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Water permeation into a porous medium is a common but important phenomenon in many engineering fields such as hydraulic
fracturing. The water permeation front moves with time and may significantly impact the field variable evolution near the water
front. Many algorithms have been developed to calculate this water front motion, but few numerical algorithms have been
available to calculate the water front motion in anisotropic fluid-solid couplings with high computational efficiency. In this
study, a numerical model is proposed to investigate the front motion of water permeation into an anisotropic porous medium.
This model fully couples the mechanical deformation, fluid flow, and water front motion. The water front motion is calculated
based on a directional Darcy’s flow in the anisotropic porous medium, and a revised formula with a correction coefficient is
developed for the estimation of permeation depth. After verification with three sets of experimental data, this model is used to
numerically investigate the impacts of permeability, viscosity, permeability anisotropy, and mechanical anisotropy on water
front motion. Numerical results show that the proposed model can well describe the anisotropic water permeation process with
reasonable accuracy. The permeation depth increases with permeability, mobility, and mechanical anisotropy but decreases with
viscosity and permeability anisotropy. The correction coefficient mainly depends on porosity evolution, flow pattern, mobility,
permeability anisotropy, and mechanical anisotropy.

1. Introduction

Water permeation into a porous medium is a common phe-
nomenon in many engineering fields: masonry structure [1–
4], hydraulic fracturing [5–9], concrete [10–13], and carbon
capture and storage (CCS) [14–16]. This phenomenon may
cause the frost and salt damage to brickwork in masonry
structures and the rot damage to wood structures [1]. It
may also cause the corrosion of building surface by the
wind-driven rain [2] and thus significantly affect the durabil-
ity of masonry structures [3]. In hydraulic fracturing, water
permeation has significant effects on the stress redistribution
and fracture behaviors of rocks [5, 8, 17]. During the injec-
tion of fracturing fluid, the permeation zone gradually
extends with water front motion and the pore pressure

increases within water permeation zone. This induces the
redistribution of effective stress and affects the initiation
and propagation of fractures [18–20]. Concrete, as a type
of porous medium, is easily penetrated by water. Water has
remarkable effects on the properties of concrete. For exam-
ple, water permeation increases the elastic modulus but
decreases the compressive strength and durability of con-
crete [10, 12, 21]. The sound velocity and frequency of max-
imum transmission are affected by the water content of
concrete [22]. Besides, in the CCS technology, acidic fluid
intrusion has become a potential risk to the safety of geolog-
ical storage of carbon dioxide (CO2) in underground forma-
tions [15, 23]. The acidic fluid permeation through the
caprock layer affects the groundwater system and reduces
the local air quality on the earth surface [24]. From the
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above, water permeation into a porous medium has
become a serious but interesting topic to engineering
fields. Therefore, it is important to investigate this phe-
nomenon of water permeation.

During water permeation, water front motion has been
focused. Several sets of experiments have been conducted
to investigate the permeation depth of water front [4, 11–
13, 25, 26]. It is discovered that permeation depth varies
with the properties of porous medium, the viscosity of injec-
tion fluid, injection time, and injection pressure. Khatri and
Sirivivatnanon [25] performed laboratory tests on concrete
to determine its permeability based on the permeation depth
of water front. Murata et al. [11] experimentally and theoret-
ically studied the evolution of permeation depth with water
pressure, pressurized time, and concrete type. Based on
water permeation tests, Yoo et al. [12] found that the fluid
flow in concrete obeys Darcy’s law under low water pressure
and the diffusion flow under high water pressure.
Al-Maamori et al. [26] conducted fluid permeation tests on
Queenston shale by different types of fluid. Their results
indicated that permeation depth varies with fluid type. By
means of electrical conductivity sensors, Guizzardi et al.
[4] investigated the relationship between permeation depth
and arrival time in building masonry materials. However,
most of these experiments were restricted to samples with
simple geometry in 1D case. The anisotropy of porous
medium has been ignored, although it is a distinguished fea-
ture of porous medium such as rock materials. Thus, it is
necessary to extend the study from 1D to 2D and to investi-
gate the effect of anisotropy of porous medium on water
front motion.

