the
sandstone specimens becoming densified and more tightly
closed as stresses increased in the elastic deformation stage,
the permeability decreased rapidly. In the plastic deforma-
tion stage, new fractures rapidly developed and extended
and the permeability gradually increased after the sandstone
specimens reached their ultimate strength. And then the per-
meability reached its maximum value after the sandstone
specimens were damaged. Moreover, new fractures were con-
stantly being developed in the sandstone specimens and
eventually failure occurred, which can constantly provide
channels for water flow.

Figure 3 shows that the minimum and maximum perme-
ability occurred when the sandstone specimens were sub-
jected to the elastic deformation stage and in the strain-
softening stage. Moreover, the maximum permeability
occurred after the sandstone specimens reached peak
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Microcracks
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Figure 1: Microstructures of sandstones obtained by SEM. (a) 260x; (b) 1400x; (c) 2400x.
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Figure 2: The schematic diagram for testing the seepage
characteristics of rock specimens.
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strength, implying that the failure of the sandstone specimens
did not simultaneously appear upon attainment of the
maximum permeability. The permeability suddenly reached
a maximum after the sandstone specimens were completely
damaged. During coal mining, a channel for water flow was
formed due to the mutation allowing water flow to the panel
so that coal mines were subjected to water-inrush-induced
disaster, threatening the safe mining of coal.

The relationship between the maximum permeability
and peak strength of sandstone with confining pressures is
shown in Figure 4. The maximum permeability gradually
decreased with increasing confining pressure while the
peak strength rose with increasing confining pressures.
When the confining pressure increased from 4MPa to
10MPa, the maximum permeability of the specimen fell from
48:7 × 10−7 μm2 to 17:1 × 10−7 μm2 while the peak strength
increased from 38.9MPa to 98.2MPa.

4. Discussions

According to the relationships between the stress and the per-
meability, the process from deformation to failure can be
divided into six stages (Figure 5) [30, 31]. The six stages
include the closure of microcracks (OA), an elastic deforma-
tion stage (AB), a fracture-development and extension stage
(BC), rapid development to instability of fracture (CD), a
strain-softening stage (DE), and a residual strength stage (EF).

Along OA, the primary cracks were compressed and fur-
ther closed so that the void volume of the specimen reduced
and the permeability decreased overall. During the elastic
deformation stage (AB), the strain gradually decreased with
increasing stress. Moreover, there was an approximately lin-
ear relationship between the axial stress and strain and the
permeability of the specimen increased gradually. During
the development and extension of cracks (BC), the specimen
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Figure 3: The relationships between stress, permeability, and axial strain under different confining pressures. (a) 4MPa; (b) 6MPa; (c) 8MPa;
(d) 10MPa.
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was subject to the plastic deformation after it reached the
elastic limit and new fractures and joints appeared with
increasing stress, causing the permeability to increase rap-
idly. Afterwards, the fractures rapidly developed during the
instability stage (CD). During this stage, fractures and joints
in the specimen rapidly developed and extended after the
specimen reached the yield limit until the specimens were
completely damaged and the permeability increased signifi-
cantly. During the strain-softening stage (DE), the fractures
and joints inside the specimens were gradually damaged
after the specimen reached the peak strength and the stress
gradually reduced to a stable value (residual strength) with
increasing stress. Moreover, the permeability rapidly rose
to its maximum after the specimen reached peak strength.
During stage (EF), after the specimen was subjected to
strain-softening, the stress and permeability changed a little
with increasing strain.

A water inrush in this coal mine is shown in Figure 6.
After the coal was mined, the immediate roof collapsed to

form a caving zone under the effect of the pressure from
overlying strata due to loss of support from the lower coal
seam. In contrast, the main roof gradually moved towards
the lower part of the seam and the fractures gradually
extended and ruptured when the internal stress reached the
ultimate strength. Moreover, the rupture developed along
the overlying strata to form a fractured zone. The caving
and fractured zones formed the water-conducting fractured
zone. Once the water-conducting fractured zone developed
to the aquifer, the water flowed to the panel through the con-
nected fractures induced by coal mining, which caused the
aforementioned water inrush.

It can be seen from the experimental results in Section 3
that the overlying strata gradually sank after the coal seam
was mined and fractures inside the strata gradually developed
and eventually ruptured under the effect of stresses induced
by coal mining. As the strata at each layer were damaged,
the fracture meshes were formed, which were thus porous.
Water in the aquifer can flow into the mining panel through
the fractures, and a water inrush ensued.

