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Determining the microscopic pore structures of tight sandstones is becoming one of the most challenging efforts, and the strong
heterogeneity makes the accurate assessment still a problem. In this research, we report a new criterion for pore structure typing
based on the fractal geometry theory. The fractal dimension values were first accurately calculated through intrusion and
nonintrusion methods. The results show that the pores in tight sandstones have multifractal distributions and different types of
pore structure were divided based on various tests. The relationships between petrophysical properties and a series of
multifractal parameters have been analyzed in detail. The fractal dimension values of type 1 sandstones derived from the throat
curves in rate-controlled mercury intrusion methods can well characterize the porosity of the research area, while the others did
not respond well. Finally, a multifractal criterion was proposed to analyze the petrological and pore structures by combined
observations and experiments. The new criterion exhibits perfect performance in the prediction of the storage capacity. The
multifractal model proposed in this research helps to assess the pore structures of tight sandstones and helps to characterize the
reservoir quality in hydrocarbon exploration and development.

1. Introduction

In view of the serious shortage of energy supply, tight sand-
stones have drawn much attention due to their considerable
exploration and exploitation potential [1, 2]. Expressing quan-
titatively the pore structures of tight sandstones, including
heterogeneities of pore geometries, pore connectivity, and
pore size distributions is becoming one of the most important
works because an accurate description of pore structures is
conducive to evaluating both storage capacities and percola-
tion properties [3–5]. As complex geological materials, tight
sandstones are dominated by nano- to millimeter-scale pores,
making the characterization of the pore structure significantly
different from those of conventional sandstones, and these

sandstones have been paid much attention by the researchers
[6–8]. However, the pore systems in tight sandstones are
extremely complex, so the geoscientists have inadequate
knowledge of the microscopic pore structures and this lack
of knowledge has resulted in many intractable issues that
remain to be resolved [9]. Several research has deciphered that
the pore size distributions of tight sandstones could be
approximated by a fractal scaling, in which the number of
pores whose sizes are greater than the pore radius r could
be written as Nð>rÞ∝ ar−D and D is the fractal dimension
[10–13]. There has been a growing enthusiasm in employing
fractals for comprehending the pore structures of tight
formations. The fractal theory offers a successful prediction
of the geometric morphology of porous media, builds up
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the relationships between microscopic pore system hetero-
geneities and macroscopic spatial qualities in sediments,
and governs rules that simplify complex characteristics in
nature [4, 14]. By determining the fractal distributions of
the tight sandstones, the topology of the pore space could
be analyzed [15], the pore volume of different porous
media can be quantitatively characterized [16, 17], and
the fractal dimensions of pore structures can also be used
to relate the pore-scale understanding of the pore systems
to core-scale measurements, such as porosity and perme-
ability [4, 11].

Calculation of fractal dimensions might be accomplished
by analysis of microscopic images (such as thin sections (TS)
[18] and scanning electron microscopy (SEM) [15]),
measurements of capillary pressure (including pressure-
controlled mercury intrusion (PCMI) [19] and rate-
controlled mercury intrusion (RCMI) [20]), or water reten-
tion (e.g., nuclear magnetic resonance (NMR) [21]). Because
the use of microscopic images requires a tradeoff between
representativeness and distinguishability [9, 22], in general,
the indirect methods have been conducted to calculate the
fractal dimensions [19–21]. The fractal distributions can only
be partially revealed using any of the sole experiment because
each method has its only limitations and strengths. PCMI
may be used to detect the tiny pores (<2 μm) (corresponding
to high fractal dimensions) but affected by the pore shielding
effect which leads to the limitations in computing the large
pores [23, 24]. RCMI can distinguish pores from throats
and provide their respective fractal dimensions [25, 26]; how-
ever, because of the limited maximum intrusion pressure, the
tiny pores cannot be comprehensively detected [27]. NMR
measurements offer a nondestructive and time-saving alter-
native to calculate fractal dimensions; nevertheless, this tool
cannot probe signals from very small pores due to the
scarcity of relatively lower echo spacing [28, 29]. A more
integrated and sophisticated method must, therefore, be used
to combine PCMI, RCMI, and NMR data to acquire the accu-
rate fractal distributions.

The major aims of this paper are to derive fractal
models from hybrid techniques, including PCMI, RCMI,
and NMR and to reveal the fractal features of Permian
tight sandstones from the Ordos Basin of northwest China.
Additionally, multiscale imaging from TS and SEM was
performed to characterize pore geometry and X-ray
diffraction (XRD) methods were conducted to analyze the
mineral features and contents quantitatively. Then, by con-
sidering the multifractal distributions instead of the singu-
lar fractal dimension value, a new criterion of the reservoir
type is developed based on the fractal assumptions of pores
to characterize the petrophysical property-mineralogical
assembly-pore structure relationship for evaluating the
pore structure typing and reservoir quality. Finally, through
a series of comparisons, the most effective fractal dimen-
sion values for estimating the reservoir quality of tight
sandstone have been proposed. In conclusions, the main
goal of this research is to propose a new criterion to more
accurately classify the reservoir quality and study the differ-
ences of the petrology and pore structures of each pore
structure typing.