In numerical simulations, the moving interface, includ-
ing water front, has crucial effects on fluid dynamics, heat
transfer, and other physical processes [27, 28]. The bound-
ary shape and field variables significantly change with water
front motion. Therefore, the calculation of the permeation
depth of water front which represents the moving boundary
in water permeation becomes an essential job. This moving
boundary problem has been implemented through a fully
coupled model which considers the mechanical deformation,
the change of pore pressure, and a two-phase flow model
[29–31]. However, this fully coupled model is so compli-
cated in implementation and so slow in computation. It is
also difficult to obtain the real-time permeation depth of
water front during the computational process. Several
numerical algorithms have been proposed to calculate the
permeation depth of water front [13, 32–35]. Lockington
et al. [32] developed a new approach based on Boltzmann
transformation to analyze the water permeation profile
under exponential diffusivities. Zhou [34] established a
general method to solve hydraulic diffusivity from sorptivity
tests and determined an approximate solution of Boltzmann
variable for any distribution of diffusivity. Li et al. [13]
proposed a three-phase mesoscale model to simulate the
unsaturated transport in concrete. The permeation depth
obtained from the numerical modeling showed a reasonable
consistence with experimental results. Further, based on
Darcy’s law, a simple approach was presented for the estima-
tion of permeation depth with injection time, pressure

difference, and pressure magnitude [11, 12, 15]. A fitting
equation was proposed to describe the correlation between
permeation depth and injection time for different injection
fluids [26]. However, most of these numerical models were
established for 1D geometry and ignored the effect of anisot-
ropy on water permeation. The interaction between
mechanical behaviors and water permeation was disregarded
because the application of these models to the fluid-solid
coupling model was so complicated. Moreover, the impacts
of permeability, viscosity, permeability anisotropy, and
mechanical anisotropy on permeation depth have not been
well studied by numerical simulation. Therefore, it is essen-
tial to propose a simple and effective method to capture the
permeation depth of water front, which should be easily
incorporated into the anisotropic fluid-solid coupling model.

In this study, a moving boundary method is proposed to
investigate the front motion of anisotropic water perme-
ation. Based on this method, a new anisotropic fully coupled
model is established by creatively incorporating water front
motion into the interaction between mechanical deforma-
tion and fluid flow in an anisotropic porous medium. This
model is verified by three sets of experimental data and then
used to investigate the impacts of permeability, viscosity,
permeability anisotropy, and mechanical anisotropy on the
permeation depth of water front. The rest of this paper is
organized as follows: Section 2 gives the governing equations
for the anisotropic mechanical deformation, anisotropic
fluid flow, and constitutive laws for directional permeability
as well as the moving boundary method. Section 3 verifies
the numerical model with three sets of experimental data.
Section 4 discusses the revised formula for the estimation
of water front motion. Section 5 conducts a parametric study
on permeation depth. The last section summarizes the
understandings of this study.

2. Governing Equations for Each
Physical Process

This study made the following assumptions: (1) porous
medium is continuous and anisotropic. Its deformation is
linearly elastic and infinitesimal; (2) the fluid flow in an
anisotropic porous medium follows Darcy’s law; (3) the
chemical effect of water within porous medium is ignored;
(4) all processes involved are isothermal.

2.1. Governing Equation for Anisotropic Mechanical
Deformation. For a pseudostatic deformation process, the
equation of motion is

σeij,j + αp,i + f i = 0, 1

where σeij is the effective stress component; f i is the body
force per unit volume in the ith direction; p is the pore
pressure; α is the Biot coefficient and α = 1 − K/Ks; K is
the bulk modulus of the porous medium; Ks is the bulk
modulus of grains.
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The effective stress is expressed as

σij
e = σij − αpδij, 2

where σij is the total stress component and δij is the
Kronecker delta.

For an orthotropic linear elastic porous medium, its
constitutive model is expressed as
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in which

νij
Ej

=
νji

Ei
 i, j = x, y, z ; i ≠ j, 4

where Ei is the elastic modulus in the ith direction; νij is
the Poisson ratio that characterizes the strain response in
the ith direction to stress acting in the jth direction; Gij

is the shear modulus in the jth direction whose normal
is in the ith direction.

