
Research Article
Azimuthal Attenuation Elastic Impedance Inversion for Fluid and
Fracture Characterization Based on Modified Linear-Slip Theory

Xinpeng Pan ,1,2 Guangzhi Zhang,2 and Yian Cui 1

1School of Geoscience and Info-Physics, Central South University, Changsha 410082, China
2School of Geoscience, China University of Petroleum (East China), Qingdao 266580, China

Correspondence should be addressed to Xinpeng Pan; panxinpeng1990@gmail.com and Yian Cui; cuiyian@csu.edu.cn

Received 8 July 2019; Revised 2 October 2019; Accepted 17 October 2019; Published 5 December 2019

Academic Editor: Jaewon Jang

Copyright © 2019 Xinpeng Pan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The seismic attenuation should be considered while accounting for the effect of anisotropy on the seismic wave propagating
through a saturated fractured porous medium. Based on the modified linear-slip theory and anisotropic Gassmann’s equation,
we derive an analytical expression for a linearized PP-wave reflection coefficient and an azimuthal attenuation elastic impedance
(AAEI) equation in terms of fluid/porosity term, shear modulus, density, dry normal and tangential fracture weaknesses, and
compressional (P-wave) and shear (S-wave) attenuation parameters in a weak-attenuation isotropic background rock containing
one single set of vertical aligned fractures. We then propose an AAEI inversion method to characterize the characteristics of
fluids and fractures using two kinds of constrained regularizations in such a fractured porous medium. The proposed approach
is finally confirmed by both the synthetic and real data sets acquired over a saturated fractured porous reservoir.

1. Introduction

With the increasing demand for oil and gas around the world,
fractured reservoirs have become the focus of the geophysical
exploration of hydrocarbons [1]. When the fractures develop
to a certain scale, the seismic wave propagation in such frac-
tured reservoirs may result in shear-wave splitting, azimuthal
velocity anisotropy, etc. [2, 3]. A single set of vertical aligned
fractures along the dominant horizontal direction in a homo-
geneous isotropic background medium can be regarded as a
long-wavelength equivalent horizontal transversely isotropic
(HTI) medium [4, 5]. Therefore, the detection and character-
ization of the underground fractures using seismic data is cru-
cial for the exploration and exploitation of fractured
hydrocarbon reservoirs.

The equivalent medium theory (EMT) is used to equalize
an inhomogeneous fractured medium to a homogenous
anisotropic medium under the long-wavelength assumption,
creating a model which connects the seismic reflection
characteristics with the fracture parameters. Hudson’s [6, 7]
isolated penny-shaped fracture model is the most com-
monly used theoretical model of a fracture equivalent

medium, in which the equivalent elastic property of iso-
lated fractured rock is derived based on the scattering the-
ory analysis of the average seismic wave field of thin
penny-shaped elliptical fractures. It is the first model used
to describe the effect of fracture density and orientation
on the anisotropic characteristics of sparsely distributed
fractured media. Schoenberg’s [8, 9] linear-slip theory is
another theoretical model of fracture equivalent medium,
and it ignores the shape and microstructure of the fractures,
in which the fractures are regarded as a thin layer sur-
rounded by a two-dimensional infinite plane. The fractured
rock is modelled as a fractured porous medium filled with
the fluid which can move from fracture to interconnected
background pores and vice versa, during the wave propaga-
tion. The elastic properties of such a medium are affected by
the characteristics of fluid so they vary between two
extremes which are the gas-saturated (dry) and the fluid-
saturated (wet) porous fractured media [4].

The propagation of seismic waves in fractured media not
only produces the fluid flow between the fully saturated or
partially saturated fractures but also compresses the matrix
pores to generate a pressure gradient and results in the fluid
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flow between the fractures and the matrix pores [10].
Thomsen’s [11] equant-porosity model of fractured porous
media firstly considers the effect of fluid flow between spher-
ical equant pores and aligned fractures. Under the low-
frequency conditions, the fluid pressure of fractured media
strikes a new balance in the half cycle of the seismic wave
when there is fluid exchange between fractures and matrix
pores. At the moment, the characteristics of seismic wave
propagation are consistent with the anisotropic Gassmann’s
[12] equation. However, Thomsen’s model is based on a spe-
cial, idealized fracture geometry (so-called penny-shaped
fractures), which is limited to small fracture density (i.e.,
sparse distribution) conditions. To overcome the penny-
shaped fracture model assumption, Gurevich [13] combined
the anisotropic Gassmann’s [12] equation with the more gen-
erally linear-slip (LS) theory to propose a saturated fractured
porous model, who derived the exact analytical expressions
for the stiffness matrix of a fluid-saturated fractured porous
rock, related to the dry elastic properties of isotropic back-
ground, matrix moduli, porosity, dry fracture compliances,
and saturated fluid modulus. On this basis, Sil et al. [14]
and Huang et al. [15] analyzed the effects of fluid substitution
on elastic properties and reflection coefficients in saturated
fractured porous media with HTI symmetry and orthorhom-
bic symmetry, respectively. Using the anisotropic Gassmann
equation and the linear-slip theory model, Pan and Zhang
[16] derived the weakly anisotropic approximations of fluid
substitutions and reflection coefficients for a set of parallel,
aligned vertical fractures (i.e., an equivalent HTI medium)
and two sets of orthogonal vertical fractures (i.e., an equiva-
lent orthorhombic medium), respectively.