2. Materials and Methods

2.1. Geological Setting. The Ordos Basin, located in the
northwest of China with an area of 37.104 million km2

(14.326 million mi2), is the second largest sedimentary
basin in China (Figure 1(a)) [2]. The margins of the basin
experienced intense tectonic movements, while the interior
basin, in areas where the rigid basement was developed, is
characterized by deficient faults and folds and the strata
slightly tilted to the west with a dip of less than 1° [4,
27]. The Ordos Basin is tectonically bound by the Yimeng
Uplift to the north, the Weibei Uplift to the south, the
Xiyuan Thrust Belt to the west, and the Jinxi Fault-Fold
Belt to the east. Among them, the Yishan Slope and
Yimeng Uplift are located to the northern of the Ordos
Basin and they are the main area of gas development in
the basin (Figure 1(a)). The Shihezi Formation, which
can be subdivided into 8 members, is one of the major
pay zones of the Ordos Basin, which belong to the
lacustrine deltaic and fluvial sedimentary system with a
thickness of 200-300m (656-984 ft) (Figure 1(b)) [30, 31].

2.2. Experimental Measurements. In this research, 41 tight
sandstone specimens were collected by sealing core drilling
from the Shihezi Formation. The specimens were all regular
cylinders drilled from a homogeneous section perpendicular
to the bedding with around 5.5 cm in length and 2.54 cm in
diameter. After removing the residual bitumen by submerg-
ing into a mixture of alcohol and chloroform then dried at
130°C for 24 h, helium porosity and nitrogen permeability
of specimens were tested using the FYK-I apparatus under
the confine stress of 20MPa, following the standard SY/T
6385-2016 of China [32] and specimens were subsequently
cut into six parts for TS, SEM, XRD, PCMI, RCMI, and
NMR tests.

For the thin section, the specimens were pumped under
vacuum first and then the pores were impregnated with red
epoxy resin. Finally, they were ground to approximately
0.03mm in thickness and the Zeiss Axioskop II microscope
was used to observe the pore systems and petrological fea-
tures. In the process of SEM sample making, the polished
sections and freshly fractured specimens were coated with
gold first and the spatial distribution of minerals and pore
structures was analyzed using FEI Quanta 400 FEG SEMwith
an accelerating voltage of 20 kV. Detailed steps of thin
sections and SEM followed the standards SY/T 5368-2016
[33] and SY/T 5162-2014 of China [34], respectively.

Before clay fraction XRD experiment, the specimens were
crushed into approximately 200 mesh (75 μm) first and then
the powder specimens were mixed with ethanol and sub-
jected to heating at 55°C in a water bath to remove carbonate.
Clay fraction was separated by evaporation and laid on glass
slides. The test was performed at a temperature of 24°C and
humidity of 30% using X’Pert PRO energy dispersive X-ray
spectrometer; all specimens were measured at 40 kV,
40mA, with a 0.02° step size and scanning speed of 2°/min.
The quantitative analysis of clay fraction composition was
carried out according to the standard SY/T 5163-2010 of
China [35].
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Since the PCMI and RCMI are destructive testing,
NMR experiments were preferentially performed on all
specimens by the Niumag NMR apparatus at a proton
resonance frequency of 2MHz and detected by a CPMG
pulse sequence [36]. Before the specimens were put into
the apparatus, they were fully saturated in 25000mg/L
CaCl2 brine solution, consistent with the formation water
to prevent the clay minerals from swelling, for 12h under
a vacuum state. Based on the standard SY/T 6490-2014 of
China [37], the experimental parameters were selected as
follows: echo numbers, 6000; echo spacing, 100 μs; num-
ber of scans, 64; waiting time, 5 s; and TE, 0.3 s. After
the NMR tests, all specimens were washed, dried, and then
split into two pieces for the PCMI and RCMI tests.

In this research, the specimens were installed in a Micro-
meritic AutoPore IV 9420 and an ASPE 730 mercury
porosimeter to acquire the PCMI and RCMI data,
respectively. In the PCMI analysis, a progressive increment

of the intrusion pressure was accompanied by a progressive
increment of nonwetting phase injection inside the pore
spaces and the instrument generates pressure as high as
200MPa (29008psi) for pore size distribution (PSD) analysis
in the pore radius range of 168 μm-0.004μm according to
the Washburn equation [38] and the results reported by Pur-
cell [39]. All experimental steps referred to the standard SY/T
5346-2005 of China [40]. In the process of RCMI experiments,
the intrusion pressure is controlled below 6.2MPa (900psi)
(corresponding to 0.12 μm according to the Washburn
equation [38] and the results reported by Purcell [39]) in
order to keep the constant rate of mercury intrusion
(0.00005mL/min). The details of pores and throats can be
distinguished by the detection of pressure fluctuation [25].

2.3. Fractal Analysis Theory. Fractal dimensions can quanti-
tatively describe the pore-throat systems by comparing the
structure irregularity and surface complexity in tight
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Figure 1: (a) Locations of the Ordos Basin and the tectonic divisions of the Ordos Basin and (b) comprehensive Ordovician Majiagou-
Triassic Liujiagou stratigraphic column of the Ordos Basin [2, 4, 27, 31].
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sandstones, which have been considered to have a fractal
property [20, 41, 42]. Based on the fractal theory, the counted
Nð>rÞ, which is corresponding to the pores and throats with
a radius over r, can be expressed as follows [43]:

N >rð Þ =
ðrmax

r
P rð Þdr = ar−D, ð1Þ

where rmax is the maximum value of the pore radius, in μm,
PðrÞ refers to a density function of the pore radius, a is a
dimensionless constant, and D represents the fractal
dimension. Generally, D is ranging from 2.0 to 3.0 in three-
dimensional spaces and the greater the fractal dimension,
the greater the heterogeneity [44, 45].

2.3.1. Intrusion Method-Based Fractal Dimensions. Accord-
ing to equation (1), the following equation can be obtained
by derivation with respect to r:

P rð Þ = dN >rð Þ
dr

= br−D−1, ð2Þ

where b is a dimensionless constant equal to −D × a.
Thus, the cumulative pore volume with radius over r

½Vð>rÞ� can be calculated as follows:

V >rð Þ =
ðrmax

r
P rð Þπαdr, ð3Þ

where α is relevant to void space morphology; if it simplifies
pores as the cylinder, α = r2l, where l represents the length of
the cylinder; and if the sphere model is used for pores, α
equals to 4r3/3.