2.2. Governing Equation for Anisotropic Fluid Flow. Based on
Darcy’s law and the mass conservation law, the governing
equation for anisotropic fluid flow is expressed as [8]

cρ ϕ
∂p
∂t

−
ki
μ

∇ip
2 + α − ϕ

Ks 1 + S
∂p
∂t

− ∇ ⋅
ki
μ
∇ip

= ϕ − α

1 + S
∂εv
∂t

,
5

where ϕ is the current porosity; ki is the permeability in the
ith direction; S is the current effective volumetric strain; εv is
the current volumetric strain; cρ is the isothermal coefficient
of compressibility which is defined as [36]

cρ =
1
ρ

∂ρ
∂p

, 6

where ρ is the fluid density. For water, the density is usually
constant and cρ = 0.

Further, a general porosity model for porous medium is
obtained as [37]

ϕ

ϕ0
= 1 + 1 − Rm Δεe, 7

where Rm = α/ϕ0; ϕ0 is the initial porosity; Δεe is the change
of effective volumetric strain and expressed as

Δεe =
S0 − S
1 + S

8

Ignoring the effect of sorption and chemical reaction,
the current and initial effective volumetric strains are
defined as

S = εv +
p
Ks

,

S0 = εv0 +
p0
Ks

,
9

where εv0 is the initial volumetric strain; p0 is the initial
pore pressure.

Furthermore, the directional permeability in a
two-dimensional domain is associated with the effective
strain in its perpendicular direction as [8]

ki
ki0

= 1 + 1 +
2 1 − Rj

ϕ0
Δεej

3

, i ≠ j, 10

where ki is the initial permeability in the ith direction; Rj =
△εmj/△εj is the ratio of matrix strain to the strain of whole
element in the jth direction.

2.3. Moving Boundary Algorithm for Anisotropic Water Front
Motion. The seepage zone expands continuously as the water
front moves forward with the injection of fluid [11–13, 26,
38]. This water front motion forms a moving boundary
problem in a porous medium. Figure 1 shows a typical 1D
seepage-controlled model with moving water front. In this
model, the water front moves with the injection of fluid
and forms a changing seepage zone. Based on Darcy’s law,
the moving speed of water front in the ith direction is
described as

v bi =
∂Li
∂t

= −
ki
μ

∂p
∂xi xi=Li

11

Equation (11) can be used to simulate the anisotropic
front motion of water permeation. In this equation, the
moving speed is associated with the permeability, viscosity,
and pore pressure gradient. The increase of permeability
and pore pressure gradient will enhance the water front
motion, while the increase of viscosity will hinder it.

2.4. Numerical Computation Procedure. The numerical
model proposed in this study is composed of the governing
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equation for anisotropic mechanical deformation (equations
(1)–(4)), the governing equation for anisotropic fluid flow
(equation (5)), and the moving boundary algorithm for
anisotropic water front motion (equation (11)). Their inter-
actions are shown in Figure 2. After incorporating the con-
stitutive laws of equations (7) and (10), this model is
implemented by COMSOL Multiphysics for water perme-
ation into an anisotropic porous medium. Particularly, the
mechanical deformation equations are solved by Solid
Mechanics module, and fluid flow equations are imple-
mented by PDE module. The moving boundary method is
conducted by Deformed Geometry module. Through the
coupling solver in COMSOL Multiphysics, the proposed
numerical model can be solved if the boundary and initial
conditions, parameters, and computation time are given.

3. Verification of Numerical Model

The numerical model is verified by three sets of water per-
meation tests: two sets are on concrete with different injec-
tion pressures and one set is on Queenston shale with
different types of injection fluid.

3.1. Verification with Experimental Data by Murata et al.
[11]. A set of water permeation tests was conducted to inves-
tigate the water tightness of concrete [11]. Three
water-cement ratios were set as 0.55, 0.70, and 0.80. Each
specimen was 150mm in diameter and 150mm in height.
The curved surface was maintained watertight, and a speci-
fied water pressure was applied to the top end. Photographs
were used to measure the permeation depth of water with
injection time. In this study, the concrete is simplified as a
2D geometry model with a square of 150mm × 150mm.
The main computational parameters are listed in Table 1.
The injection time is 48 h. Figure 3 compares the numerical
results by our model with the experimental data by Murata
et al. [11]. This figure shows that the permeation depth by
our model agrees well with the experimental data. With
the increase of water pressure, the permeation depth
increases rapidly at first and its increasing rate decreases
gradually. It indicates that the numerical model proposed

in this study is effective for the front motion of water per-
meation into an anisotropic porous medium. Therefore,
our model is able to simulate the front motion of 1D
water permeation.