The above-mentioned fractured models are independent
of frequency. However, seismic waves undergo strong
velocity dispersion and attenuation when propagating in a
fractured porous medium; thus, their elastic responses are
frequency-dependent [10, 14]. Based on the traditional
Hudson’s model, Hudson [17] took the effect of fluid flow
in fractured media into consideration and analyzed the
anisotropy and attenuation characteristics of seismic wave
propagation caused by fluid flow in partially saturated frac-
tures. Hudson et al. [18] considered the effects of fluid flow
not only between parallel-connected fractures but also
between fractures and matrix pores. Using the fluid diffusion
equation, Hudson et al. [19] ignored the interaction between
fractures and derived the equivalent stiffness matrix based on
the effect of fluid flow between the fractures and the matrix
pores, which was consistent with Thomsen’s [11] fractured
porous model under the high-frequency condition, but
inconsistent with the anisotropic Gassmann’s [12] equation
under low-frequency conditions. Combining Thomsen’s
fractured porous model with the poroelastic BISQ (Biot-
Squirt) model, Parra [20] considered the local squirt flow
between matrix pores and fractures and studied the disper-
sion and attenuation characteristics of seismic wave velocity
in saturated fractured porous rocks. However, it mainly
suited for the sonic and ultrasonic bands and seriously
underestimated the velocity dispersion and attenuation in
seismic bands. Using the squirt flow mechanism, Chapman
et al. [21] derived the frequency-dependent equivalent com-

plex stiffness tensor based on the effects of fluid flow between
matrix pores, randomly arranged cracks, and aligned frac-
tures. Jacobsen et al. [22] studied the acoustic characteristics
of fluid flow in complex porous media based on the T-matrix
method, which can better predicted reservoir parameters
such as permeability. Ba [23] derived the wave propagation
equation in dual-porosity media, which focused on the math-
ematical and physical significance of dual-porosity wave the-
ory. Based on Biot’s theory of porous media, Tang [24]
introduced the effect of squirt flow in fractures on the elastic
media, and proposed the unified theory of elastic wave in
fractured porous media. Brajanovski et al. [25] analyzed the
variation of P-wave attenuation with normal fracture weak-
ness and the variation of inverse quality factor with fre-
quency in saturated fractured rocks. Chichinina et al. [26,
27] proposed a modified Schoenberg’s linear-slip model to
introduce the attenuation anisotropy of fractured media
and derived the P- and S-wave attenuation, which was con-
sistent with the attenuation anisotropy factor of plane wave
propagation derived by Zhu and Tsvankin [28]. Based on
the modified linear-slip model proposed by Chichinina
et al. [26], Chen and Innanen [29] considered the seismic
attenuation of background media and further improved
the modified linear-slip theory. But they did not consider
the influence of matrix pores and fluid flow. Based on the
traditional linear-slip model, Pan and Zhang [16] consid-
ered the effects of matrix porosity and fluid flow but ignored
the influence of background attenuation and fracture-
induced attenuation.

In this paper, we consider the influence of matrix poros-
ity and fluid flow and integrate the background attenuation
and the fracture-induced attenuation to study the character-
istics of attenuation anisotropy in fractured porous media.
Using the modified Schoenberg’s linear-slip model proposed
by Chichinina et al. [26, 27], we first derive the stiffness
tensor of a fracture-induced equivalent HTI attenuation
medium, which relates to the elastic properties of isotropic
background, porosity, matrix modulus, fluid modulus, frac-
ture weaknesses, and attenuation parameters. A linearized
PP-wave reflection coefficient and an azimuthal attenuation
elastic impedance (AAEI) equation in terms of fluid/porosity
term, shear modulus, density, fracture weaknesses, and atten-
uation parameters are then derived, and an iteratively AAEI
inversion approach with regularizations are proposed to
characterize the fluids and fractures. In the following sec-
tions, we present the methodology, the synthetic tests,
and applications of the proposed AAEI inversion approach
on a real data set.

2. Theory and Methods

2.1. Derivation of Stiffness Tensor for Fractured Porous Media
Based on Modified Linear-Slip Model. To derive the weak-
anisotropy linearized approximation of PP-wave reflection
coefficient in a fractured porous medium, we first derive the
stiffness tensor based on the modified linear-slip (LS) model
proposed by Chichinina et al. [26, 27].

Chichinina et al. [26, 27] assumed that the background
attenuation is much smaller than the fracture-induced
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anisotropic attenuation at the LS interfaces, so they only con-
sidered the fracture-induced attenuation to characterize the
stiffness matrix of fractured rocks and ignored the attenua-
tion induced by the background rocks to simplify the
research process of attenuation anisotropy. In this paper,

we comprehensively consider the attenuation of background
rocks Q−1

b and the fracture-induced anisotropic attenuation
Q−1

c , expressing the background isotropic moduli and frac-
ture parameters as the complex forms, i.e.,

where ~Mb = ~λb + 2~μb and ~λb and ~μb represent the complex P-
wave modulus, the first and the second Lamé constants of
background isotropic attenuation rocks, respectively, and
~χb = ~λb/ ~Mb; ~δN ≡ δN − iδIN (0 < ~δN < δN < 1) and ~δT ≡ δT − i
δIT (0 < ~δT < δT < 1) represent the complex normal and
tangential fracture weaknesses, respectively, which can be
expressed using the fracture-induced P- and S-wave attenua-
tion Q−1

cP and Q−1
cS as [27]

~δN = δN − i 1 − δNð ÞQ−1
cP ,

~δT = δT − i 1 − δTð ÞQ−1
cS :

ð2Þ

Pointer et al. [30] demonstrated that the complex tangen-
tial fracture weakness parameter ~δT does not change with fre-
quency, which is a real number in the range of seismic
frequencies, i.e., Q−1

cS → 0.
Under the assumption of an isotropic viscoelastic back-

ground rock, the complex model parameters can be written
as [31, 32]

~Mb =Mb 1 + iQ−1
bP

� �
,

~μb = μb 1 + iQ−1
bS

� �
,

ð3Þ

where Q−1
bP and Q−1

bS represent the background P- and S-wave
inverse quality factors.

