
Research Article
Point and Interval Predictions for Tanjiahe Landslide
Displacement in the Three Gorges Reservoir Area, China

Yankun Wang ,1 Huiming Tang ,1,2 Tao Wen ,3 Junwei Ma ,2 Zongxing Zou,2

and Chengren Xiong2

1Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China
2Three Gorges Research Center for Geo-Hazards of Ministry of Education, China University of Geosciences, Wuhan,
Hubei 430074, China
3School of Geosciences, Yangtze University, Wuhan, Hubei 430100, China

Correspondence should be addressed to Huiming Tang; tanghm@cug.edu.cn and Tao Wen; wentao200840@yangtzeu.edu.cn

Received 28 May 2019; Revised 12 August 2019; Accepted 9 October 2019; Published 16 December 2019

Academic Editor: Zhenjiang You

Copyright © 2019 YankunWang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Accurate landslide displacement prediction has great practical significance for mitigating geohazards. Traditional deterministic
forecasting methods can provide only a single point value and cannot give the degree of uncertainty associated with the forecast,
thereby failing to provide information on predictive confidence. This study applied interval prediction for landslide
displacement. Taking the Tanjiahe landslide of the Three Gorges Reservoir Area as an example and considering the impact of
seasonal variations in reservoir level and rainfall, the uncertainties associated with landslide displacement prediction were
quantified into prediction intervals (PIs) by a bootstrapped least-square support vector machine (LSSVM) method (B-LSSVM).
The proposed method consists of three steps: First, the LSSVM and bootstrapping were combined to estimate the true
regression means of landslide displacement and the variance with respect to model misspecification uncertainties. Second, a new
LSSVM model optimized by a genetic algorithm (GA) was implemented to estimate the noise variance. Finally, the point
prediction was derived from the regression means, and the PIs were constructed by combining the regression mean, the model
variance, and the noise variance. We applied the proposed method to predict the displacement of four GPS monitoring points of
the Tanjiahe landslide, and we comprehensively compared the prediction accuracy and the quality of the constructed PIs with
benchmark methods. A simulation and performance comparison showed that the proposed method is a promising technique
for providing accurate and reliable prediction results for landslide displacement.

1. Introduction

Landslides are the most frequent geological hazard in China.
These events seriously threaten infrastructure and the safety
of human life and result in extensive casualties and property
losses every year. The Three Gorges Reservoir Area (TGRA)
is one of the areas in China hardest hit by landslide disasters
[1]. A displacement time series provides a direct representa-
tion of the landslide evolution process. Accurate landslide
displacement predictions can help inform people about the
future evolutionary dynamics of landslides.

The evolution process of a landslide is characterized by
nonlinearity [2]. A range of causes, such as geological factors,
climatic factors, earthquakes, and human activities, contrib-

utes to the formation of landslides, making it challenging to
accurately forecast landslide displacement [3]. Due to the
complexity of landslide systems, it is hard to build explicit
mathematical expressions between soil/rock mechanical
properties and displacement using physical methods. Com-
pared with physical methods, data-driven methods require
only the available monitoring data and not the physical
parameters of the landslide. These methods have the out-
standing capabilities of capturing nonlinear mapping
between input features and outputs. In recent years, data-
driven methods have been widely applied and are becoming
increasingly attractive in landslide displacement prediction.
Du et al. [4] used a back propagation neural network to pre-
dict landslide displacement, and the effectiveness of the

Hindawi
Geofluids
Volume 2019, Article ID 8985325, 14 pages
https://doi.org/10.1155/2019/8985325

https://orcid.org/0000-0002-3596-6775
https://orcid.org/0000-0002-0385-8155
https://orcid.org/0000-0002-4588-3586
https://orcid.org/0000-0001-8408-2821
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/8985325


method is verified by studying the Baishuihe and Bazimen
landslides in TGRA. Cao et al. [3], Huang et al. [5, 6], and
Lian et al. [7] applied an ELM-based model for point predic-
tion of landslide displacement, and the performance of pro-
posed models is tested in reservoir landslides of the TGRA.
Cai et al. [8], Cao et al. [3], Miao et al. [9], Ren et al. [10],
and Wen et al. [11] proposed SVM-based hybrid models to
predict the displacement of reservoir landslides, and the
numerical results demonstrate that their hybrid method
outperformed artificial neural network-based methods. In
[12, 13], a hybrid approach is proposed based on two-step
clustering and decision tree C5.0 algorithms for a step-like
landslide, and the usefulness of the hybrid approach is
explored by the Zhujiadian landslide in TGRA. Most of
data-driven methods can predict landslide displacement well.
However, most predictions are deterministic (or point)
predictions; i.e., they can only provide a crisp displace-
ment value and cannot provide the uncertainty associated
with the predictions.