3.2. Verification with Experimental Data by Yoo et al. [12].
Yoo et al. [12] conducted another set of water permeation
tests to investigate the water tightness of concrete. Their
water-cement ratios were 0.40, 0.50, and 0.60, respectively.
Cylindrical concrete specimens (150mm in diameter and
300mm in length) were cast with a hollow cylindrical core
of 20mm in diameter at the center. The water was injected
into the inner borehole by controlling time and pressure.
In this study, the concrete is simplified as a 2D geometry
model of circular ring with 150mm outer diameter and
20mm inner diameter. The main computational parameters
are listed in Table 2. The water pressure is 1.5MPa. Figure 4
compares the numerical results by our model with the exper-
imental data by Yoo et al. [12]. From this figure, the perme-
ation depth by our model is in good agreement with the
experimental data. With the increase of injection time, the
permeation depth increases rapidly at first and its increase
rate decreases gradually. Due to the different permeability,
the permeation depth varies with the water-cement ratio at
the same injection time. Therefore, our model is still capable
of calculating the front motion of 2D water permeation.

3.3. Verification with Experimental Data by Al-Maamori
et al. [26]. A test procedure was developed to investigate
the difference of permeation depth between lubricant fluids
and water in Queenston shale. The cylindrical specimens
were cut into an approximate 0.24m in length and 0.063m
in diameter. Fluid pressure was applied on the bottom of
the cylindrical specimens with water, bentonite solution,
and polymer solution. The pressure increased gradually over
1 h until it reached 200 kPa and then kept constant through-
out the test period. In this study, the concrete is simplified as
a 2D geometry model with a rectangle of 0 24m × 0 063m.
The main computational parameters are listed in Table 3.
Figure 5 shows the numerical results by our model with
the experimental data by Al-Maamori et al. [26]. It shows
that the permeation depth by our model well fits the exper-
imental data. The permeation depth increases with injection
time. At the same injection time, the permeation depth var-
ies with the type of injection fluid. This is caused by the dif-
ferent viscosity among water, bentonite solution, and
polymer solution. Therefore, our model has the capability
to determine the front motion of 1D permeation by different
types of fluids.

4. Revised Formula for the Estimation of Water
Front Motion

The above section has established a numerical model to
investigate the front motion of water permeation into an
anisotropic porous medium. This model was well verified
with three sets of experimental data. This section will further
estimate the water front motion through a revised formula.
This is because a simple and effective formula without any
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Figure 1: 1D seepage-controlled model with moving water front.
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numerical simulations can significantly speed up the calcula-
tion of water front motion in engineering practice.

4.1. A Revised Analytical Formula for the Prediction of
Permeation Depth. In 1D water permeation, the fluid flow
velocity keeps constant over time and space, and its pressure
gradient is constant. Ignoring the time-dependent term in
equation (5) yields

∇ ⋅ −
ki
μ
∇ip = 0 12

With constant injection pressure and initial pore pres-
sure, the moving speed of water front is expressed as

v bi = −
ki
μ

p1 − p0
Li

13

Integrating equation (13) yields

Li =
t

0
−
ki
μ

p1 − p0
Li

dτ 14

The initial condition is Li = 0when τ = 0. The permeation
depth of 1D water permeation is then obtained as [15]

LW = 2ki p1 − p0 t
μ

, 15

where LW is the permeation depth of water front; p1 is the
injection pressure.

This formula is based on 1D linear flow and the
time-depended term in equation (5) is ignored. It did not
consider the anisotropy of porous medium, the fluid-solid
coupling effects and other flow patterns. In this study, a
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Figure 2: Interaction effect among mechanical deformation, fluid flow, and moving boundary.

Table 1: Computational parameters of concrete.