To describe the effect of saturated fluids on the viscoelas-
tic properties of fractured porous media and consider the
effect of fluid flow between the matrix pores and fractures,

we express the anisotropic Gassmann’s fluid substitution
equation as a complex form, i.e.,

~C
sat
ij = ~C

dry
ij + ~βi

~βj
~K
ani
p , i, j = 1,⋯, 6, ð4Þ

where ~C
sat
ij is the complex stiffness matrix of saturated frac-

tured porous rocks, ~C
dry
ij is the complex stiffness matrix of

dry fractured porous rocks, and ~βm can be written as

~βm = 1 −
∑3

n=1
~C
dry
mn

3Kg

 !
ϑm, ϑm =

1, m = 1, 2, 3,

0, m = 4, 5, 6,

(

ð5Þ

where Kg represents the effective bulk modulus of rock solid

particles. In equation (4), ~K
ani
p is a direct analog of complex

Gassmann’s pore space modulus, which is written as

~K
ani
p =

Kg

1 − ~K
ani
dry/Kg

� �� �
− ϕ 1 − Kg/κf

� �� � , ð6Þ

where ~K
ani
dry =∑3

i=1∑
3
j=1

~C
dry
ij /9 represents an anisotropic ana-

log of complex bulk modulus of dry rocks, ϕ is the porosity
of fractured rocks, and κf is the effective bulk modulus of
pore fluids.

~CHTI =

~Mb 1 − ~δN
� �

~λb 1 − ~δN
� �

~λb 1 − ~δN
� �

0 0 0

~λb 1 − ~δN
� �

~Mb 1 − ~χ2
b
~δN

� �
~λb 1 − ~χb

~δN
� �

0 0 0

~λb 1 − ~δN
� �

~λb 1 − ~χb
~δN

� �
~Mb 1 − ~χ2

b
~δN

� �
0 0 0

0 0 0 ~μb 0 0

0 0 0 0 ~μb 1 − ~δT
� �

0

0 0 0 0 0 ~μb 1 − ~δT
� �

2
66666666666666664

3
77777777777777775

, ð1Þ
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Chen et al. [33] demonstrated that the imaginary part of
the complex reflection coefficient is much smaller than the
real part. Therefore, we only emphasize the derivation of

the real part of the complex reflection coefficient and ignore
the imaginary part. The real part of complex stiffness equa-
tion (1) can be thus expressed as

where

Re ~C
dry
11

� �
≈Mdry

b 1 − δdryN

� �
−Mdry

b Q−1
bP⋅cP,

Re ~C
dry
13

� �
≈ λdryb 1 − δdryN

� �
− Mdry

b Q−1
bP⋅cP − 2μbQ

−1
bS⋅cP

� �
,

Re ~C
dry
23

� �
≈ λdryb 1 − χdry

b δdryN

� �
− λdryb 2 − χdry

b

� �
Q−1

bP⋅cP − 2 1 − χdry
b

� �
Q−1

bS⋅cP

h i
,

Re ~C
dry
33

� �
≈Mdry

b 1 − χdry
b

� �2
δN

� �

− λdryb 2 − χdry
b

� �
Q−1

bP⋅cP − 2 1 − χdry
b

� �
Q−1

bS⋅cP

h i
,

Re ~C
dry
44

� �
≈ μb,

Re ~C
dry
55

� �
≈ μb 1 − δTð Þ,

ð8Þ

and in which Q−1
bP⋅cP =Q−1

bPQ
−1
cP and Q−1

bS⋅cP =Q−1
bSQ

−1
cP repre-

sent the comprehensive attenuation factors of the back-
ground P- and S-wave attenuation and fracture-induced
P-wave attenuation.

Substituting equations (5), (6), and (7) into equation (4),
and based on the weak anisotropy and weak background
attenuation, we express the saturated stiffness matrix of frac-
tured porous rocks in the seismic range as

Re ~Cdry
HTI

� �
≈

Re ~C
dry
11

� �
Re ~C

dry
13

� �
Re ~C

dry
13

� �
0 0 0

Re ~C
dry
13

� �
Re ~C

dry
33

� �
Re ~C

dry
23

� �
0 0 0

Re ~C
dry
13

� �
Re ~C

dry
23

� �
Re ~C

dry
33

� �
0 0 0

0 0 0 Re ~C
dry
44

� �
0 0

0 0 0 0 Re ~C
dry
55

� �
0

0 0 0 0 0 Re ~C
dry
55

� �

2
6666666666666666664

3
7777777777777777775

, ð7Þ

Re ~Csat
HTI

� �
≈

Re ~C
sat
11

� �
Re ~C

sat
13

� �
Re ~C

sat
13

� �
0 0 0

Re ~C
sat
13

� �
Re ~C

sat
33

� �
Re ~C

sat
23

� �
0 0 0

Re ~C
sat
13

� �
Re ~C

sat
23

� �
Re ~C

sat
33

� �
0 0 0

0 0 0 Re ~C
sat
44

� �
0 0

0 0 0 0 Re ~C
sat
55

� �
0

0 0 0 0 0 Re ~C
sat
55

� �

2
6666666666666666664

3
7777777777777777775

, ð9Þ
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where

Re ~C
sat
11

� �
=Mdry

b 1 − δdryN

� �
−Mdry

b Q−1
bP⋅cP

+
β2
0
ϕ
κf + 2

β0 1 − β0ð Þ
ϕ

κf δ
dry
N ,

Re ~C
sat
13

� �
= λdryb 1 − δdryN

� �
− Mdry

b Q−1
bP⋅cP − 2μbQ

−1
bS⋅cP

� �
+
β2
0
ϕ
κf +

β0 1 − β0ð Þ
ϕ

κf 1 + χdry
b

� �
δdryN ,

Re ~C
sat
23

� �
= λdryb 1 − χdry

b δdryN

� �
− λdryb 2 − χdry

b

� �
Q−1

bP⋅cP − 2 1 − χdry
b

� �
Q−1

bS⋅cP

h i
+
β2
0
ϕ
κf + 2

β0 1 − β0ð Þ
ϕ

κfχ
dry
b δdryN ,

Re ~C
sat
33

� �
=Mdry

b 1 − χdry
b

� �2
δdryN

� 	

− λdryb 2 − χdry
b

� �
Q−1

bP⋅cP − 2 1 − χdry
b

� �
Q−1

bS⋅cP

h i
+
β2
0
ϕ
κf + 2

β0 1 − β0ð Þ
ϕ

κfχ
dry
b δdryN ,

Re ~C
sat
44

� �
= μb,

Re ~C
sat
55

� �
= μb 1 − δTð Þ,

ð10Þ

and in which β0 = 1 − Kdry/Kg is the Biot coefficient.
Equation (9) provides the description of a weak-

anisotropy approximation for elastic properties of fractured
porous rocks.