In practice, the accuracy of point estimates can be
affected by uncertainties. These uncertainties stem mainly
from two important sources: (1) model uncertainties caused
by the misspecification of the structure and parameters of
the machine learning technique (e.g., number of nodes in
hidden layers of artificial neural networks (ANNs), hyper-
parameters in SVMs, and unreasonable section of input var-
iables) and (2) noise variance of measured data due to the
stochastic and chaotic characteristics of landslide displace-
ment. For practical applications, decision-makers require
accurate point prediction results as well as quantitative esti-
mates of the inherent uncertainty of the forecasts [14]. Thus,
to improve the reliability and credibility of model outputs, it
is necessary to incorporate prediction uncertainties into
point predictions to quantify the uncertainties. Prediction
intervals (PIs) are tools that are commonly used to estimate
likely uncertainties in deterministic forecasting. Reliable PIs
allow decision-makers to efficiently perceive the degree of
uncertainty and make more informed decisions [15]. Due
to their application in risk management, PIs have successfully
been applied to probabilistic predictions in many fields, such
as electricity market price prediction [16], wind power pre-
diction [17], and flood prediction [18].

However, current studies on the probability prediction of
landslide displacement are very limited. Lian et al. [19] estab-
lished an ANNmodel with random hidden weights for inter-
val prediction of landslide displacement. In addition, Lian
et al. [20] and Ma et al. [21] used a hybrid method based
on bootstrapping, ELM, and ANN to construct PIs in land-
slide displacement prediction. Wang et al. [22] proposed a
hybrid method that combines double exponential smoothing
and lower and upper bound estimation models to construct
the PIs of landslide displacement. All these studies con-
structed PIs of landslide displacement by ANNs. Although
ANNs are powerful tools for approximating highly nonlinear
systems, their disadvantages include faulty theory founda-
tion, local minimum, and overfitting [23], which may result
in large prediction error, leading to unnecessarily wide PIs.
Therefore, more reliable methods need to be developed to
obtain high-quality PIs in landslide displacement. SVMs are

considered the best regression method because of their
strong inference capacity, excellent generalization, and
accurate prediction ability [24], and they outperform many
ANNs by avoiding the overfitting problem [25]. Moreover,
SVMs can still obtain satisfactory prediction results from
small training sets. However, the training process of a
SVM is time consuming for large datasets because a qua-
dratic programming problem needs to be solved under
an inequality constraint. To reduce the computational cost
of SVMs, an improved version, i.e., the least-square support
vector machine (LSSVM), was proposed by Suykens and
Vandewalle [26]. LSSVMs have the advantages of excellent
generalization and high prediction accuracy of SVMs as well
as rapid computation. Considering their superiority,
LSSVMs have successfully been applied in the deterministic
prediction of landslide displacement [8, 11, 27].

In this paper, a LSSVMmodel in combination with boot-
strapping was used for the probabilistic prediction of land-
slide displacement. In this method, the true regression
means and model misspecification uncertainties were first
estimated using a bootstrapped LSSVM (B-LSSVM) model,
then a new LSSVM model optimized by a genetic algorithm
(GA) was implemented to predict the noise variance. After
proper estimation of the regression means and uncertainties,
the point prediction results and PIs were obtained by com-
bining the regression means, the model variance, and the
noise variance. The hybrid method, namely, B-LSSVM, was
employed for point and interval estimations of the Tanjiahe
landslide in the TGRA of China, and its performance was
compared to that of several other data-driven methods.

2. Methodology

2.1. PI Formulation. PI is a powerful approach for quantify-
ing the uncertainties in point prediction. A PI consists of
upper and lower limits between which a future unknown
value is expected to occur with a prescribed probability called
a confidence level (100ð1 − αÞ%) (usually 95%) [15]. Consid-
ering a stochastic time series, the ith measured value ti can be
expressed as follows:

ti = g xið Þ + ε xið Þ, ð1Þ

where xi is the vector of inputs, εðxiÞ denotes noise with zero
mean, and gðxiÞ is the nonlinear function denoting the true
regression mean.

The goal of point prediction is to approximate the true
regression mean gðxiÞ. Data-driven methods are usually
used for the point prediction model. However, prediction
errors are unavoidable because of the inherent uncer-
tainties in the forecasting process. Such errors can be
caused by the misspecification of the structure and param-
eters of the data-driven methods. Let a trained data-driven
model ĝðxiÞ denote an estimation of the true regression
mean gðxiÞ. Accordingly, the prediction bias can be repre-
sented as follows:

ti − ĝ xið Þ = g xið Þ − ĝ xið Þ½ � + ε xið Þ: ð2Þ
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PIs address the variance of the left side of Equation
(2). Confidence intervals (CIs) manage the variance of
the first term on the right side of Equation (2). PIs should
be distinguished from CIs. CIs address the accuracy of
the estimate of the true model gðxiÞ, which is estimated
by the probability distribution PðgðxiÞ ∣ ĝðxiÞÞ, whereas
PIs address the accuracy of the estimate of the target ti,
which is related to the probability distribution Pðti ∣ ĝðxiÞÞ.
Therefore, the PI will be wider than the CI. In practical appli-
cations, PIs are more useful than CIs because PIs are con-
cerned with the accuracy with which we can predict the
observed target value itself and not just the accuracy of our
estimate of the true regression [14].