Parameter Value

Elastic modulus of concrete, E (GPa) 30

Bulk modulus of grains, Ks (GPa) 80

Initial porosity, ϕ0 0.05

Viscosity of water, μ (mPa∗s) 1

Initial permeability, k0 (μD), w/c = 0 55 3.3

Initial permeability, k0 (μD), w/c = 0 70 5.6

Initial permeability, k0 (μD), w/c = 0 80 18
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w/c = 0.80, experimental data
w/c = 0.70, experimental data
w/c = 0.55, experimental data

w/c = 0.80, our model
w/c = 0.70, our model
w/c = 0.55, our model

Figure 3: Comparison of numerical results by our model with the
experimental data by Murata et al. [11].
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revised formula is proposed to calculate the permeation
depth through introducing a correction coefficient into the
1D formula of equation (15) as

LR = f LW , 16

where LR is the revised permeation depth; f is a correction
coefficient.

The correction coefficient in equation (16) comprehensively
expresses the impacts of flow pattern, the time-depended

term, the anisotropy of porousmedium, and the fluid-solid cou-
pling on the permeation depth of water front. Generally, this
correction coefficient is so complicated that an accurate theoret-
ical solution is difficult to be obtained if all these influencing fac-
tors are considered. It can be determined through fitting
numerical solutions or experimental data. For both flow pattern
and time-dependent term, following two sections will analyti-
cally discuss their impacts on this coefficient.

4.2. Flow Pattern Induced Revision of Permeation Depth. For
the radial flow in 2D water permeation, the profile of pore
pressure is [39]

p = p0 +
p1 − p0

ln R/RL
ln xi + R

RL
, 17

where R is the radius of the borehole; RL is the radius of per-
meation depth and RL = R + Li.

Substituting equation (17) into equation (11) yields

v bi1 = v bi ⋅ λ1, 18

in which

λ1 =
Li

RL ln RL/R
< 1 19

With initial condition of Li = 0 when t = 0, the perme-
ation depth can be integrated as

LR1 =
t

0
v bi ⋅ λ1dτ =

t

0
−
ki
μ

p1 − p0
Li

Li
RL ln RL/R

dτ = f1LW

20

Equation (19) shows that the moving speed of water
front is smaller in 2D water permeation than in 1D water

Table 2: Computational parameters of concrete.

Parameter Value

Elastic modulus of concrete, E (GPa) 30

Bulk modulus of grains, Ks (GPa) 80

Initial porosity, ϕ0 0.05

Viscosity of water, μ (mPa∗s) 1

Initial permeability, k0 (μD), w/c = 0 40 1

Initial permeability, k0 (μD), w/c = 0 50 2.2

Initial permeability, k0 (μD), w/c = 0 60 3.2
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Figure 4: Comparison of the numerical results by our model with
the experimental data by Yoo et al. [12].

Table 3: Computational parameters of shale.

Parameter Value

Elastic modulus of shale, E (GPa) 20

Bulk modulus of grains, Ks (GPa) 60

Initial porosity, ϕ0 0.05

Viscosity of water, μ (mPa∗s) 1

Viscosity of bentonite solution, μ (mPa∗s) 2.5

Viscosity of polymer solution, μ (mPa∗s) 3.3

Initial permeability, k0 (μD) 22
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Figure 5: Comparison of the numerical results by our model with
the experimental data by Al-Maamori et al. [26].
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permeation. The correction coefficient f1 in equation (20)
reflects the effect of flow pattern on permeation depth. It
may induce obvious errors of permeation depth if the
1D formula is used to predict the front motion of 2D
water permeation.

4.3. Porosity Evolution Induced Revision of Permeation
Depth.With consideration of time-dependent term, equation
(5) can be rewritten as

∇ ⋅
ki
μ
∇ip = α − ϕ

1 + S
∂εv
∂t

+ 1
Ks

∂p
∂t

= ∂ϕ
∂t

21

The right term of equation (21) is a function of time and
position, which is here defined as

β = ∂ϕ
∂t

22

Ignoring the evolution of ki can obtain

ki
μ
∇ip = βdxi + C1 23

Therefore

ki
μ
p = F xi + C1xi + C2, 24

where C1 and C2 are the constants; F xi = βdxi dxi is a
function of porosity evolution.