The pore morphology is equivalent to that of the cube;
thus, by setting α to be equal to r2l and assuming that l is
equal to r in this case as a tubular bundle model [12, 46],
one can obtain

V >rð Þ =
ð lmax

l

ðrmax

r
P rð Þπr2ldr =

ðrmax

r
P rð Þπr3dr: ð4Þ

Substituting equation (2) into equation (4), Vð>rÞ can be
expressed as follows:

V >rð Þ = c r3−Dmax − r3−D
� �

, ð5Þ

where c refers to a dimensionless constant and equals to ab/
3 −D. Similarly, the total pore volume can be obtained.

V = c r3−Dmax − r3−Dmin
� �

, ð6Þ

where rmax is the minimum value of the pore radius, in μm.
Based on equation (6), the fractal dimensions of the pore
structure from the intrusion method, defined here as the
PCMI and RCMI tests, can be calculated [4, 12, 47]. Mercury
is the nonwetting phase in the process of intrusion; hence, the
mercury intrusion saturation with a pore radius larger than r

in %ðSHgð>rÞÞ can be obtained.

1 − SHg >rð Þ = V <rð Þ
V

= r3−D − r3−Dmin
r3−Dmax − r3−Dmin

: ð7Þ

The pore space of sandstones is self-similar over 3 to 4
orders of magnitude in length extending from 10Å to over
100 μm [15], indicating that the value of the minimum pore
radius is far below the maximum one; equation (7) can then
be written as

1 − SHg >rð Þ = r3−D − r3−Dmin
r3−Dmax

= r
rmax

� �3−D
−

rmin
rmax

� �3−D

= r
rmax

� �3−D
:

ð8Þ

The capillary pressure (Pc) is inversely proportional to
the pore radius according to the Washburn equation [38];
then equation (8) is changed as follows:

1 − SHg >rð Þ = Pc − Pminð ÞD−3, ð9Þ

where Pmin represents the capillary pressure corresponding
to the maximum pore radius; taking a logarithm on the above
formula, the derivative of equation (9) is calculated as

lg 1 − SHg >rð Þ� �
= D − 3ð Þ lg Pc − D − 3ð Þ lg Pmin: ð10Þ

It demonstrates that lg ð1 − SHgð>rÞÞ is linearly propor-
tional to lg Pc and the value could be determined according
to the experimental data by PCMI and RCMI tests; then the
slope of the linear correlation between lg ð1 − SHgð>rÞÞ and
lg PcðkÞ can be determined:

D − 3 = k,
D = k + 3:

ð11Þ

The intrusion and extrusion curves of PCMI and the
throats and pore branches from RCMI tests can be separated
into some segments to represent fractal dimensions of differ-
ent sizes and forms of pores and throats. Based on this
theory, the fractal dimensions of different pore-throat char-
acteristics can be determined.

2.3.2. Nonintrusion Method-Based Fractal Dimensions. As a
typical nonintrusion method, NMR data could be described
by the fractal model [4]. It is generally assumed that the
NMR T2 relaxation time could be related directly to the pore
radius [48, 49]. Assuming that the magnetic field gradient
was constant and equal in all pores, the T2 relaxation time
is a function of the pore radius:

1
T2

= ρ
C
r
= ρ

2
r
, ð12Þ
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where T2 is the relaxation time; the constants of proportion-
ality (ρ) are the surface relaxivities; we assumed the pore
shapes to be cylinders; thus, C is equal to 2 [11]. From equa-
tion (12), it could be concluded that shorter relaxation time is
associated with small pores, whereas T2 relaxation time of
large pores is long [50].

The signal amplitude at each time constant is a function
of the pore volume corresponding to the pore radius [51],
and the total volume of the pores (Vp) is the sum of the signal
amplitudes from the minimum to maximum T2 values,
namely,

Vp = 〠
n

i=1
Vpi, ð13Þ

where Vpi is corresponding to pore radius ri, the pore volume
therefore is associated with the T2 relaxation time; thus, com-
bining equations (12) and (13), the number of pores (tubular
bundle model) of a given radius is given by

Ni =
Vpi

πr3i
=

Vpi

8π ρT2ið Þ3 : ð14Þ

Hence, the pore numbers composed of the pore radius
larger than ri are expressed in

N >rð Þ = 〠
n

i+1
Ni+1: ð15Þ

Equation (16) can be obtained by combining equations
(1), (12), (14), and (15):

N >rð Þ = 〠
n

i+1

Vp i+1ð Þ

8π ρT2 i+1ð Þ
� �3 = a 2ρT2ið Þ−D: ð16Þ

Taking a logarithm on the above formula, the derivative
of equation (16) is calculated as

lg 〠
n

i+1

Vp i+ið Þ

ρT2 i+1ð Þ
� �3

0
B@

1
CA + lg 1

8πρ3 = lg a −D lg 2ρð Þ −D lg T2ið Þ,

ð17Þ

where lg ð1/8πρ3Þ, lg a, and lg ð2ρÞ are constant. In the NMR
tests, the signal amplitude can represent the pore volume [4],
so the fractal dimension could be derived from the slope of
the best fit line on the double logarithmic plot ðlg ðNð>rÞÞ
− lg ðT2iÞÞ equation (17).