Assuming that the two components on the right side of
Equation (2) are statistically independent, the total predic-
tion variance σ2t ðxiÞ can be expressed as follows:

σ2t xið Þ = bσ2
g xið Þ + bσ2

ε xið Þ, ð3Þ

where bσ2
gðxiÞ is the variance of the model misspecification

uncertainties related to the data-driven model and bσ2
εðxiÞ is

the noise variance. Once these values are properly estimated,
the 100ð1 − αÞ% (0 < α < 1) confidence level PIs can be
defined as follows:

L αð Þ
t xið Þ = ĝ xið Þ − z1−α/2

ffiffiffiffiffiffiffiffiffiffiffiffi
σ2
t xið Þ

q
, ð4Þ

U αð Þ
t xið Þ = ĝ xið Þ + z1−α/2

ffiffiffiffiffiffiffiffiffiffiffiffi
σ2t xið Þ

q
, ð5Þ

where LðαÞt ðxiÞ and UðαÞ
t ðxiÞ are the lower and upper limits of

the ith PI, respectively, and z1−α/2 denotes the 1 − α/2 quantile
of the standard normal distribution.

2.2. LSSVM for Regression Analysis. The LSSVM is an
improved formulation of the original SVM based on struc-
tural risk minimization [26, 28]. In this study, the LSSVM
was applied to conduct a regression analysis between influen-
tial factors and landslide displacement. Given a training data-
set fðxi, tiÞgNi=1, where xi ∈ Rm denotes m influential factors
and ti ∈ R is the measured landslide displacement, the formu-
lation of the LSSVM for regression analysis can be represented
using the following constrained optimization problem:

min
w,b,ξ

J w, ξð Þ = 1
2w

Tw + 1
2 γ〠

N

i=1
ξi,

s:t: ti =wTϕ xið Þ + b + ξi, i = 1, 2,⋯,N ,
ð6Þ

where γ is a regularization parameter, ξi represents random
errors, wT is the weight vector, φðxÞ is the kernel space func-
tion, and b is the threshold.

The resulting LSSVM model for regression analysis can
be constructed as follows:

t xð Þ = sign 〠
N

i=1
αiK xi, xkð Þ + b

 !
, ð7Þ

where αi is the Lagrange multiplier and Kð⋅Þ is a kernel func-
tion matrix. In this study, the radial basic function (RBF) is
applied as the kernel function of the LSSVM because it has
fewer parameters and excellent nonlinear mapping perfor-
mance. The RBF can be expressed as follows:

K xi, xkð Þ = exp −
xi − xkk k2
2δ2

� �
, ð8Þ

where δ is the bandwidth of the RBF (δ > 0).
In this study, the LSSVM was implemented by the

LS-SVMlab toolbox [29] developed in MATLAB. The regu-
larization parameter γ and kernel parameter δ in LSSVM
algorithms are known to affect performance. Therefore, these
two parameters must be optimized. The optimization process
is described in Section 2.4.

2.3. Bootstrapping. Bootstrapping [30] is essentially a resam-
pling technique for estimating the distribution of a statistic.
In practice, sampling the global individuals of a statistic is
often difficult and impossible to achieve; therefore, the actual
distribution of a statistic is not known a priori. A common
alternative approach is to sample only a small component
of the statistic and to then apply bootstrapping to infer the
approximate distribution of the statistic. By uniformly
resampling limited sample data B times, bootstrapping can
approximately measure the index of the distribution of a sta-
tistic (e.g., mean and variance). In the construction of PIs,
bootstrapping is the most commonly used technique and
has been found to be quite reliable compared with other
approaches. Bootstrap sampling can be based on pairs or
residuals. In this study, bootstrapping of residuals was used.
The sampling process is described as follows:

(1) Train the LSSVM model using the training set to
obtain the optimal hyperparameters (γ and δ) and
then apply the LSSVM to both the training and test-
ing sets to obtain the forecast value

(2) Calculate the forecast residuals of the training set and
recenter it

(3) Uniformly sample the recentered residuals using
bootstrapping to obtain the resampling dataset

(4) Generate new targets by summing the forecast value
and recentered residuals to acquire the resampling
training set

(5) Apply the LSSVMmodel trained in step (1) to the qth
resampling samples and the testing set to obtain the
estimated value
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(6) Repeat steps 3–5 B times to derive B bootstrap
replications

2.4. PI Construction Based on Bootstrapping and LSSVM. The
flowchart of PI construction based on bootstrapping and
LSSVM is shown in Figure 1. The flowchart consists of six
main steps: (1) input variable selection, (2) data splitting,
(3) bootstrap sampling and LSSVM training, (4) regression
mean and model variance estimation, (5) noise quantifica-
tion, and (6) PI construction. The details of each step are
described as follows.

2.4.1. Input Variable Selection. In this step, the selection of
LSSVM input variables is mainly based on empirical guide-
lines. These guidelines are summarized from other studies
of landslide displacement prediction in the TGRA.

2.4.2. Data Splitting. The whole dataset was split into two
sets: (a) a training set and (b) a testing set. The training set
is used to determine the optimal LSSVM structure and
hyperparameters. The testing set is used to validate the per-
formance of the proposed method.