Its boundary conditions are

p =
p1, xi = 0,
p0, xi = Li

25

With boundary conditions of equation (25), equation
(24) can be solved as

ki
μ
p = F xi + ki p1 − p0

μLi
xi +

F 0 − F Li
Li

xi +
ki
μ
p1 − F 0

26

Substituting equation (26) to equation (11) yields

v bi2 = v bi ⋅ λ2, 27

in which

λ2 = 1 + LiF′ Li + F 0 − F Li
ki p1 − p0 /μ 28

With initial condition of Li = 0 when t = 0, the perme-
ation depth can be integrated as

LR2 =
t

0
v bi ⋅ λ2dτ

=
t

0
−
ki
μ

p1 − p0
Li

1 + LiF′ Li + F 0 − F Li
ki p1 − p0 /μ dτ

= f2LW
29

Equation (28) shows that porosity evolution has some
impacts on the moving speed of water front. The correction
coefficient f2 in equation (29) reflects the effect of porosity
evolution on permeation depth. If the time-dependent item
is ignored, the porosity evolution is zero. Thus, F xi = 0
and λ2 = 1. Equation (29) is equal to equation (15). Other-
wise, with the consideration of porosity evolution, F xi ≠
0. It may decrease the prediction accuracy of permeation
depth without the correction coefficient f2.

Both equations (20) and (29) show that 1D formula has
inevitable limits on calculating the water front motion. Their
correction coefficients are so complicated to be theoretically
derived. Therefore, the revised formula of equation (16) is
essential, and the determination of the correction coefficient
will be discussed in the next section.

5. Parametric Study on Permeation Depth

The above results show that the proposed numerical model
in this study can investigate the front motion of water per-
meation into an anisotropic porous medium. This section
will explore key influencing factors on permeation depth
through parametric study on permeability, viscosity, perme-
ability anisotropy, and mechanical anisotropy. Their effects
on correction coefficients are discussed. Figure 6 describes
a geometry model with a square of 1m × 1m and a borehole
of 0.1m in diameter. The injection pressure is taken as
20MPa, and the initial pore pressure is 5MPa. The confin-
ing pressure is 10MPa in both the xth and yth directions.
The computational parameters are listed in Table 4.

5.1. Impact of Mobility

5.1.1. Impact of Permeability. In order to investigate the
impact of permeability, the permeability is taken as a range
from 0.01μD to 500μD and the viscosity is fixed as 1mPa·s,
10mPa·s to 100mPa·s, respectively. Figure 7 represents the
change of permeation depth with permeability at the injec-
tion time of 100 h. The permeation depth and its change rate
increase with permeability at the same viscosity, while the
permeation depth at the same permeability decreases with
fluid viscosity. The curve shape of permeation depth versus
permeability is similar at different viscosity. This indicates
that larger viscosity obstructs water front motion and reduces
the permeation depth. Furthermore, the permeation depth by
1D formula and the revised formula are also presented in
Figure 7. It shows that the revised formula is more suitable
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than 1D formula to calculate the front motion of 2D water
permeation. The correction coefficient is a function of
permeability as

f ky =
−0 073 lg ky − 0 6 ; μ = 1mPa ∗ s,
−0 073 lg ky − 0 527 ; μ = 10mPa ∗ s,
−0 073 lg ky − 0 454 ; μ = 100mPa ∗ s

30

Therefore, viscosity only affects the constant term.

5.1.2. Impact of Viscosity. The viscosity is taken as a range
from 0.1mPa·s to 500mPa·s when the permeability in
the yth direction is fixed as 0.1μD, 1μD, and 10μD,

respectively. Figure 8 represents the change of permeation
depth with viscosity at the injection time of 100 h. The
permeation depth and its change rate decrease with the
viscosity at the same permeability, while the larger perme-
ability promotes the water permeation and increases the
permeation depth at the same viscosity. The curve shape
of permeation depth versus viscosity is also similar among
different permeabilities. In addition, the permeation depth
by 1D formula is larger than the numerical results. The
revised formula can well fit the numerical results. The cor-
rection coefficient is a function of viscosity as

f μ =

0 0649 lg μ + 0 653 ; ky = 1 × 10−17 m2,

0 07 lgμ + 0 716 ; ky = 1 × 10−18 m2,

0 0653 lg μ + 0 783 ; ky = 1 × 10−19 m2

31

Obviously, permeability will affect the permeation depth,
and this effect varies with fluid viscosity.