3. Results

3.1. Petrological Characteristics, Petrophysical Properties, and
Pore Types. For the gas layer (reservoir), the lithology of the
H8 member is mainly of litharenite and sublitharenite, with
quartz accounting for 67.62%, feldspar 0.15%, rock frag-
ments 14.00%, and interstitial materials 18.23%, revealing

that the mineral composition is highly heterogeneous and
dominated by quartz (Figure 2(a)). Clay mineral contents
range from 1.53% to 10.56%, with an average of 5.67%. Kao-
linite is the most clay mineral species (av. 46.96%), followed
by illite (av. 25.45%), chlorite (av. 20.80%), and mixed-layer
illite/smectite (I/S) (6.78%) (Figure 2(b)). No pure smectite
was found in the specimens. The content of carbonate is
highly variable, ranging from zero to 38.20% with an average
of 2.70% (Figure 2(c)). The calcite group mineral (calcite and
ferrocalcite (Fe-calcite)) is the dominant carbonate mineral
in the H8 tight sandstones, with an average content of
82.87% (Figure 2(c)). The content of the dolomite group
mineral (dolomite and ankerite (Fe-dolomite)) is relatively
low, with an average content of 7.28%. Another type of
carbonate is 9.84% (Figure 2(c)).

The porosities of the H8 tight sandstones ranged from
4.02% to 16.85% with an average of 10.25%, and the air per-
meability ranged from 0.002 to 5.609mD with an average of
0.583mD. The pores in the H8 tight sandstones could be
divided into three types based on the direct observation of
the pore morphology by TS and SEM: intergranular pores,
dissolution pores, and interstitial mineral-related pores. The
intergranular pores can be subdivided into two groups: orig-
inal intergranular pores and residual intergranular pores.
Due to the intensive diagenesis in the H8 tight sandstones,
the original intergranular pores were vanished [52]; instead,
the residual intergranular pores are very large in size (mainly
>10 μm) and they are the dominant pore types. In
Figure 3(a), good petrophysical property sandstones are
mainly supported by coarse, well-sorted grains and com-
prised ample intergranular pores. The dissolution pores con-
tained two subtypes, including interparticle dissolution pores
and interparticle dissolution pores (Figures 3(b) and 3(c)).
Although dissolution pores can result in more pore spaces,
they make little contribution to permeability unless they are
interconnected. The pores associated with interstitial min-
erals mainly resulted from the diagenetic alteration [53]. In
the H8 tight sandstones, illite, chlorite, kaolinite, and the
I/S mixed layer provide many intercrystalline pores with a
smaller pore radius (Figures 3(d)–3(f)), thereby increasing
the complexity of the pore network and deteriorating the
petrophysical properties.

3.2. Pore Size Fractal Dimension

3.2.1. Fractal Dimensions from PCMI. All pore fractal
dimension values D from the PCMI, RCMI, and NMR
tests were calculated by the algorithm mentioned above.
For most of the tests, good and straight regression lines
with R2 greater than 0.9 were observed, indicating that
the pore structures of these specimens were virtually
fractal. Due to the sedimentary background differences
and the influence of post sedimentary alteration, tight
sandstones are typically characterized by intricate pore
geometry [54]; therefore, for the selected tight sandstone
specimens, there are significant discrepancies between dif-
ferent specimens. We divided the intrusion curves into
two different types, and four typical specimens were
chosen to obtain double logarithmic curves (Figures 4(a)
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and 4(b)). Each type reflects a specific pore geometry. The
specimens from J25, S79, and S92 exhibited type I
intrusion-related PSDs. The intrusion branches change
slowly, and the all the pores are defined as self-similar
objects with a unique fractal dimension (Figure 4(a)).
For the type II intrusion-related PSDs, the plot of the
PCMI test can be divided into two segments and the
inflection point is the boundary of large and small fractal
pore sets (Figure 4(b)). The slope for the larger pores is rel-
atively gentle, corresponding to a high fractal dimension
value, whereas the slope for the smaller pores is steep, cor-
responding to a relatively low fractal dimension value,
revealing considerable discrepancies between the smaller
and larger pores (Figure 4(b)). The extrusion branches of
type I also have similar features, whereas the analyses of
the mercury extrusion curve show that the fractal dimen-
sion of interconnected pores is generally large, suggesting
that this kind of pores has a major implication in terms
of pore structure heterogeneity (Figure 4(c)) [23]. Mean-
while, the extrusion curve of type II is inhomogeneity com-
pared with that of type I (Figures 4(b) and 4(d)). By mixing
and matching different types of intrusion and extrusion
curves, the demanding needs of fractal feature evaluation
were met.

3.2.2. Fractal Dimensions from RCMI. Similar phenomena
are found in RCMI-derived plots, in which the fractal
distribution is presented in Figure 5, and the plots of
throats and pores can be grouped into two and three
types, respectively. For the type I throat type, the throat
set of three typical specimens was roughly in line with
each other with a unique fractal dimension (Figure 5(a)).
In the type II throat type, however, the slope for the

smaller throats is relatively steep, corresponding to low
fractal dimension, whereas the slope for the large throats
is relatively gentle, corresponding to low fractal dimension
(Figure 5(b)). The RCMI-derived pores could be divided
into three parts; the trends of types I and II share similar
trends with that of the throat set, while in some speci-
mens, a ternary pattern was observed and the dimension
values are creeping higher from large small pores, corre-
sponding to the type III pore set (Figures 5(c)–5(e)). Like
the results of PCMI tests, we use variations of the throat
set, which are selected to suit each individual pore set.

