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1. Introduction
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This study proposes a deep neural network- (DNN-) based prediction model for creating synthetic log. Unlike previous studies, it
focuses on building a reliable prediction model based on two criteria: fit-for-purpose of a target field (the Golden field in Alberta)
and compliance with domain knowledge. First, in the target field, the density log has advantages over the sonic log for porosity
analysis because of the carbonate depositional environment. Considering the correlation between the density and sonic logs, we
determine the sonic log as input and the density log as output for the DNN. Although only five wells have a pair of training data
in the field (i.e., sonic and density logs), we obtain, based on geological knowledge, 29 additional wells sharing the same
depositional setting in the Slave Point Formation. After securing the data, 5 wells among the 29 wells are excluded from dataset
during preprocessing procedures (elimination of abnormal data and min-max normalisation) to improve the prediction model.
Two cases are designed according to usage of the well information at the target field. Case 1 uses only 23 of the surrounding
wells to train the prediction model, and another surrounding well is used for model testing. In Case 1, the Levenberg-
Marquardt algorithm shows a fast and reliable performance and the numbers of neurons in the two hidden layers are of 45 and
14, respectively. In Case 2, the 24 surrounding wells and four wells from the target field are used to train the DNN with the
optimised parameters from Case 1. The synthetic density logs from Case 2 mitigate an underestimation problem in Case 1 and
follow the overall trend of the true density logs. The developed prediction model utilises the sonic log for generating the synthetic
density log, and a reliable porosity model will be created by combining the given and the synthetic density logs.

available well log data, data shortage problem always exists
because the well log data can only be acquired through an

Reservoir modelling is an essential work to understand and
assess a target reservoir, and a reservoir model is used to
implement a reservoir simulation for preparing a field devel-
opment plan. Well logging is the most important data in
reservoir modelling. Based on the petrophysical properties
determined from well logging, a spatial correlation (e.g., var-
iogram) is estimated and geostatistical algorithms are applied
to build a reliable, three-dimensional reservoir model. Even
though reservoir modelling is affected by the amount of

expensive drilling process. Sometimes, although well log data
are obtained by drilling, a specific log type that predicts the
desired reservoir properties may not have been measured.
For instance, when a porosity model is needed, sonic or den-
sity logs may not be obtained during well logging. Moreover,
the log data may be missing for the depth of interest. In these
cases, a solution is to acquire additional well log data by new
drilling or by rerunning the well logging to obtain the
required log type for an already drilled well. However, drilling
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a new well or stopping production to rerun logging causes a
huge additional cost, and some log types are not measurable
owing to casing [1-3].

Lately, there have been researches on how to handle these
problems by generating synthetic (or pseudo) well log data
using the concept of machine learning. Rolon et al. designed
three synthetic well log prediction models, i.e., resistivity,
density, and neutron logs, in the northeast of the United
States [4]. They mentioned that the geometry of the training
wells was not related with the performance of a neural net-
work. Besides, the quality control of training data consider-
ably affected the trained prediction model. Long et al. built
synthetic density log with a concept of pairwise well predic-
tion [3]. Even though eight wells were available in the field,
they chose only one ideal well to train a neural network.
However, the two aforementioned studies used a simple
neural network model with a single hidden layer [3, 4].

Salehi et al. trained a deep neural network (DNN) with
three hidden layers using two wells from a carbonate oil res-
ervoir on the southwest of Iran [2]. The target field consisted
of eight pays, but they chose one pay zone to generate the
prediction models because each pay had different lithology.
They generated three prediction models (i.e., true resistivity,
sonic, and shallow resistivity logs) with seven input logs,
including water saturation, density, neutron, and deep resis-
tivity. Therefore, several well logs will be necessarily required
to use the trained prediction models.

Korjani et al. built a resistivity prediction model for heavy
oil reservoirs in Joaquin Valley, California [5]. They com-
pared three strategies for the input layer: information of sur-
rounding wells (angle and distance), kriging coefficient, and
fuzzy kriging range. After more than 1,200 wells were trained
for each strategy, the pseudoresistivity log from the fuzzy case
showed the best performance. When the synthetic log was
used to build a three-dimensional facies model, it displayed
the geological trend (e.g., channel connectivity) properly.
Previous studies have predicted missing logs where wells
already existed, but in the case of [5], they created a neural
network model that predicts log data at arbitrary locations
without drilling. Instead of the information of a target loca-
tion, well log data of 10 surrounding wells and their location
data were used to train a prediction model. Further, they pre-
dicted three logs simultaneously. However, as a considerable
amount of well information was needed to train the model, it
will be difficult to apply to areas where the surrounding well
information is limited.