5.1.3. Their Combined Impacts through Mobility. The previ-
ous two sections observe that the permeation depth
increases with permeability but decreases with viscosity.
The impacts of permeability and viscosity on permeation
depth are interrelated. Following mobility is introduced
to explore their combined effects as

κi =
ki
μ
, 32

1 m

1 
m

�휎y

�휎x

d = 0.1 m

Figure 6: Geometry model for water permeation into anisotropic
porous medium.

Table 4: Computational parameters for anisotropic water
permeation.

Parameter Value

Model size (m) 1 × 1
Diameter of the borehole, d (m) 0.1

Density of rock, ρs (Kg/m
3) 2570

Elastic modulus of rock, E (GPa) Ex = Ez = 30, Ey = 20
Bulk modulus of grains, Ks (GPa) 60

Poisson’s ratio, ν νxy = 0 2, νyz = νxz = 0 3
Initial porosity, ϕ0 0.03

Viscosity of water, μ (mPa∗s) 1

Initial permeability, k0 (μD) kx0= 5, ky0= 1

Initiation pore pressure, p0 (MPa) 5

Injection pressure, pI (MPa) 20
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Figure 7: Change of permeation depth with permeability. The
correction coefficients of equation (16) are f ky = − 0 073 lg ky − 0 6
for μ = 1mPa ∗ s; f ky = − 0 073 lg ky − 0 527 for μ = 10mPa ∗ s;
f ky = − 0 073 lg ky − 0 454 for μ = 100mPa ∗ s.
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where κi is the directional mobility. Figure 9 shows the
change of permeation depth with mobility. All the data
are taken from Figures 7 and 8. It is found that the same
mobility causes the same permeation depth, even though
the viscosity and the permeability are different. The per-
meation depth increases with mobility, which means that
larger mobility may enhance water permeation and the
permeation depth is bigger. Also, the permeation depths
by 1D formula and the revised formula are also compared
in Figure 9. The revised formula is more accurate than 1D
formula. The mobility combines the impacts of permeability

and viscosity, thus equations (30) and (31) can be unified by a
function of mobility as

f κy = −0 072 lg κy − 0 365 33

5.2. Impact of Permeability Anisotropy. For convenience, the
permeability anisotropy is defined as the anisotropic ratio
of the permeability in the xth direction (horizontal) to
the permeability in the yth direction (vertical):

αk =
ky
kx

34

The viscosity is taken as 1mPa·s, and the permeability
in the yth direction is fixed as 5 × 10‐19 m2, 1 × 10‐18 m2,
and 2 × 10‐18 m2, respectively. The permeability anisotropy
is taken in a range from 0.1 to 10. The permeation depth
at the permeability anisotropy of 5 is used as the base,
thus the permeation depth ratio is defined as

gαk =
Lαk
Lαk=5

35

Figure 10 presents the changes of permeation depth
and permeation depth ratio with permeability anisotropy
at different mobility. At the same mobility in the yth
direction, the permeation depth linearly decreases with
anisotropic ratio as shown in Figure 10(a). The curve
shape of permeation depth versus anisotropy ratio is sim-
ilar for different mobility. In Figure 10(b), the permeation
depth ratio decreases with the anisotropic ratio at the
same mobility and increases with mobility at the same
anisotropic ratio. The difference of permeation depth ratio
is small regardless of mobility. The effect of permeation
depth ratio can be fitted by

gαk = −0 173 lg αk + 1 129 36

Therefore, the correction coefficient in equation (16)
can be expressed as

f αk ,κy = gαk
f κy = −0 173 lg αk + 1 129 −0 072 lg κy − 0 365

37

Equation (37) reflects the combined effect of perme-
ability anisotropy and mobility on the correction
coefficient.