2.2. Linearized PP-Wave Reflection Coefficient and Elastic
Impedance of Fracture-Induced Equivalent HTI Attenuation
Media. Based on the scattering theory [34], the PP-
wave reflection coefficient of an HTI medium can be
expressed as

RPP =
1

4ρ cos2θ
Δρ cos 2θ + 〠

6

m=1
〠
6

n=1
Δcsatmnξmn

 !
, ð11Þ

where θ is the angle of incidence, ρ is the density term
of homogenous isotropic background, Δcsatmn represents
the perturbations in stiffness matrix of saturated frac-
tured porous rocks, and ξmn is related to the slowness
vector and polarization vector [35].

Therefore, we can combine equations (9) and (11) to
derive the PP-wave reflection coefficient of fracture-induced
equivalent HTI attenuation media, which is given by

RHTI
PP θ, φ ;Q−1� �

= aPPf θð ÞΔf
f

+ aPPμb θð ÞΔμ
μb

+ aPPρb θð ÞΔρ
ρb

+ aPP
δdryN

θ, φð ÞΔδN + aPPδT θ, φð ÞΔδT
+ aPPQ−1

bP⋅cP
θ, φð ÞΔQ−1

bP⋅cP + aPPQ−1
bS⋅cP

θ, φð ÞΔQ−1
bS⋅cP ,

ð12Þ

where

aPPf θð Þ = 1 −
1 − χsat

b

1 − χdry
b

 !
sec2θ
4

,

aPPμb θð Þ = 1 − χsat
b

1 − χdry
b

sec2θ
4

− 1 − χsat
b

� �
sin2θ,

aPPρb θð Þ = 1
2
−
sec2θ
4

,

aPP
δ
dry
N

θ, φð Þ = −
1 − χsat

b

1 − χdry
b

sec2θ
4

� 1 − 1 − χsat
b

� �
sin2θ sin2φ + cos2θ
� �
 �2,

aPPδT θ, φð Þ = 1 − χsat
b

2
sin2θ cos2φ 1 − tan2θ sin2φ

� �
,

aPPQ−1
bP⋅cP

θ, φð Þ = −
1 − χsat

b

1 − χdry
b

sec2θ
4

sin2θ cos2φ 1 + cos2θ
�h

+ sin2θ sin2φÞ + χdry
b 2 − χdry

b

� �
sin2θ sin2φ + cos2θ
� �2i,

aPPQ−1
bS⋅cP

θ, φð Þ = 1 − χsat
b

2
1 + tan2θ sin2φ
� �

sin2θ cos2φ
�h

+ χdry
b sin2θ sin2φ + cos2θ
� ��i

:

ð13Þ

In equation (12), φ is the angle of azimuth, and the frac-
ture weaknesses can be estimated using the well log data and
rock-physics model (see [36, 37]). Following Connolly [38]
and Martins [39], the relationship between the PP-wave
reflection coefficient and the azimuthal attenuation elastic
impedance (AAEI) can be written as

1
2
ΔEI θ, φð Þ
EIQ

−1

PP θ, φð Þ
≈ aPPf θð ÞΔf

f
+ aPPμb θð ÞΔμ

μb
+ aPPρb θð ÞΔρ

ρb

+ aPP
δdryN

θ, φð ÞΔδN + aPPδT θ, φð ÞΔδT
+ aPPQ−1

bP⋅cP
θ, φð ÞΔQ−1

bP⋅cP + aPPQ−1
bS⋅cP

θ, φð ÞΔQ−1
bS⋅cP ,

ð14Þ

where EIQ
−1

PP ðθ, φÞ represents the azimuthal attenuation elas-
tic impedance.

Under the assumption of weak contrasts of elastic
parameters (i.e., jΔf /f j≪ 1, jΔμ/μbj≪ 1, and jΔρ/ρbj≪ 1),
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small fracture weaknesses (i.e., δdryN ≪ 1 and δT ≪ 1), and
weak attenuation (i.e., Q−1

bP⋅cP ≪ 1 and Q−1
bS⋅cP ≪ 1), the relative

contrasts of background elastic moduli and azimuthal atten-
uation EIs in equation (14) can be substituted as Δf /f ≈ Δ

ðln f Þ, Δμ/μb ≈ Δðln μbÞ, Δρ/ρb ≈ Δðln ρbÞ, and ΔEIðθ, φÞ/
EIQ

−1

PP ðθ, φÞ ≈ Δ½ln EIQ
−1

PP ðθ, φÞ�. Under the assumption of
continuity variation in elastic parameters, fracture weak-
nesses, attenuation parameters, and azimuthal attenuation
EIs, they can be further written as Δðln f Þ ≈ dðln f Þ, Δðln
μbÞ ≈ dðln μbÞ, Δðln ρbÞ ≈ dðln ρbÞ, ΔδN ≈ dδN , ΔδT ≈ dδT ,

ΔQ−1
bP⋅cP ≈ dQ−1

bP⋅cP, ΔQ
−1
bS⋅cP ≈ dQ−1

bS⋅cP , and Δ½ln EIQ
−1

PP ðθ, φÞ� ≈
d½ln EIQ

−1

PP ðθ, φÞ�. Therefore, equation (14) can be written as

1
2
d ln EIQ

−1

PP θ, φð Þ
h i

≈ aPPf θð Þd ln fð Þ + aPPμb θð Þd ln μbð Þ
+ aPPρb θð Þd ln ρbð Þ + aPP

δ
dry
N

θ, φð ÞdδN
+ aPPδT θ, φð ÞdδT + aPPQ−1

bP⋅cP
θ, φð ÞdQ−1

bP⋅cP

+ aPPQ−1
bS⋅cP

θ, φð ÞdQ−1
bS⋅cP:

ð15Þ

By integrating equation (15) and performing corre-
sponding operations, an AAEI equation in the logarithmic
domain can be obtained as

1
2
ln EIQ

−1

PP θ, φð Þ ≈ aPPf θð Þ ln f + aPPμb θð Þ ln μb + aPPρb θð Þ ln ρb

+ aPP
δ
dry
N

θ, φð ÞδN + aPPδT θ, φð ÞδT
+ aPPQ−1

bP⋅cP
θ, φð ÞQ−1

bP⋅cP + aPPQ−1
bS⋅cP

θ, φð ÞQ−1
bS⋅cP:

ð16Þ

For the logarithm operation of equation (16), the final
AAEI equation can be expressed as

EIQ
−1

PP θ, φð Þ ≈ f½ �2aPPf θð Þ ⋅ μb½ �2aPPμb θð Þ ⋅ ρb½ �2aPPρb θð Þ

⋅ exp 2aPP
δ
dry
N

θ, φð ÞδN + 2aPPδT θ, φð ÞδT
h

+ 2aPPQ−1
bP⋅cP

θ, φð ÞQ−1
bP⋅cP + 2aPPQ−1

bS⋅cP
θ, φð ÞQ−1

bS⋅cP

i
:

ð17Þ

2.3.AzimuthalAttenuation Elastic Impedance (AAEI) Inversion
for Fluid and Fracture Characterization. The AAEI equa-
tion in the logarithmic domain can be expressed as the
sum of the background isotropic EI and the fracture-
induced azimuthal attenuation EI. Based on the logarithmic
EI difference between different azimuths, we can realize the
inversion for fracture weaknesses and fracture-induced
attenuation parameters, while the background elastic mod-
uli can be separately inverted by using the azimuth seismic
data with the same observation azimuth as the fracture
orientation. Therefore, we can perform the AAEI inversion
of fluid parameters, fracture parameters and attenuation

parameters for three steps: (1) the inversion of logarithmic
attenuation EIs in different azimuths, (2) the inversion of
fluid parameters and background elastic moduli using single
seismic data with fracture azimuth, and (3) the inversion of
fracture parameters and attenuation parameters based on
the difference between different azimuthal EIs.

Firstly, we invert the logarithmic attenuation EIs using
seismic data with different azimuths. According to equation
(14), the linear relationship between logarithmic EIs and azi-
muthal data can be written as

S½ �M N+1ð ÞL×1 =
1
2
D½ �M N+1ð ÞL×M N+1ð ÞL W½ �M N+1ð ÞL×M N+1ð ÞL

� LEIQ−1PP

h i
M N+1ð ÞL×1

,

ð18Þ

whereM is the number of incident angles, N + 1 is the num-
ber of azimuthal angles, and L is the number of reflection
interface. S represents the seismic data with (N + 1) azimuth
angles andM incident angles,D is the difference matrix,W is
the wavelet matrix, and LEIQ−1PP

is the azimuthal attenuation

EIs in logarithmic domain, which are given by

S½ �M N+1ð ÞL×1 = SPP θ1, φ1ð Þ,⋯, SPP θM , φN+1ð Þ½ �T ,

D½ �M N+1ð ÞL×M N+1ð ÞL =

‐1 1 0 0 0 0

0 ⋱ ⋱ 0 0 0

0 0 ‐1 1 0 0

0 0 0 ⋱ ⋱ 0

0 0 0 0 ‐1 1

2
666666664

3
777777775
,

W½ �M N+1ð ÞL×M N+1ð ÞL =

w1 0 0 ⋯ 0

w2 w1 0 ⋯ 0

⋮ w2 w1 ⋱ 0

wN ⋮ ⋱ ⋱ 0

wN+1 wN ⋯ w2 w1

2
666666664

3
777777775
,

LEIQ−1PP

h i
M N+1ð ÞL×1

= LEI θ1, φ1ð Þ,⋯, LEI θM , φN+1ð Þ½ �T ,

SPP θi, φj

� �h i
L×1

= SPP t1, θi, φj,⋯, SPP tL, θi, φj

� �� �h iT
,

LEI θi, φj

� �h i
L×1

= ln EIQ
−1

PP t1, θi, φj

� �
,⋯, ln EIQ

−1

PP tL, θi, φj

� �h iT
:

ð19Þ

Therefore, the logarithmic attenuation EIs can be esti-
mated using the model-based least-squares inversion method
[33, 36].

Secondly, we estimate the background fluid/porosity
term, the shear modulus, and the density. The least-squares
ellipse fitting (LSEF) method is used to estimate the
approximate fracture orientation [36]. Then, we use the
seismic data with single azimuth of fracture orientation
to estimate the background elastic moduli. This is a classic
inverse problem of prestack seismic inversion for three

6 Geofluids



parameters and can be resolved (and not explained here)
using the inversion method proposed by Downton (2005)
and Russell et al. [40].

Using matrix parameterization, the linear expression for
the azimuthal differences in the logarithmic attenuation EI
can be expressed as a matrix form

ΔLEI½ �MNL×1 = ΔΧ½ �MNL×4L mcQ


 �
4L×1, ð20Þ

where N is the number of azimuthal difference angles, ΔLEI
represents the differences of AAEI in the logarithmic
domain, mcQ represents the estimated fracture weaknesses
and fracture-induced attenuation parameters, and ΔΧ repre-
sents the forwarding matrix related to the weighing coeffi-
cient matrix in different azimuths, which are given by

ΔLEI½ �MNL×1 = LEI θ1, φ2ð Þ − LEI θ1, φ1ð Þ,⋯, LEI θM , φN+1ð Þ½
− LEI θ1, φ1ð Þ�T ,