Akinnikawe et al. compared several machine learning
algorithms (e.g., artificial neural networks (ANN), decision
trees, gradient boosting, and random forest) for generation
of synthetic well logs [6]. In addition, they predicted unusual
logs such as the photoelectric (PE) and unconfined compres-
sive strength (UCS) logs because the PE log is often not mea-
sured during well logging and the USC log requires an
expensive core experiment. Although the neural networks
and random forest outperformed the other algorithms, they
had a disadvantage of requiring more than 10 input data.

Because previous studies applied simple feed forward
neural networks, the trained prediction models may not con-
sider the sequence of log curves in depth. Zhang et al. used a
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recurrent neural network to analyse well logs as sequence
data [1]. They discussed that the previous ANN-based pre-
diction models found the correlation among well logs at the
same depth ignoring the geological trend in reservoirs. A
long short-term memory algorithm was successfully intro-
duced to generate missing or whole well logs for both vertical
and horizontal wells in the Eagle Ford Shale. They also
emphasised the importance of geological criteria for training
data because a log curve has a unique hidden pattern for
each stratum.

The previous studies have focused on the application of
machining learning algorithms for well logging. In this
research, we set two criteria for a practical application of
machine learning: fit-for-purpose for a target field and
domain knowledge. First, the input and output layers of a
prediction model should be determined by the status of avail-
ability of well log data for a target field. If the goal is to con-
struct a reliable porosity model and a target field lacks sonic
log, a prediction model for sonic log should be trained with
the available log data. However, previous prediction models
tried to make a prediction model without considering which
logs are needed for the prediction and why [2, 3, 6]. There-
fore, a trained model required numerous well logs for the
input layer and hundreds of wells were used for training [5,
7]. If we already have hundreds of well logs of several log
types for a target area, a reliable reservoir model could be
built without synthetic log.

Second, it is essential to preprocess the log data based on
knowledge of petroleum geology and engineering, rather
than using all available data. In [8], because of the impor-
tance of geological criteria, they generated a prediction model
by dividing the vertical log data according to formation.
Therefore, the goal in this study is to apply a machine learning
algorithm correctly and effectively to well logging prediction
based on the given field conditions and domain knowledge.

The target field in this study is the Golden field, which
belongs to the Beaverhill Lake Group and was deposited in
the Western Canada Sedimentary Basin during the middle
to upper Devonian age. The main production zone is the
Slave Point (SLVP) Formation, which is a subdivision of
the group. The depositional environment of the formation
has been interpreted as a shallow marine environment and
its sedimentary facies showed complex reef carbonate
deposits [9-11]. Dolomitisation affected the carbonate rocks
at the Golden field extensively, and dissolution developed sec-
ondary pore-like intercrystalline and interconnected pore
spaces [10]. Due to the aforementioned diagenesis effects,
the porosity calculated by sonic log data could be underesti-
mated when compared to the total porosity obtained by den-
sity log data [12]. Because the estimated porosity data from
well logging are critical information for geostatistics, underes-
timated porosity data at a well location affect the overall trend
of a three-dimensional porosity model. Consequently, it will
cause an inaccurate reservoir simulation result and unreason-
able economic evaluation for the target field. In this study, the
density log means bulk density log data.

In the case of density log, it can consider the effect of
secondary porosity properly and can be utilised for identifi-
cation of evaporate minerals [4]. Regarding the target field
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conditions (e.g., depositional setting and dolomitisation),
density log data are key information to build a reliable poros-
ity model instead of sonic log. However, in the target field of
this study, only 17 wells have density log data, and thus, addi-
tional density log data are obviously required for reasonable
porosity modelling. Therefore, the density log is assigned to
the output layer in a neural network.

Long et al. [3] created a prediction model of synthetic
density log but it required more than 30 data for the input
layer. In the target field, this trained model cannot be applied
because the log data for the input layer are not available for
most of the wells. Although the problem of the target field
is that sonic log is not acceptable to estimate porosity, it still
has high correlation with density log. Therefore, we determine
the sonic log with three-dimensional coordinates (i.e., latitude,
longitude, and depth) as the input layer in a neural network.