2.4.3. Bootstrap Sampling and LSSVM Training. In the pro-
cess of bootstrapping, B training datasets are derived from
the residual dataset and LSSVM training is performed for
each generation of the bootstrap samples. In this step, the
two hyperparameters of LSSVM were optimized through
the coupled simulated annealing (CSA) algorithm and the
simplex method, which are the default optimization algo-
rithms embedded in the LS-SVMlab toolbox. The tuning

process consisted of two steps. First, the CSA was applied
to determine suitable starting points of the two parameters
within the search limits (eð−10Þ, eð10Þ). Second, these starting
points were transferred to the simplex method to search for
optimal values.

To prevent an additional source of uncertainty arising
from the hyperparameters of the LSSVM and improve
the computational efficiency, once the hyperparameters
(γ and δ) of the LSSVM were determined in step (1) of the
bootstrapping process, they were fixed to train and predict
all bootstrapped and test samples. After all of the B bootstrap
samples have been trained by the LSSVM, an ensemble of
point values predicted by the B-LSSVM models is obtained
and the distribution characteristics of these point values can
be estimated using the following procedure.

2.4.4. Regression Mean and Model Variance Estimation. The
ensemble model formed by the B-LSSVM will produce a less
biased estimate of the true regression of the targets. The
mean of the B-LSSVM model output ĝðxiÞ represents the
approximation of the true regression mean gðxiÞ, and it can
be regarded as the point prediction result.

ĝ xið Þ = 1
B
〠
B

q=1
gq xið Þ, ð9Þ

where gqðxiÞ is the forecast value derived from the qth
LSSVM model.
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Figure 1: Generalized framework of the point and prediction interval estimations based on the B-LSSVM method.
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Following the calculation of the regression mean, the var-
iance of B-LSSVM predictions can be used to estimate the
variance of model uncertainty:

bσ2
g xið Þ = 1

B − 1〠
B

q=1
gq xið Þ − ĝ xið Þ
h i2

: ð10Þ

2.4.5. Noise Quantification. In the construction of PIs, both
the variance of model uncertainty bσ2

g and the noise variancebσ2
ε must be estimated. From Equation (3), bσ2

ε can be obtained
as follows:

bσ2
ε = E t − ĝð Þ2� �

− bσ2
g: ð11Þ

According to Equation (11), the squared residual is calcu-
lated as follows:

r2 xið Þ =max ti − ĝ xið Þ½ �2 − bσ2
g xið Þ, 0

� �
, ð12Þ

where ĝðxiÞ and bσ2
gðxiÞ can be calculated from Equations (9)

and (10), respectively.
Combining the residuals and the corresponding inputs, a

new residual dataset Dr2 is formed as follows:

Dr2 = xi, r2 xið Þ	 
� �N
i=1: ð13Þ

Then, the unknown values bσ2
ε of the testing set can be

estimated by implementing a new LSSVM model to train
the residual dataset Dr2 . The training cost function is usually
defined using the following form:

CN = 1
2〠

N

i=1

r2 xið Þbσ2
ε xið Þ

+ log bσ2
ε xið Þ

� �" #
: ð14Þ

Since the cost function (14) is not embedded in the
LS-SVMlab toolbox, the new LSSVM cannot be easily
trained with the default algorithm in this toolbox. Therefore,
we applied the GA to minimize the cost function (14) in this
step. The GA is an optimization algorithm that simulates the
process of natural evolution in biology, and it has excellent
efficiency in finding the global optimization. The details of
the GA can be found in Davis [31]. In the GA, the initial pop-
ulation evolves toward the new population through selection,
crossover, and mutation until the iteration termination con-
ditions are reached. The best individual (the optimal param-
eters γ and δ of LSSVM) can be derived. Then, the optimal
parameters were transferred to the LSSVM model to predict
the noise variance bσ2

ε of the testing set. To ensure that the
estimated variance is positive, the cost function was set to
infinity once the estimated variance is negative in the process
of GA optimization.

2.4.6. PI Construction. After estimating the true regression
mean ĝðxiÞ, the variance of model uncertainty bσ2

gðxiÞ, and
the noise variance bσ2

ε , the point predictions and PIs with a

ð1 − αÞ100% confidence level can be obtained using Equa-
tions (9), (4), and (5).

2.5. Performance Criterion. The root-mean-square error
(RMSE) and mean absolute percentage error (MAPE) are
the evaluation indices most commonly used for assessing
point prediction accuracy. These indices measure the devia-
tion degree between the predicted displacement and the
observed displacement and can be expressed as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i=1 ti − ĝ xið Þ½ �2
N

s
, ð15Þ

MAPE = 1
N
〠
N

i=1

ti − ĝ xið Þj j
ti

: ð16Þ

The prediction interval coverage probability (PICP) is a
commonly used index for assessing PI, and it indicates the
possibility that the target values lie within the upper and
lower limits. GivenN test samples, the PICP can be expressed
as follows:

PICP = 1
N
〠
N

i=1
ci, ð17Þ

where

ci =
1, ti ∈ L αð Þ

t xið Þ,U αð Þ
t xið Þ

h i
,

0, ti ∉ L αð Þ
t xið Þ,U αð Þ

t xið Þ
h i

:

8><>: ð18Þ

The PICP is strongly related to the width of the PI. A high
PICP can be readily achieved by broadening the width of the
PI. However, such PIs are certainly meaningless in practice.
Therefore, a measure termed the normalized mean PI width
(NMPIW) is used to quantify the width of the PI, and it is
expressed as follows:

NMPIW = 1
Nζ

〠
N

i=1
U αð Þ

t xið Þ − L αð Þ
t xið Þ

� �
∗ 100%, ð19Þ

where ζ is the range of the actual measured values.
In general, a PI with a high PICP and lowNMPIW is con-

sidered high quality. However, both measures evaluate the
quality of the PI from one aspect. A comprehensive index
that combines PICP and NMPIW is required. In this study,
we use the modified coverage width-based criterion (CWC)
[19] for the comprehensive assessment of PIs.