ΔΧ½ �MNL×4L = 2 ΔAPP
δ
dry
N

ΔAPP
δT

ΔAPP
Q−1
bP⋅cP

ΔAPP
Q−1
bS⋅cP

h i
,

mcQ


 �
4L×1 = δdryN δT Q−1

bP⋅cP Q−1
bS⋅cP

h iT
,

APP
δdryN

h i
MNL×L

= aPP
δdryN

θ1, φ1ð Þ,⋯, aPP
δdryN

θM , φ1ð Þ,⋯,
h
aPP
δdryN

θM , φ2ð Þ,⋯, aPP
δdryN

θM , φNð Þ
iT
,

APP
δT

h i
MNL×L

= aPPδT θ1, φ1ð Þ,⋯, aPPδT θM , φ1ð Þ,⋯,
h
aPPδT θM , φ2ð Þ,⋯, aPPδT θM , φNð Þ

iT
,

APP
Q−1
bP⋅cP

h i
MNL×L

= aPPQ−1
bP⋅cP

θ1, φ1ð Þ,⋯, aPPQ−1
bP⋅cP

θM , φ1ð Þ,⋯,
h
aPPQ−1

bP⋅cP
θM , φ2ð Þ,⋯, aPPQ−1

bP⋅cP
θM , φNð Þ

iT
,

APP
Q−1
bS⋅cP

h i
MNL×L

= aPPQ−1
bS⋅cP

θ1, φ1ð Þ,⋯, aPPQ−1
bS⋅cP

θM , φ1ð Þ,⋯,
h
aPPQ−1

bS⋅cP
θM , φ2ð Þ,⋯, aPPQ−1

bS⋅cP
θM , φNð Þ

iT
,

δdryN

h i
L×1

= δdryN t1ð Þ,⋯, δdryN tLð Þ
h iT

,

δT½ �L×1 = δT t1ð Þ,⋯, δT tLð Þ½ �T ,
Q−1

bP⋅cP

 �

L×1 = Q−1
bP⋅cP t1ð Þ,⋯,Q−1

bP⋅cP tLð Þ
 �T ,
Q−1

bS⋅cP

 �

L×1 = Q−1
bS⋅cP t1ð Þ,⋯,Q−1

bS⋅cP tLð Þ
 �T ,
aPP
δdryN

θi, φj

� �h i
L×L

= diag aPP
δdryN

t1, θi, φj

� �
,⋯, aPP

δdryN

tL, θi, φj

� �h i
,

aPPδT θi, φj

� �h i
L×L

= diag aPPδT t1, θi, φj

� �
,⋯, aPPδT tL, θi, φj

� �h i
,

aPPQ−1
bP⋅cP

θi, φj

� �h i
L×L

= diag aPPQ−1
bP⋅cP

t1, θi, φj

� �
,⋯, aPPQ−1

bP⋅cP
tL, θi, φj

� �h i
,

aPPQ−1
bS⋅cP

θi, φj

� �h i
L×L

= diag aPPQ−1
bS⋅cP

t1, θi, φj

� �
,⋯, aPPQ−1

bS⋅cP
tL, θi, φj

� �h i
:

ð21Þ

Considering the decorrelation between model parame-
ters during the AAEI inversion [36], the decorrelated kernel
matrix ΔΧ becomes Δ~Χ = ΔΧE−1

Q−1 and the model parameter

vector mcQ becomes ~mcQ = EQ−1mcQ. Therefore, equation
(20) can be expressed as

ΔLEIQ−1PP
= Δ~X ~mcQ: ð22Þ

Using the Cauchy probability distribution as a prior
probability density function (PDF), and the Gaussian distri-
bution as the likelihood function, the posterior PDF can be
solved using the joint PDF of the prior PDF and the likeli-
hood function, i.e.,

p ~mcQ ΔLEIQ−1PP

���� �

∝
Y4L
j=1

1
1 + ~m2

cQj/σ2~mcQ

" #

⋅ exp −
Δ~X ~mcQ − ΔLEIQ−1PP

� �T
Δ~X ~mcQ − ΔLEIQ−1PP

� �
2σ2

n

2
64

3
75,
ð23Þ

where σ2n is the noise variances of seismic data and σ2~mcQ
is the

variances of model parameters. Maximizing the posterior
equation (23) and combining the initial-model constrained
low-frequency regularization term, the objective function
can be expressed as

F ~mcQ

� �
= Δ~X ~mcQ − ΔLEIQ−1PP

� �T
Δ~X ~mcQ − ΔLEIQ−1PP

� �

+ 2σ2
n 〠

4L

j=1
ln 1 +

~mcQj

σ2
~mcQ

 !

+ 〠
4

i=1
λ ~mcQi

Λ ~mcQi
− P ~mcQi

~mcQi

� �T
Λ ~mcQi

− P ~mcQi
~mcQi

� �
,

ð24Þ

where λmqsi
represents the regularization coefficients of model

parameters, P ~mcQi
=
Ð ti
t1
⋅ dτ, andΛ ~mcQi

= 1/2 ∗ ln ðL ~mcQi
/L ~mcQi0

Þ,
in which Lmqsi0

represents the initial values of model parame-

ters. Solving equation (24) leads to

ΩcQ = ΞcQ ~mcQ, ð25Þ

where ΞcQ = Δ~XT
Δ~X + 2σ2n/σ2~mcQ

QCauchy +∑4
i=1λ ~mcQi

PT
~mcQi

P ~mcQi

andΩcQ = Δ~XT
ΦPP +∑5

i=1λmqsi
PT
mqsi

Λmqsi
.

The iteratively reweighted least-squares (IRLS) optimiza-
tion algorithm [36, 41] is used to solve equation (25), and we
can finally get the model parameters mcQ = E−1

Q−1 ~mcQ.