3.2.3. Fractal Dimensions from NMR. In Figure 6(a), lg ðT2Þ
was plotted against lg ðNð>rÞÞ for specimens S27, S31, and
S92 and good, straight regression lines with an R2 greater
than 0.96 are observed, revealing that the PSDs are generally
fractal. Nevertheless, it should be noted that, unlike other
results [21], the NMR is sometimes found unhelpful for cal-
culating the fractal dimension value for large pores in H8
tight sandstones (initial fractal dimension equal to 3.5077
in this case) and the NMR-derived PSDs could be divided
into two parts: self-similar set (fractal dimension equal to
2.9903 in this case) and non-self-similar set with inflection
point (71.9686ms in this case) (Figure 6(b)). Therefore, only
the pores which correspond to the self-similar set were
summarized and then the modified fractal dimension of the
pore structure could be derived from the slope of the best
fit line (Figure 6(b)). The characteristics of mineral grains
and distributions of interstitial minerals would result in
abundant hydrophobic pores without brine, and those void
pores might be the reason for the unpredictable fractal
dimension value. It will be analyzed subsequently.
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Figure 2: Ternary diagrams of the (a) detrital grain content, (b) bulk clay composition, and (c) bulk carbonate constitution of H8 tight
sandstones.
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4. Discussion

4.1. Pore Structure Classification Based on PCMI-Derived
Fractal Dimension Values. The pore system inside the rock
is complex and reflects the sedimentation and diagenesis
comprehensively; thus, the classifications of pore structures
are often roughly identified by a singular test [55, 56]. There-
fore, due to the complexity of pore structures, the data points
do not fall on a regression curve in the research area, while
they are usually scattered in a banded range [55]. As men-
tioned above, our work showed that the fractal geometry
based on different tests has a significant effect on the pore
structure typing; hence, a combination method was chosen
to determine the reasonable pore structure classification.
PCMI test is one of the most economical methods to reveal
the PSD over a broad range of sizes effectively from nanome-
ter to microns [57]; therefore, we gain information from this
experiment and perform pore structure characterization first.
Type P1 specimens were the most abundant class with
double-linear fractal straight regression lines, revealing that
this kind of reservoir has a relatively homogeneous pore
structure with singular fractal geometry (Figures 4(a) and
4(c)). The correlation coefficients for petrophysical proper-

ties and DPi1 are very limited in type P1 species, suggesting
that the fractal theory based on PCMI data points could not
reflect the reservoir quality properly (Figure 7), whereas
other fractal dimension values have no relationships with
porosity and permeability (R2 < 0:1). Type P2 samples with
low and ultralow porosity and permeability showed no
relationships with DPi1, and the high-DPi2 fractal dimension
values suggest that super complex pore structures would lead
to the reservoir quality deterioration (Figure 7).

The medium-high correlation coefficient for DPe1 and
porosity (presented in the inset figure in Figure 7(a)) provide
the evidence of the model proposed by Sakhaee-Pour and
Bryant [23], who believe that the tree-like network could
mimic the clay-related pores. For the type P1 samples, due
to the relatively high porosity and permeability, the clay-
related pores contributed little to the pore network, which
correspond to a low hysteresis (from -0.89 to -0.34 in this
specimen) (Figure 8(a)). However, for the type P2 samples,
the elevation of DPe1 represents the heterogeneity of clay-
related pores and abundant clay minerals could improve
the pore space to some extent because the discrepancy
between the intergranular pores and the clay-related pores

200 𝜇m

(a)

100 𝜇m

(b)

100 𝜇m

(c) (d)

(e) (f)

Figure 3: Typical images from the TS and SEM: (a) abundant residual intergranular pores; (b) intraparticle feldspar dissolution pores; (c)
interparticle feldspar dissolution pores; (d) the surfaces of the rock particles are covered with rosette-shaped chlorite and the pores are
filled with vermicular-shaped kaolinite; (e) the surfaces of the rock particles are covered with the I/S mixed layer, fibrous, and bridge-
shaped illite; (f) chlorite, kaolinite, and kaolinite began to develop to shrink pores and throats.
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was diminished, which corresponds to a high hysteresis
(from -0.91 to 0.05 in this specimen) (Figure 8(b)). There-
fore, the clay-related fractal pore set (DPe1) could be a good
indicator for the clay-related porosity prediction (inset figure
in Figure 7(a)).

There is only one P3 sample in the research area, and
this specimen has medium porosity and permeability. In
this case, the total difference appearance of the fractal
geometry might be resulting from the cracking behavior
in the process of experiment due to the high injection
pressure, because there are no obvious microcracks in
the micrographs and relatively abundant residual inter-
granular pores and dissolution pores manifest that the
sample did not experience strong compaction which would
easily lead to fractures (Figure 9(a)). The sharp increase of
the nonwetting phase (mercury) with less elevated capil-
lary pressure in mercury intrusion curves and rapid
withdraw efficiency in the initial stages of mercury extru-
sion curves also supported this reasoning (Figure 9(b)),

and the outlier (DPi2 = 1:7351 ∉ ð2, 3Þ) indicates that this
part belongs to the non-self-similar set with dual-pore
structures characterized by clay-related pores with a tiny
radius and microcracks which could make contributions
to the industrial hydrocarbon flow [58]. Besides, the
inflection points of intrusion and extrusion branches
corresponding to the same nonwetting phase saturation
basically, that is, the logarithmic nonwetting phase satura-
tion lower than approximately 1.27 which belonged to the
spaces of clay and microcracks, demonstrate the existence
of artificial microcracks (Figure 9(b)).