5.3. Impact of Mechanical Anisotropy. In this section, the
impact of mechanical anisotropy is investigated by aniso-
tropic ratio of elastic modulus and Poisson’s ratio. The
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Figure 8: Change of permeation depth with viscosity. The
correction coefficients of equation (16) are f μ = 0 0649 lg μ + 0 653
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elastic modulus anisotropy and Poisson’s ratio anisotropy
are, respectively, defined as

αE =
Ey

Ex
,

αv =
νxz
νxy

38

Further, the permeation depth ratio is defined as

gαE =
LαE ,αν=1 5

LαE=1 5,αν=1 5
,

gαν =
Lαν ,αE=1 5

Lαν=1 5,αE=1 5
,

39

where LαE=1 5,αν=1 5 represents the permeation depth when
αE = 1 5 and αν = 1 5. Figure 11 presents the changes of
permeation depth and permeation depth ratio with
mechanical anisotropy at different mobility. Figure 11(a)
shows that the permeation depth increases with mechanical
anisotropy for either elastic modulus or Poisson’s ratio at
the same mobility. Larger mobility will have bigger perme-
ation depth at the same mechanical anisotropy. In compari-
son with Poisson’s ratio anisotropy, the elastic modulus
anisotropy increases permeation depth more obviously. In
Figure 11(b), the permeation depth ratio shows different ten-
dencies at different mobility. As a whole, the elastic modulus
anisotropy increases permeation depth ratio more signifi-
cantly than the Poisson’s ratio anisotropy. With the ratio
ranging from 0.5 to 2, the permeation depth ratio changes
from 0.99 to 1.01 for Poisson’s ratio anisotropy, while it
changes from 0.97 to 1.01 for elastic modulus anisotropy.
The difference of permeation depth ratio is small regardless

of mobility. The effects of permeation depth ratios in
Figure 11 are fitted by

gαE = 1 004 − 0 112e−2 21αE ,
gαν

= 0 006αν + 0 991
40

Therefore, the correction coefficient in equation (16) can
be obtained as

f αE ,κy = gαE f κy = 1 004 − 0 112e−2 21αE −0 072 lg κy − 0 365 ,

f αν ,κy = gαν
f κy = 0 006αν + 0 991 −0 072 lg κy − 0 365

41

Equation (41) reflects the combined effect of mechanical
anisotropy and mobility on the correction coefficient.

6. Conclusions

In this study, a numerical model was proposed to investi-
gate the front motion of water permeation into an aniso-
tropic porous medium. This model fully coupled the
mechanical deformation, fluid flow, and moving water
boundary in an anisotropic porous medium. This fully
coupled model was verified by three sets of experimental
data on concrete and shale samples. A revised formula
with a correction coefficient was proposed for the quick
estimation of the permeation depth of water front. Finally,
parametric study was conducted to investigate the impacts
of permeability, viscosity, permeability anisotropy, and
mechanical anisotropy on the permeation depth of water
front. The correction coefficient was analytically solved
for radial flow pattern and porosity evolution and numer-
ically evaluated for mobility, mechanical, and permeability
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Figure 10: Changes of permeation depth and permeation depth ratio with permeability anisotropy.
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anisotropy. Based on these preliminary studies, the follow-
ing understandings and conclusions can be drawn.

(1) The proposed numerical model in this study has the
capability to describe the front motion of water per-
meation into an anisotropic porous medium. The
progress of permeation depth in both 1D and 2D
water permeations can be well described by this model

(2) Water mobility can well describe the combined effects
of permeability and viscosity on the permeation depth
of water front. The permeation depth increases with
permeability, water mobility, and mechanical anisot-
ropy but decreases with viscosity and permeability
anisotropy. The impacts of mechanical anisotropy
are smaller than those of water mobility and perme-
ability anisotropy

(3) A revised formula for the estimation of permeation
depth was obtained through a correction coefficient
in this study. The correction coefficient was analyti-
cally obtained for porosity evolution and radial flow
pattern of water permeation. This correction coeffi-
cient was numerically calculated for the impacts of
mobility, permeability anisotropy, and mechanical
anisotropy, and curve fittings obtained can be used
in engineering practice

It is remarked that this model was established based on
isothermal Darcy’s flow, anisotropic and linearly elastic
deformation. It did not consider the effects of cracking con-
figurations, chemical reaction, non-Darcy flow, and temper-
ature on water front motion. These are the topics in our
future study.
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