3. Examples

3.1. Synthetic Examples. The reliability of the AAEI inver-
sion method proposed in this paper is verified by using a
synthetic azimuthal prestack seismic data set. Based on the
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Figure 1: Synthetic azimuthal gathers with different SNRs, where (a) is noise-free, (b) is 5, and (c) is 2.
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convolution model and a 35Hz Ricker wavelet, four sets of
azimuthal gathers in angle domain are synthesized, as shown
in Figure 1(a), where the well log data of fluid modulus, shear
modulus, density, fracture weaknesses, and attenuation
parameters are displayed in Figure 2(a). It should be noted
that the well log data of fluid modulus, shear modulus, and
density can be calculated using conventional P- and S-wave
velocity and density logging data [40, 42], and the fracture
weakness parameters can be estimated using the rock-
physics model [36], while the well log data of attenuation

parameters can be calculated using the empirical formulas
(Haase and Stewart, 2004). Adding appropriate random
noises to the noise-free gathers (shown in Figure 1(a)), we
can synthesize the noisy gathers with signal-to-noise ratios
(SNRs) of 5 and 2, as shown in Figures 1(b) and 1(c), respec-
tively. Figures 2(a) and 2(b) show the inverted model param-
eters using the AAEI inversion without noise, while Figures 3
and 4 show the corresponding inversion results of model
parameters with SNRs of 5 and 2, respectively. From the
inversion results, it can be seen that when the synthetic
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Figure 2: Estimated model parameters using the azimuthal attenuation EI inversion with no noise, where (a) shows the fluid/porosity term,
shear modulus, and density; (b) shows the normal and tangential fracture weaknesses; and (c) shows the attenuation parameters.
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gather does not contain noises or contains appropriate
noises, the inversion results of model parameters agree well
with the actual data. But as the noises increase, the inversion
result of the attenuation parameters becomes not very stable.
Figures 5(a)–5(c) shows the comparisons between the azi-
muthal gathers synthesized by the inverted model parame-
ters and the initial gathers. The comparisons show that the
difference between the two is small, which further demon-
strates the feasibility of the proposed AAEI inversion
approach for the model parameters.

3.2. Field Data Example. The target reservoir in the area is a
fractured carbonate gas-bearing reservoir, and its main
lithology is thick gray dolomite. The target reservoir has the
characteristics of low porosity and low permeability and has
the characteristics of multistage accumulation, which belongs
to a structural gas reservoir. The seismic data of the target
area is relatively high in SNR, and it has good lateral conti-
nuity and high vertical resolution. Before the seismic inver-
sion process, the seismic amplitudes need to be preserved,
including fine wave-front diffusion compensation, inverse

2 3 4

2.25

2.3

2.35

2.4

Ti
m

e (
s)

f (GPa)

35 40

2.25

2.3

2.35

2.4

𝜇 (GPa)

2700 2750 2800

2.25

2.3

2.35

2.4

𝜌 (kg/m3)

True model
Inverted results
Initial model

(a)

True model
Inverted results
Initial model

0.02 0.04 0.06

2.25

2.3

2.35

2.4

Ti
m

e (
s)

0.04 0.06 0.08

2.25

2.3

2.35

2.4

dry
N

 (/)𝛿
T

 (/)𝛿

(b)

True model
Inverted results
Initial model

0.055 0.06 0.065

2.25

2.3

2.35

2.4

Ti
m

e (
s)

Q
-1
bP·cP

 (/) Q
-1
bS·cP

 (/)

0.038 0.04 0.042

2.25

2.3

2.35

2.4

(c)

Figure 3: Estimated model parameters using the azimuthal attenuation EI inversion with SNR being 5, where (a) shows the fluid/porosity
term, shear modulus, and density; (b) shows the normal and tangential fracture weaknesses; and (c) shows the attenuation parameters.
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Q filtering, surface consistency processing, prestack denois-
ing, and multiple wave removal. In addition, when the
seismic data is divided into the azimuth, it is necessary to
ensure that each of the azimuthal seismic data divided has
sufficient coverage to ensure the SNR of the seismic data
and that the coverage times of each azimuthal seismic data
are as uniform as possible. Figures 6(a)–6(d) is the
through-well (A and B) azimuthal partial angle-stacked
gathers, respectively, in which four azimuths are 22.5° (over-
lay range 0°-45°), 67.5° (overlay range 45°-90°), 112.5° (over-
lay range 90°-135°), and 157.5° (overlay range 135°-180°),

and three incident angles are 5° (overlay range 0°-10°), 15°

(overlay range 10°-20°), and 25° (overlay range 20°-30°). As
shown in Figure 6(a), the two black lines are the positions
of well A and well B and the red ellipse indicates the target
gas-bearing reservoir, in which obviously strong amplitude
anomalies can be found. It should be pointed out that the
fracture parameters estimated by the rock-physics model
and the attenuation parameters calculated by empirical
relationship in well A are used to construct the initial
model parameters, while well B is used to verify the predic-
tion result.
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Figure 4: Estimated model parameters using the azimuthal attenuation EI inversion with SNR being 2, where (a) shows the fluid/porosity
term, shear modulus, and density; (b) shows the normal and tangential fracture weaknesses; and (c) shows the attenuation parameters.
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To estimate the background fluid/porosity term, the
shear modulus, and the density, the approximate fracture ori-
entation is first estimated. The least-squares ellipse fitting
(LSEF) method is used to estimate the properties of fracture

orientation and fracture density. Figure 7 shows the esti-
mated fracture orientation and fracture density parameters.
Figure 8 shows the estimated fracture normal, and we find
that the fracture normal is about 100° (or 280°). Therefore,
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Figure 5: Comparison between synthetic (blue) and initial (black) gathers using the estimated model parameters with different SNRs, where
(a) is noise-free, (b) is 5, and (c) is 2.
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Figure 6: Four azimuthal seismic data with three angles of incidence (5°, 15°, and 25°), where the average azimuth angles are 22.5° (a), 67.5°

(b), 112.5° (c), and 157.5° (d).
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the background fluid/porosity term, shear modulus, and
density parameters can be estimated using the three
angle-stacked seismic data in the azimuth shown in
Figure 6(c). On this basis, we then perform the AAEI inver-
sion method to estimate the fracture weaknesses and the
attenuation parameters.