4.2. Pore Structure Classification Based on RCMI-Derived
Fractal Dimension Values. Like the PCMI-based classifica-
tion, all the specimens were grouped into six parts based on
the RCMI results and the morphology of fractal distributions
from throat and pore branches. Based on the fractal throat
set, the H8 tight sandstones could be divided into two parts:
monofractal throat (Figure 5(a)) and bifractal throat groups
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Figure 4: Double logarithmic plots of wetting phase saturation versus capillary pressure from PCMI experiments: type I of (a) intrusion and
(c) extrusion branches from three typical specimens; type II of (b) intrusion and (d) extrusion branches from S22 and S95, respectively. DPi1:
fractal dimension values from intrusion branches of PCMI tests or large fractal pore set; DPi2: small fractal pore set; DPe1: fractal dimension
values from extrusion branches of PCMI tests or large fractal throat set; DPe2: small fractal throat set.
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Figure 5: Double logarithmic plots of wetting phase saturation versus capillary pressure from RCMI experiments: (a) type I of the throat set
from three typical specimens; (b) type II of the throat set from S46; (c) type I of the pore set from three typical specimens; types (d) II and (e)
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(Figure 5(b)), and those two groups combined with different
pore sets could form six kinds of pore structure typing,
namely, R1 to R6. Figure 10 shows that there are distinct
boundaries between the monofractal (types R1, R2, and R3)
and bifractal throat (types R4, R5, and R6) groups, suggesting
that their intrinsic pore-throat networks were entirely
different. Based on the relationships between throat-derived
fractal dimension values and petrophysical properties for
monofractal samples, the porosity and permeability gradu-
ally increased with fractal dimension values being increased,
whether it is in the type R1, R2, or R3 species (Figures 10(a)
and 10(b)). Those trends could be interpreted that the stron-
ger distributional heterogeneity of throat structures means
having abundant large throat and preferential fluid immigra-
tion volume. Meanwhile, type R1 specimens also have the

highest correlation coefficients for pore-derived fractal
dimension values and petrophysical properties, indicating
the validity and rationality of the porosity and permeability
estimation for Type R1 sandstones (Figures 10(c) and
10(d)). The scattered data points from Figures 10(c) and
10(d) reveal that compared with the pore size distributions,
the larger and homogeneous throats is vital for the determi-
nation of the reservoir quality, and macro-pores and throats
were always the predominant factors on storage and
percolation.

Bifractal throat distributions, as shown in Figures 5(b),
10(a), and 10(b), could be an indicator for poor reservoir
quality, and the following reasons can account for this
phenomenon. In monofractal specimens, punctate throats
play a dominant role in the percolation and abundant
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punctate throats usually represent mass-distributed residual
intergranular pores and weak mechanical compaction cor-
responding to good reservoir quality; therefore, the throat
distributions were relatively simple (Figure 11(a)). Com-
pared with the monofractal samples, the bifractal throat
set distributions reveal that the throat networks were
complicated and the proportion of laminated throats
increased, which were the evidence of strong mechanical
compaction (Figure 11(b)) [59]. A combination of various
kinds of throats indicates the deteriorated pore structures
(Figure 11(b)) and is corresponding to relatively high frac-
tal dimension values (Figures 10(a) and 10(b)). Therefore,
once the bifractal throat distributions were observed, we
can infer that the corresponding sandstones have very
limited pore spaces and poor reservoir quality. Although
monofractal pore distributions were usually accompanied
by good reservoir qualities (except sample X30 which
belongs to type P2), however, it is hard to determine
whether the petrophysical properties of bifractal pore dis-

tributions are greater than those of trifractal pore distribu-
tions (Figures 10(c) and 10(d)). Further investigations
need to be done for the purpose of accurate prediction
of the reservoir quality.

4.3. Pore Structure Classification Based on NMR-Derived
Fractal Dimension Values. As mentioned in Section 3.2.3,
there are only two types of NMR-derived fractal distributions
in the research area and we defined the specimens with
monofractal behavior as N1 sandstones (Figure 6(a)) and
those with two parts at the initial stage were N2 sandstones
(Figure 6(b)). For type N1 sandstones, there have been
relatively low modified fractal dimension values (av. 2.82)
while the values for N2 sandstones were approaching 3.0
(av. 2.90). The cross-plots between DNm and petrophysical
properties are shown in Figure 12, and there are nearly no
correlations between those parameters, revealing that singu-
lar NMR-derived fractal dimension values could not predict
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petrophysical properties effectively; further research needs to
be done combined with the preceding conclusions.

In general, high fractal dimension values correspond to
complex pore structures with poor reservoir quality; how-
ever, in the H8 sandstones, N2 specimens have relatively high
porosity and permeability (av. 10.75% and av. 0.80mD,
respectively) compared with N1 samples with low petrophy-

sical properties (av. 9.53% and av. 0.32mD, respectively).
Figure 13 demonstrates the brine charging before the NMR
tests: (a) for the illite-rich specimen (type N1); due to abun-
dant hydrophilic illite [60], the brine can get access to the
most of the pores, revealing a complete picture of the pore
network in the T2 spectrum; (b) for the samples that chlorite
covered the majority of the pore surfaces (type N2), some
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Figure 10: The cross-plots between multifractal parameters from RCMI tests and petrophysical properties: (a) the cross-plots between DRt1
and porosity; (b) the cross-plots between DRt1 and permeability; (c) the cross-plots between DRp1 and porosity; (d) the cross-plots between
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Figure 11: Optical observation and pore-throat combination: (a) monofractal throat distribution specimen (from type R1, S26); (b) bifractal
throat distribution specimen (from type R4, S65).