CWC = NMPIW + ψð Þe γ PICP−μð Þ2ð Þ/2δ2 , ð20Þ

where the ψ is a small positive value within the range of 0.1%
to 0.5% and μ and δ are the two hyperparameters. The value
of μ is usually set to 1 − α, and δ is set to a small positive
value less than 1. In this study, ψ and δ are set to 0.001
and 0.05, respectively. Generally, γ is set to 1 during the
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training of LUBE, and for testing, γ is given by the follow-
ing step function:

γ =
0, PICP ≥ μ,
1, PICP < μ:

(
ð21Þ

In the evaluation of the constructed PIs, the aim of the
CWC is to find a trade-off between the informativeness
(NMPIW) and validity (PICP) of PIs. According to the
definition of CWC, the smaller the CWC value, the higher
the quality of PIs. If the PICP is not less than the assigned
μ, γ is equal to 0. Therefore, the exponential term in
Equation (20) is eliminated and the CWC depends on the
NMPIW. Otherwise, γ is equal to 1 and the exponential term
penalizes the violation of the coverage probabilities.

3. Case Study: Tanjiahe Landslide

3.1. Geological Features. The Tanjiahe landslide is situated in
Zigui County, Hubei Province, China, on the southern bank
of the Yangtze River 52 km upstream from the Three Gorges

Dam (Figure 2). A three-dimensional topographical map of
the Tanjiahe landslide is shown in Figure 3(a), which indi-
cates that the Tanjiahe landslide is fan-shaped from an in-
plane view. The landslide has a longitudinal dimension of
approximately 1000m and a mean width of approximately
400m. The area of the landslide is approximately 0.4 km2,
and the mean depth of slip surface is approximately 40m.
The accumulation of the landslide is estimated at 16 million
m3. The elevation of the toe of the landslide is 135m above
sea level (a.s.l.), and the elevation of the top of the landslide
is 432m a.s.l. The average slope of the foot of the landslide
is approximately 10°, and the slope varies from 25° to 30° in
the middle and at the head of the landslide. Flat terrain
occurs at the foot of the landslide; the elevation of this terrain
extends from 164m to 188m a.s.l., and its area is approxi-
mately 0.046 km2.

Figure 3(b) shows a schematic geological profile of cross-
section A–A′ of the Tanjiahe landslide. The figure shows that
the main sliding direction is orientated at 342°. The materials
of the landslide consist of loose debris soil. The bedrock con-
sists of thin- to medium-thickness layered quartz sandstone
and carbonaceous siltstone, with an inclination of 10° and a
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Figure 2: Location and geomorphological delimitation of the Tanjiahe landslide.
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dip angle of 36°. The material of the sliding zone is silty clay
mixed with little gravel. The head of the slip surface has
developed along the top surface of the bedrock and a dip
angle equal to that of the bedrock, whereas the foot of the slip
surface developed across the bedrock.

3.2. Deformation Characteristics. In October 2006, the reser-
voir level increased from 135m to 156m a.s.l. During this
period, the head of the Tanjiahe landslide became dramati-
cally deformed. In July 2007, a collapse with a volume of
approximately 300m3 occurred at an elevation of 350m

a.s.l. in the middle of the landslide. Many surface cracks with
an average length of approximately 30m, width of approxi-
mately 0.2m, and relative displacement ranging from 0.15
to 0.25m successively appeared in the middle and head of
the landslide during the period from July to September
2007. Additionally, some small collapses with volumes of
approximately 3m3 appeared near the cracks. To monitor
the deformation process of the landslide, four GPS monitor-
ing stations (ZG287, ZG288, ZG289, and ZG290) were
installed along the main sliding direction of the landslide.
The frequency of monitoring was once a month.
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Figure 3: (a) Three-dimensional topographical map of the Tanjiahe landslide and (b) schematic geological cross-section (A–A′) of the
Tanjiahe landslide.
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Figure 4 displays the monitoring results of the water level,
rainfall, cumulative displacement, and displacement velocity
over a ten-year period from October 2006 to June 2015 [32].
An analysis of the monitoring data from all four permanent
GPS stations indicated similar patterns (step-like and steady
growth tendency) of landslide movements but different
deformation sizes. Station ZG289, which was located in the
middle of the main body, measured the maximum displace-
ment, and the cumulative displacement of stations ZG287,
ZG288, and ZG289, which were located at the head and foot
of the main body, was significantly larger than that of the
frontal station ZG290.