Figures 9(a)–9(d) is the estimated azimuthal attenua-
tion EI profiles of the four azimuths and three angles.
It can be seen from these figures that the inverted EI
values of the target reservoir reveal a low-value anomaly.
Figures 10, 11, and 12 illustrate the estimated fluid/poros-
ity term, shear modulus, and density parameter profiles;
normal and tangential fracture weakness parameter pro-
files; and attenuation parameter profiles. In these figures,

the red ellipses at well A denote the target gas-bearing
fractured porous reservoir, while the red ellipses at well
B denote the high-quality gas producing area that is
drilled. From the inversion results, it can be seen that
the inverted fluid/porosity term at well A shows a low
value, while the inverted fracture parameters and attenua-
tion parameters show high values. Correspondingly, the
area of low-value fluid/porosity term, high-value fracture
parameters, and high-value attenuation parameters at well
B is a high-yield gas target layer, which is consistent with
the fracture development position and the drilling results.
So it further confirms the AAEI inversion approach pro-
posed in this paper to estimate the fracture parameters
and attenuation parameters.
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Figure 9: Estimated azimuthal attenuation EI profiles with three angles of incidence (5°, 15°, and 25°, respectively), where the average azimuth
angles are 22.5° (a), 67.5° (b), 112.5° (c), and 157.5° (d).
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4. Discussion

According the derivation process of Pan et al. [43], it is obvi-
ous that the derived linearized PP-wave reflection coefficient

with real background elastic coefficients and complex frac-
ture characteristics can be written in terms of a real part
and an imaginary part of the complex reflection coefficient.
The real part of the PP-wave complex reflection coefficient
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Figure 10: Estimated background elastic properties, where (a) is the fluid/porosity term, (b) is the shear modulus, and (c) is the density.
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is the same as the PP-wave reflection coefficient with real
background elastic coefficients and real fracture characteris-
tics. However, the imaginary part of the PP-wave complex
reflection coefficient with real background elastic coefficients
and complex fracture characteristics is related to the real
background elastic coefficients and the attenuation parame-
ters due to the fractures. Following the numerical analysis
of Chen et al. [33], we found that the real part of the complex
reflection coefficient is much more than the imaginary part.
The imaginary part of the complex reflection coefficient can
be thus neglected if we invert the background elastic prop-
erties, fracture parameters, and attenuation parameters
using the complex reflection amplitudes. Therefore, the
attenuation parameters caused by fractures cannot be rea-
sonably inverted by only considering the real background
elastic coefficients.

However, the attenuation parameters due to the pres-
ence of fractures can be reasonably inverted using the real
part of the complex reflection amplitudes when we con-
sider the complex background elastic coefficients and com-
plex fracture characteristics. This is because the attenuation
parameters can affect the real part of the complex reflec-
tion amplitudes (see equation (12)). As a result, we con-
sider the complex background elastic coefficients while
accounting for the effect of the complex fracture character-
istics and derive an analytical expression for a linearized
PP-wave reflection coefficient and an azimuthal attenuation
elastic impedance (AAEI) equation to estimate the fluid/-
porosity term, the shear modulus, the density, the dry normal
and tangential fracture weaknesses, and the compressional
(P-wave) and shear (S-wave) attenuation parameters in a
weak-attenuation background media permeated by aligned
fractures.

Three effects can cause the attenuation of seismic waves,
including the geometric spreading, the scattering attenua-
tion, and the intrinsic attenuation. They can be divided into

the elastic (geometric dispersion, scattering attenuation)
and inelastic (intrinsic attenuation) processes [44]. In explo-
ration geophysics, the interesting intrinsic attenuation is the
energy loss to heat and internal friction during the wave
propagation, which can result from the fluid flow between
aligned fractures and/or randomly distributed pores [18, 27,
30]. The linear-slip (LS) model proposed by Schoenberg [8,
9] describes the elastic seismic wave propagating in such
media with welded interfaces, which can be treated in two
ways, including bedding planes, joints, cracks, and fractures,
or as thin soft layers. When it refers to the imperfectly
bonded interfaces of fractures, the attenuation of elastic
waves may result from the asperities at the rough fracture
surfaces [45, 46] or undulations at the even contracts
[26, 47]. Moreover, for the limit of the long wave length,
the LS model of Schoenberg [8, 9] is equivalent to the
penny-shaped crack model of Hudson [6, 7], and the attenu-
ation mechanisms are also the same [4, 26]. This paper
focuses on the prestack seismic inversion for the attenuation
parameters, so the attenuation mechanism has not been dis-
cussed much.

5. Conclusions

Based on the modified Schoenberg’s linear-slip theory, we
integrate the attenuation of background rock and fracture-
induced attenuation in this paper and propose an AAEI
inversion approach to characterize the saturated fractures
in a fracture-induced equivalent HTI attenuation medium.
We first derive an analytical expression for the stiffness ten-
sor of a weak-attenuation isotropic background containing
one single set of vertical aligned fractures, related to the
elastic properties of dry isotropic background, porosity,
matrix modulus, saturated fluid modulus, dry normal and
tangential fracture weaknesses, and compressional (P-wave)
and shear (S-wave) attenuation parameters. We then derive
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Figure 12: Estimated attenuation parameters, where (a) is the P-wave attenuation parameter and (b) is the S-wave attenuation parameter.
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a linearized PP-wave reflection coefficient and an AAEI
equation in terms of fluid/porosity term, shear modulus,
density, two fracture weaknesses, and two attenuation
parameters. We finally propose an iteratively AAEI inver-
sion method with Cauchy-sparse constrained regularization
and low-frequency constrained regularization and imple-
ment the fluid identification and fracture characterization
based on the estimates of sensitive fluid indicator, fracture
weaknesses, and attenuation parameters, which are con-
firmed by both the synthetic and real data acquired over a
saturated fractured porous reservoir with HTI symmetry.

Since the background fluid parameters and the fracture
parameters are more suitable for the seismic identification
of gas and water, the identification for oil and water is not
very sensitive. On the contrary, the estimated attenuation
parameters are more conducive to the seismic identification
for oil and water. Therefore, the prestack seismic inversion
for background fluid parameters, fracture parameters, and
attenuation parameters is more sensitive to the identification
of fluid types filling in the fractures.
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