Through the above analysis, it can be speculated that it is
necessary to control the fracture meshes in strata so as not to
form a connection with an aquifer, and to prevent water-
inrush-induced disasters. Therefore, the gob of the panel
can be backfilled by using backfill materials after coal seams
was mined so that the room left due to coal mining can
be backfilled, and the backfill materials (as the main support)
were used to bear the loads of overlying strata, which
effectively constrained the subsidence of the roof [32–34].
Thus, overlying strata were mainly expressed as curved
subsidence and fractures in limited areas, which effectively
decreased the height of the water-conducting fractured
zone and guaranteed the safe mining of coal seam beneath
an aquifer [35].

It has been proposed that solid wastes (gangues, coal ash,
and slag) are backfilled into the gob to control the strata
movement and fracture development [36, 37]; the method
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schematic of solid backfill mining is shown in Figure 7. To
investigate the development of the water-conducting frac-
tured zone in overlying strata during solid backfill mining,
the relationships of mining height and compression ratio to
the height of the water-conducting fractured zone are
obtained through regression using SPSS statistical analysis
software [35, 38]:

Hli = 31:96 + 2:72M − 34:56φ, ð2Þ

where H li refers to the height of water-conducting fractured
zone, φ is the compression ratio, andM is the mining height.

While the compression ratio represents the ratio of
the final subsidence of the roof to the mining height,

the larger the compression ratio, the better the backfilling
effect.

φ = M −Me
M

, ð3Þ

where Me refers to the final subsidence of the roof.
According to Formula (2), the relationships of the mining

height and the compression ratio to the height of the water-
conducting fractured zone are derived, as shown in Figure 8.

As shown in Figure 8, the lower the mining height, the
larger the compression ratio and the lower the height of the
water-conducting fractured zone. Therefore, for those geo-
logical conditions specific to this coal mine, the compression
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Fractures

Caving rocksWater inrush
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Buildings

Figure 6: Water inrush in a coal mine induced by an aquifer.
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Figure 7: The method schematic of solid backfill mining in a coal mine.
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ratio is a crucial factor in controlling the height of the water-
conducting fractured zone. Moreover, the larger the com-
pression ratio, the better the backfill effect and the less the
subsidence of overlying strata, and therefore, the water-
conducting fractured zone does not reach the aquifer, thus
reducing the risk of a water inrush.

In order to monitor the height of the water-conducting
fractured zone during the mining of backfill panel, two mon-
itoring boreholes were drilled and installed above the backfill
panel. Drilling fluid was used to monitor the fracture devel-
opment of the strata. The depths of both borehole 1 and
borehole 2 were 295.0m, and the end hole was at the floor
strata of the coal seam. After mining the backfill panel, the
displacement and deformation of strata were relatively mod-
erate, and the development height of fractures was approxi-
mately 10.0m. Also, the height of the water-conducting
fractured zone did not develop to the aquifer. The monitor-
ing results show that adopting the backfill method can
effectively reduce the development height of the water-
conducting fractured zone in strata beneath an aquifer to
achieve safer mining.

5. Conclusions

This paper is aimed at investigating the permeability changes
in rocks during loading and revealing the mechanism of
water inrush in coal mining beneath an aquifer. To achieve
this aim, borehole sampling was conducted on the bedrock
layer beneath the aquifer and the permeability evolution of
the sandstone specimens under different confining pressures
was investigated.

Owing to the primary micropores and microcracks in
the sandstone specimens being densified and further
closed as the stress increased in the elastic deformation
stage, the permeability decreased rapidly. In the plastic
deformation stage, new fractures developed and extended
rapidly: the permeability gradually increased after the
sandstone specimens reached ultimate strength, and then,

the permeability suddenly reached its maximum value after
the sandstone specimens were completely damaged. More-
over, the minimum and maximum permeabilities occurred
when the sandstone specimens were subject to elastic defor-
mation and in the strain-softening stage. Additionally, the
maximum permeability appeared after the sandstone speci-
mens reached their peak strength, implying that failure of
the sandstone specimens did not occur at the same time as
the maximum permeability was reached.

The permeability suddenly reached its maximum value
after the sandstone specimens were completely damaged.
During coal mining, a channel for water flow was formed
due to the mutation which allowed water to flow to the panel
and cause a water inrush. The backfill method can be used to
reduce the fracture development induced by coal mining and
prevent the water-conducting fractured zone from reaching
the aquifer, thus reducing the risk of a water inrush.

Data Availability

The data used to support the findings of this study are
included within the article.
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