Figure 5 shows the correlation analysis between the dis-
placement velocity and reservoir level and rainfall and indi-
cates that the deformation velocity exhibited fluctuations
due to the periodic fluctuations in rainfall and the reservoir
water level. The shaded areas represent the dry season within
a particular year. The dry season generally occurred between
October of the current year and April of the following year,
during which the reservoir water level was high, remaining
between approximately 160m and 175m. Almost all periods
of rapid movement occurred during the dry season. Consid-
ering the lag effect of the increase in the reservoir level on
landslide displacement deformation, it can be inferred that
the reservoir level rose significantly under the influence of
landslide deformation. Compared with that in the dry season,
the landslide deformation velocity in the rainy season was
relatively low except in 2007, when the deformation velocity
measured at the ZG288 monitoring station reached the max-
imum value of 51.3mm/month. This finding may be attrib-
uted to the initial filling of the reservoir from 135m to
156m between September and November 2006, which
resulted in a longer period of landslide stress adjustment
and, combined with the heavy rainfall from April to Septem-

ber 2007, resulted in severe landslide deformation. Based on
these findings, it can be stated that the reservoir level and
heavy rainfall were crucial trigger factors that influenced
the deformation of the Tanjiahe landslide and an increase
in the reservoir level was the main influential factor that sig-
nificantly increased the deformation. The material of the slid-
ing mass within the water-level fluctuation zone is composed
of blocky rock with high permeability, which makes the
groundwater in the landslide discharge in time when the res-
ervoir level fluctuates. Meanwhile, the sliding surface is steep
in the upper part and gentle in the lower part; the gentle slid-
ing surface is more conducive to resist sliding. The rising res-
ervoir water level increases the positive pore water pressures,
which induces a decrease of the effect stress and resistance
force in the sliding surface, thereby accelerating the deforma-
tion of the landslide.

3.3. Probabilistic Forecasting of Landslide Displacement. The
proposed B-LSSVM method was applied to predict the dis-
placement of the four monitoring points (ZG287, ZG288,
ZG289, and ZG290) of the Tanjiahe landslide. The main trig-
ger factors, such as the reservoir level and rainfall, were also
considered in the prediction. Both point prediction results
and PIs were obtained by the B-LSSVMmethod. The process
of prediction is described as follows.

(1) Input Variable Selection. The evolution process of land-
slide displacement is dominated by both internal factors
(e.g., geological conditions) and trigger factors (e.g., reservoir
water-level fluctuations and rainfall). Based on previous
studies on landslide displacement forecasting conducted in
the TGRA [3, 9, 12, 21, 23], displacements over the previous
one, two, and three months were selected as the input vari-
ables related to internal factors. The average elevation of
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the reservoir water level in the current month, the rainfall
over the previous one and two months, and the variation in
the reservoir level during the previous one month were
selected as the input variables related to trigger factors. In this
study, these seven factors were also chosen as the input vari-
ables to conduct landslide displacement one-step-ahead
forecasting.

(2) Data Splitting. In this step, 70% of the monitoring data
(from October 2006 to December 2012) were treated as
the training dataset and the remaining 30% (from January
2013 to June 2015) were selected as the testing dataset. To
reduce the dimensional effect of the data on the predictive
performance, the training and testing datasets were nor-
malized within the limits (-1, 1). The normalized datasets
were then applied to the LSSVM model for training and
forecasting.

(3) Bootstrap Sampling and LSSVM Training. The number of
bootstrap replications may influence the quality of PIs. To
determine the appropriate number of bootstrap replications,
50, 100, 200, 500, 1000, 2000, and 5000 bootstrap replications
were implemented for each monitoring point case. Thus, dif-
ferent ensemble numbers of LSSVM models were formed,
and they were used for forecasting both the training set and
the testing set.

(4) Regression Means and Model Variance Estimation. Based
on the prediction results of the ensemble LSSVM model, the
regression means and model variance of the training set and
the testing set can be estimated by Equations (9) and (10).

(5) Noise Quantification. After the regression means and
model variance of the training set are calculated, the residual
set can be built. A new LSSVM model tuned by a GA was
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used to train the residual set. In the GA, the searching ranges
of γ and δ are eð−10Þ and eð10Þ, and the number of iterations,
population size, crossover fraction, and migration fraction
were set to 200, 50, 0.8, and 0.2, respectively. By minimizing
the cost function (14) in the GA, the optimal hyperpara-
meters of LSSVM could be obtained. Then, the noise variance
of the testing set was predicted by the optimal LSSVM.

(6) PI Construction. The confidence level was set to 95%
(α equal to 0.05). Once the training and testing processes
were completed, the predicted displacements were derived
after unnormalizing the predicted data. Then, the point pre-
dictions and PIs with a 95% confidence level were obtained.