12 Geofluids



pores have almost no brine that resulted from the hydropho-
bic chlorite [61]. Therefore, the wettability lead to the hetero-
geneous distributions of brine in type N2 sandstones, which
caused a non-self-similar set from NMR tests for all the data
points, and they need to be modified (Section 3.2.3). The rea-
sons for high petrophysical properties in type N2 sandstones
were the positive role of chlorite in pore network protection
[62]. Hence, the main function of NMR-derived fractal
dimension values in H8 tight sandstones was to determine
the absolute contents of hydrophilic and hydrophobic clay
minerals.

4.4. Effective Pore Structure Typing Based on Microscopic
Observations and Multifractal Distributions. Because of the
complexity of pore networks in H8 tight sandstones, only a
deep understanding of the petrology and pore structures
can accurately estimate the storage ability and percolation
capacity of the internal pore volume. Thus, a multiscale anal-
ysis from qualitative observations to quantitative tests, from
intrusion methods (PCMI and RCMI) to nonintrusion
experiment (NMR), can allow us to fully understand the
internal discrepancy of pore networks and the distinction
between different pore structure typing and a new criterion
is proposed to predict the reservoir quality based on micro-
scopic observations and multifractal distributions.

As mentioned above, based on the results of intrusion
methods, type P2, P3, R4, R5, and R6 sandstones do not have
the qualification to become an effective reservoir, because the
type P2 sandstones have very poor reservoir qualities,
whereas type P3 specimens were induced by the microcracks
during the PCMI tests (Figures 8 and 9) and the intensive
diagenesis of type R4, R5, and R6 sandstones leads to the
low porosity and permeability (Figures 10 and 11). There-
fore, three types of pore structures with two subclasses for
each type are identified by the multifractal distributions. Six
typical specimens from each pore structure typing were
selected for the study (Figure 14), and the corresponding
results are summarized in Table 1. As shown in
Figures 14(a) and 14(b), the main difference between the
pore structure typing of the intrusion methods is the
RCMI-derived fractal distributions, because the PCMI-
derived fractal distributions shared similar trends. In the
P1R1 type, a gentle increase of nonwetting phases based on
pore and throat branches with double-monofractal distribu-
tion was observed. These indicate that the pore-throat struc-
tures were relatively homogeneous. In the P1R2 type, a
bifractal distribution developed and the large fractal pore sets
have relatively small fractal dimension values while the small
fractal pore set shows a negligible increase of nonwetting
phases corresponding to the large fractal dimension values.
This phenomenon illustrates a heterogeneous pore network
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Figure 13: SEM imaging and schematic diagrams of the brine charging process. (a) Type N1 sandstone from S65; (b) type N2 sandstone from
S24.

13Geofluids



with large pores and fine throats. In the figures of P1R3,
trifractal distributions in the RCMI-derived pore curve
resulted from the complex pore structures indicating that
various kinds of pores are distributed in tight sandstones.

Each group could be divided into two subtypes based on
the NMR results (Figure 14(c)). As previously mentioned, the

difference between the N1 and N2 types was the clay mineral
assembly. TS and SEM provide good insight into the pore
structures and mineralogical recognition (Figures 14(d) and
14(e)). For all the main categories, type N1 tight sandstones
have relatively abundant illite, while the chlorites play a dom-
inant role in the N2 tight sandstones. Chlorite could warp the
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Figure 14: (a) Multifractal distributions proposed by PCMI tests; (b) multifractal distributions proposed by RCMI tests; (c) fractal
distributions proposed by NMR tests; (d) TS for pore geometry and mineralogical analysis; (e) SEM images for mineral features. Typical
specimen of type I from S29, type II from S27, type III from S39, type IV from S47, type V from S26, and type VI from S18.

14 Geofluids



detrital grains and resisted the mechanical compaction, or
they would clog the pore-throat system directly, while illite
fulfilled the void spaces and deteriorated the storage and
percolation directly; therefore, type N1 sandstones generally
have greater reservoir quality than type N2 (Table 1). Besides,
the products of the dissolution are precipitated into intersti-
tial minerals, such as carbonate (ferrocalcite and ankerite),
quartz cement, and clay, which would also block the pores
and narrow the throats, and have a very limited contribution
to the improvement of the petrophysical properties, espe-
cially the intraparticle dissolution pores [55]. The intergran-
ular pores generated by relatively large grains could enhance
the storage and percolation capacity.

To sum up, six types of pore structures with effective
storage and percolation capacity were concluded. From
Figure 14, type I sandstones correspond to P1R1N2 multi-
fractal distributions; all pores are generally homogeneous
and are composed by intergranular pores and partly inter-
granular pores (Figure 14(d-2)). Lamellar chlorites do not
clog the pores and throats and only few illites were observed;
slight authigenic quartz resists the mechanical compaction to
some extent, obviously (Figure 14(e-2)). The pore and throat
branches nearly paralleled to each other with low hysteresis
(Figure 14(b-2)). This pore structure typing has the highest
porosity and permeability in the research area (Table 1).
Compared with type I, the pore structures of type II
correspond to the P1R3N2 fractal distributions and have rel-
atively poor reservoir quality (Table 1). This type shows two
kinds of chlorite with different functions; the sheet chlorites
wrapped around the detrital grains to resist further compac-
tion [24, 63], while some petaloid chlorites block the pores
directly (Figure 14(e-6)). Additionally, more carbonates have
precipitated, further reducing the pore space and making
complex the pore geometry, resulting in the trifractal distri-
butions in RCMI-derived pore curves also with low hysteresis
(Figures 14(b-6) and 14(d-6)). P1R1N1 corresponds to type
III sandstones, although they have relatively homogenous
pore structures; abundant illite and ferrocalcite are the main
reasons for the decrease in reservoir quality (Figures 14(d-1)
and 14(e-1) and Table 1). Improved hysteresis of pore and
throat branches is another significant evidence of low storage
and percolation ability (Figure 14(b-1)). In type IV sand-
stones (P1R2N1), although sheet chlorite and quartz over-
growth wrapped the pores and preserve few intergranular
pores (Figure 14(d-3)), mass-distributed illite deteriorated
the petrophysical properties seriously (Figure 14(e-3) and
Table 1). The transfer capacity of type V (P1R2N2) was