3.4. Results and Analysis. The purpose of this paper is to
accurately predict the displacement of the Tanjiahe landslide
using the B-LSSVMmethod and quantify the uncertainties in
the prediction to further establish a high-quality PI for land-
slide displacement. To verify the efficacy and superiority of
the B-LSSVM method, multiple methods, including BP,
ELM, and LSSVM tuned by the default optimization
algorithm of the LS-SVMlab toolbox, were applied for point
prediction comparison, and a hybrid model of ANN-based
PIs, namely, B-ELM [16], was used for probabilistic forecast
comparison. B-ELM is a hybrid method that combines the
bootstrap, ELM, and ANN methods. Ma et al. [21] applied
the B-ELM method for interval prediction of landslide
displacement. In B-ELM, bootstrapping of residuals is per-
formed and the bootstrap replicate number is set to 200.
The number of hidden nodes in the ELM is determined by

a 10-fold cross-validation method using only the training
set. The node numbers are determined to be 29, 31, 30, and
31 for ZG287, ZG288, ZG289, and ZG290, respectively. The
trained ELMs are applied for 200 bootstrap samples to esti-
mate the regression mean and variance of model uncertainty,
and an ANN model is used to estimate the noise variance.
The prediction results for the proposed method and other
methods are presented in Tables 1–5 and Figures 6 and 7.

Tables 1–4 show a comparison of the PI performance
between the B-ELM method and the B-LSSVM method. Dif-
ferent bootstrap replications were implemented for each
monitoring point. The PICP, NMPIW, and CWC were com-
puted to assess the quality of the PIs. As shown in Tables 1–4,
both methods are reliable and can provide satisfactory pre-
dictions for the test samples. The PICPs of B-LSSVM and
B-ELM are all very close to the 95% confidence level, and
the PICP of B-ELM is even higher than the 95% confidence
level. For example, the PICP of B-ELM mostly reached
100% in Tables 1–3. This result seems to indicate that the
B-ELM method is more reliable than the B-LSSVM method.
However, compared with the B-LSSVM method, the B-ELM
method performed poorly with respect to the NMPIW. In
Tables 1–4, the mean NMPIW of the B-ELM was approxi-
mately 2~5 times larger than that of the B-LSSVM. This
result shows that the B-ELM method tended to construct
broad PIs to achieve a high PICP compared with the
B-LSSVM method. Overfitting may occur in the training
phase of the ELM model, which leads to a low generalization
ability and large prediction error in the testing phase. There-

fore, the variance of model uncertainty, i.e., bσ2
gðxiÞ in

Table 1: PI performance index of ZG287.

B
PICP NMPIW CWC

B-LSSVM B-ELM B-LSSVM B-ELM B-LSSVM B-ELM

50 0.9333 0.9667 0.0835 0.2543 0.0893 0.2699

100 0.9333 1.0000 0.0805 0.2425 0.0861 0.2435

200 0.9667 1.0000 0.0765 0.2536 0.0775 0.2546

500 0.9667 1.0000 0.0782 0.2685 0.0792 0.2695

1000 0.9667 1.0000 0.0736 0.2681 0.0746 0.2691

2000 0.9333 1.0000 0.0774 0.2585 0.0829 0.2595

5000 0.9333 1.0000 0.0735 0.2430 0.0788 0.2440

Table 2: PI performance index of ZG288.

B
PICP NMPIW CWC

B-LSSVM B-ELM B-LSSVM B-ELM B-LSSVM B-ELM

50 0.9333 1.0000 0.0936 0.3110 0.1000 0.3120

100 0.9000 1.0000 0.1206 0.2952 0.2005 0.2962

200 0.9333 1.0000 0.1005 0.2632 0.1073 0.2642

500 0.9333 1.0000 0.1034 0.3213 0.1104 0.3223

1000 0.9333 1.0000 0.0938 0.3195 0.1002 0.3205

2000 0.9333 1.0000 0.0944 0.2916 0.1008 0.2926

5000 0.9000 1.0000 0.0980 0.2653 0.1633 0.2663
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Equation (10), was large, resulting in a wide PI. In contrast,
the B-LSSVM method can not only provide a satisfactory
PICP but also yield a narrower NMPIW. From Tables 1–4,
under all the bootstrap replications, the CWC of B-LSSVM
was always significantly lower than that of B-ELM at different
bootstrap replications. Since the CWC is a comprehensive
index balancing the PICP and NMPIW, it can be stated that
the B-LSSVM method outperforms the B-ELM model and
can generate more high-quality PIs in Tanjiahe landslide dis-
placement prediction.

Moreover, a significant improvement in the quality of PIs
was not observed with an increase in bootstrap replications.
The B-LSSVM with 200 bootstrap replications can always
obtain a satisfactory prediction performance, indicating that
the chosen number of bootstrap replications is reasonable.
At each monitoring point, the CWCs of both the B-LSSVM
and B-ELM methods exhibited no major vibration at dif-
ferent bootstrap replications. The lowest CWC obtained
was less than or equal to 1000 bootstrap replications. The

B-LSSVM method constructed optimal PIs of ZG287,
ZG288, ZG289, and ZG290 at 1000, 50, 100, and 1000 boot-
strap replications, respectively. The B-ELM method con-
structed optimal PIs of ZG287, ZG288, ZG289, and ZG290
at 50, 200, 1000, and 500 bootstrap replications, respectively.
Figure 6 depicts the optimal PIs with a 95% confidence level
using the two methods. As the figure shows, the four con-
structed PIs mostly covered the actual displacements, while
the PIB-LSSVM values were much narrower than the PIB-ELM
values. The figure clearly shows that the PIB-LSSVM values
were encompassed by the PIB-ELM values.