predominantly determined by the intragranular pores and
the dissolution of columnar feldspar (Figures 14(d-4) and
14(e-4)). Intensive mechanical compaction is the main
reason for the decrease in reservoir quality, which leads to
pressure dissolution (Table 1) [64]. The boundary between
type V and type VI (P1R3N1) tight sandstones is vague if
we referred to the porosity and permeability (Table 1). The
pore network is determined by intergranular pores and con-
comitantly by intraparticle dissolution pores in type VI tight
sandstone, and filiform illite plays the most dominant role in
the clay minerals (Figures 14(d-5) and 14(e-5)). The RCMI-
derived fractal dimension values share similar trends in types
V and VI, compared with type II tight sandstones, in which
the large fractal pore sets have very low fractal dimension
values. Due to the inhomogeneous pore structures in those
types, high fractal dimension values of large pores generally
represent the existence of very large pores with very good
storage and percolation capacity, while relatively low values
indicate that the large pores in those types are homogenously
distributed with a small radius. These might be the main rea-
sons for the poorest effective reservoir quality in type V and
VI tight sandstones.

4.5. Reservoir Quality Prediction Based on Fractal Dimension
Values.When the pore structure typing of all data points and
the relationships between multifractal dimension values and
petrophysical properties have been determined, the reservoir
quality, defined here as the amounts of porosity and perme-
ability, could be estimated based on our methods. As men-
tioned above, only DRt1 has distinct relationships with
reservoir quality (Figures 10(a) and 10(b)). Although there
is an obvious positive correlation between DPe1 and porosity
for type P2 sandstones, we shall not discuss that here, because
this type of sandstones could not be the effective reservoir
with commercial hydrocarbon flow (Figure 7(a)). The results
for six typical specimens are presented in Figures 15(a) and
15(b), and the reservoir quality can be estimated by fitting
the empirical formula from this research:

φ = 0:0114DRt1
6:9918, ð18Þ

K = 6 × 10−20DRt1
43:959, ð19Þ

where φ and K represent porosity and permeability, respec-
tively. Therefore, the reservoir quality was calculated by
equations (18) and (19) and the measured porosity and
permeability were conducted by the experiments. The result

Table 1: Petrological and petrophysical property characteristics based on the statistical average from type I to type VI of H8 tight sandstones.

Type Porosity (%) Permeability (%)
Absolute content of clay (%)

Sample quantities Fractal assembly
Illite Chlorite I/S Kaolinite

I 13.30 1.96 0.50 2.66 0.56 2.05 5 P1R1N2

II 12.01 0.81 1.90 1.84 0.41 1.46 7 P1R3N2

III 10.98 0.51 5.51 0.69 0.70 1.33 3 P1R1N1

IV 10.30 0.39 1.23 2.37 0.53 0.67 6 P1R2N1

V 10.27 0.33 1.83 1.85 0.65 1.31 9 P1R2N2

VI 9.39 0.38 3.07 1.90 1.55 3.00 2 P1R3N1
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shows that the estimated porosity nearly falls around the 1 : 1
standard line with an error of within 5% (Figure 15(c)),
revealing the rationality of equation (18); however, there is
a sharp difference between estimated and measured perme-
abilities with an error of over 30% (Figure 15(d)), indicating
the invalidity of equation (19). This comparison reveals that
rationality of the porosity prediction based on fractal theory
may not have valid permeability estimation and this formula
prediction is accurate only based on good petrophysical
properties and not suitable for poor reservoir quality sand-
stones. Hence, much more work will need to be done to
untangle how fractal theories contribute to reservoir quality
prediction.

5. Conclusions

In this study, the multifractal distributions of the H8 tight
sandstones in the Ordos Basin, China, were studied to
characterize the pore structure heterogeneity and a more
sophisticated and accurate criterion was presented to deter-
mine the pore structure typing. The following conclusions
were obtained:

(1) The pore structure typing of the tight sandstones of
the research area based on multifractal distributions
derived from PCMI, RCMI, and NMR can be classi-
fied into three, six, and two types, respectively. Type
P1, R1, R2, and R3 sandstones indicate the most

effective reservoir with relatively high petrophysical
properties. Type N1 tight sandstones have relatively
ample hydrophilic clay assemblage, while type N2
specimens were abundant with hydrophobic clay
minerals

(2) A comprehensive analysis of petrology and pore
structures by multifractal distributions derived from
different tests were conducted, and a new criterion
was proposed. Based on this, six effective pore struc-
ture types with different mineral compositions, pore-
throat structures, and multifractal dimension values
were identified in the research area

(3) The throats of tight sandstones control the reservoir
quality predominantly compared with other parame-
ters. DRt1 exhibits perfect performance in the estima-
tion of the porosity (error factor less than 10%).
Deeper multifractal analysis needs to be done in
order to enhance insight into the pore structures
and reservoir quality prediction in tight sandstones

Data Availability

The thin section and SEM images are provided by the State
Key Laboratory of Continental Dynamics at the Northwest
University in China. The XRD, PCMI, RCMI, and NMR data
used for this study are from the State Engineering Laboratory
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Figure 15: Plot of DRt1 versus (a) porosity and (b) permeability from six typical specimens. Comparison between estimated and measured (c)
porosity and (d) permeability for six typical specimens by equations (18) and (19).
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