Table 5 shows a summary of the point prediction results
of the displacement of the four GPS monitoring points
obtained by the BP, ELM, single LSSVM, and B-LSSVM
methods. The RMSE and MAPE were calculated for a quan-
titative assessment and comparison of the different methods’
performance. As shown in Table 5, the B-LSSVM method
generates the highest point prediction accuracy. The RMSE
and MAPE of the B-LSSVM method are the smallest of the

Table 4: PI performance index of ZG290.

Replications
PICP NMPIW CWC

B-LSSVM B-ELM B-LSSVM B-ELM B-LSSVM B-ELM

50 0.9333 0.9333 0.1669 0.3152 0.1775 0.3343

100 0.9333 0.9667 0.1641 0.3275 0.1746 0.3285

200 0.9333 0.9667 0.1612 0.3387 0.1715 0.3397

500 0.9333 0.9667 0.1634 0.2990 0.1738 0.3000

1000 0.9333 1.0000 0.1561 0.3267 0.1661 0.3277

2000 0.9333 0.9667 0.1582 0.3076 0.1683 0.3086

5000 0.9333 0.9667 0.1593 0.3186 0.1695 0.3196

Table 3: PI performance index of ZG289.

B
PICP NMPIW CWC

B-LSSVM B-ELM B-LSSVM B-ELM B-LSSVM B-ELM

50 0.9333 1.0000 0.0890 0.2315 0.0951 0.2325

100 0.9333 1.0000 0.0853 0.2478 0.0912 0.2488

200 0.9333 1.0000 0.0857 0.2541 0.0917 0.2551

500 0.9333 1.0000 0.0867 0.2571 0.0928 0.2581

1000 0.9667 0.9667 0.0863 0.2792 0.0873 0.2802

2000 0.9333 1.0000 0.0862 0.2805 0.0922 0.2815

5000 0.9333 1.0000 0.0861 0.2735 0.0921 0.2745

Table 5: Summary of the point prediction results of the displacement of the four GPS monitoring points.

Method
MAPE RMSE

ZG287 ZG288 ZG289 ZG290 ZG287 ZG288 ZG289 ZG290

BP 1.621 1.363 1.431 1.664 31.979 23.730 27.835 22.977

ELM 0.966 1.264 1.334 1.252 18.497 23.531 30.776 16.884

LSSVM 0.430 0.567 0.583 0.869 8.537 10.997 11.283 10.528

B-LSSVM 0.425 0.555 0.547 0.868 8.162 10.910 10.697 10.508
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four GPS monitoring points, indicating that the proposed
method performs the best among the compared methods
and is capable of providing accurate point prediction for
landslide displacement. The RMSEs for ZG287, ZG288,
ZG289, and ZG290 obtained by the B-LSSVM method were
0.425, 0.555, 0.547, and 0.868, respectively, and the MAPEs
were 8.162, 10.910, 10.697, and 10.508, respectively. These
values are slightly lower than those obtained using the origi-
nal LSSVM model, which denotes that the ensemble LSSVM
prediction method can improve the performance of the sin-
gle LSSVM method. The prediction accuracy of the SVM-
based methods (i.e., LSSVM and B-LSSVM) was obviously
higher than that of the ANN-based methods (i.e., BP and
ELM). For instance, the MAPE and RMSE of B-LSSVM in
ZG289 are approximately three times smaller than those of
the BP and ELM. The good performance of the SVM-based
methods may be attributed to the excellent generalization
and prediction ability with a small sample dataset, which is
less likely to result in overfitting compared with ANN-

based methods. Figure 7 shows a comparison between the
point forecast results of the B-LSSVM method and the mea-
sured values, and the prediction curves of the B-LSSVM
method were in good agreement with reality in both the
training set and the testing set. Based on the above results
and analysis, it can be stated that the B-LSSVM method pro-
vides accurate point predictions and yields reliable and high-
quality PIs in landslide displacement prediction.

4. Conclusions

In this paper, a hybrid method for providing accurate point
and reliable PI estimations of landslide displacement was
proposed based on the combination of bootstrapping and
LSSVM. With this method, the uncertainties associated with
the traditional deterministic prediction can be quantified.
The Tanjiahe landslide was used to test the performance of
this method. The results indicate that the B-LSSVM is stable
and the number of bootstrap replications has less effect
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Figure 6: Optimal PIs of the displacement of four monitoring points with a 95% confidence level using the B-LSSVM and B-ELM methods
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on the quality of PIs constructed by the B-LSSVM. The
B-LSSVM method performs better than the BP, ELM, and
LSSVM methods in point displacement prediction, and it is
also superior to the B-ELM method in interval prediction of
landslide displacement. Therefore, the B-LSSVM method is
a promising tool for providing more valuable information
and further confidence for decision-makers in mitigation
decisions.

It should be noted that the conclusions are obtained
based on the site-specific Tanjiahe landslide. The applicabil-
ity of the B-LSSVM method to other landslides needs to be
verified in future studies. In addition, the prediction perfor-
mance of B-LSSVM can be affected by the selected input fac-
tors. Future research should fully investigate the effect of the
influencing factors on landslide displacement prediction.
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