In the target field, 12 wells have the sonic log without
density log. If synthetic density log can be generated from
the sonic log, the reliability of a porosity model can be
improved by using both the 12 synthetic density logs from
the sonic log and the existing 17 density logs. Note that the
basic structure of a neural network (i.e., the input and output
layers) was determined based on fit-for-purpose for the tar-
get field.

A pair of input and output data points is needed to train
supervised machine learning algorithms. For the target field,
only five wells have both sonic and density logs. Therefore, an
additional pair of data points is searched based on domain
knowledge. The previous studies selected a set of train wells
according to the distance between the prediction location
and the available well location. However, geological similar-
ity is more important than the physical distance. If a predic-
tion model is trained by well log data from the same
geological formation of the target reservoir, the performance
of the trained model will be improved.

In this research, we examine the effect of two criteria
(fit-for-purpose for a target field and domain knowledge)
for preparing training data on a synthetic well log prediction
model. In Section 2, we explain in detail a specific workflow
of the proposed method to generate synthetic density log
for the target reservoir. It consists of data acquisition, prepro-
cessing of selected data, structuring of a neural network, and
determination of hyperparameters. In Section 3, we analyse
the synthetic density log from a trained prediction model.
Two cases are considered depending on the usage of well
information at the target field. One case generates a predic-
tion model using information only from wells around the tar-
get field. In another case, not only the surrounding wells but
also the wells belonging to the target field are included. Then,
the key outcomes are summarised in Conclusions (Section 4).

2. Methodology

This study follows the procedure described in Figure 1. First,
additional sonic and density log data are collected because
only five wells in the target field have both logs. Well log data
are obtained in the SLVP Formation near the Golden field
from the AccuMap database (Figure 1(a)). Note that instead
of simply selecting the nearest wells from the target field, we

selected additional wells that have the same depositional
environment. The data consist of the sonic and density logs
with the location information of the well (i.e., depth, latitude,
and longitude). Preprocess procedures are applied to the
obtained data, which include elimination of abnormal values
and data normalisation (Figure 1(b)). After a sensitivity anal-
ysis for a default neural network structure (Figure 1(c)), a
proper training function (Figure 1(d)) and the number of
nodes in the hidden layers (Figure 1(e)) are fixed. Finally,
the best and worst trained neural networks (Figure 1(f)) are
verified by test wells (Figure 1(g)).

2.1. Data Acquisition and Preprocessing. An objective of this
study is to suggest how to predict synthetic density log from
the sonic log. Firstly, well log data, which have sonic and den-
sity data at the same time, are necessary. It is well known in
deep learning that obtaining qualified training data is the
most important factor to build a reliable prediction model
because enough data are necessary to train a DNN properly
[13, 14]. Intuitively, the closer the wells are located in the tar-
getarea, the higher the quality. However, we consider not only
the spatial relationship but also the geological similarity. In
other words, we acquire well data in the same depositional
environment rather than just based on a physical distance.

A target of this study is the SLVP Formation at the
Golden field and Figure 2 shows the oil and gas wells
(the black and red circles) near the target field. The empty cir-
cles mean wells with no gas or oil and the black-coloured ones
are wells showing oil or gas. The SLVP Formation was depos-
ited during the transgressive sequence, and its sequence is
divided into two major sea level rise cycles according to the
relative degree of rise. For this reason, the carbonate deposi-
tional environment between two cycles is different [9, 15]. In
Figure 2(a), the solid blue line indicates the Bank margin, cycle
2, and the solid red line is the depositional limit of the trans-
gressive sequence. Those two lines are supposed to be bound-
aries defining a depositional setting similar to that of the target
field. Therefore, the blue highlighted area in Figure 2(a) indi-
cates a territory between the two geological frontiers and it has
a consistent geological environment. Even though there are
lots of wells (the black color) nearby the target field (the purple
circle) in Figure 2(a), only the wells located in the blue area are
interested in terms of depositional setting.

However, most wells in the blue area do not have infor-
mation in the SLVP Formation. The red wells were drilled
into the SLVP Formation and they are located in the blue
area at the same time. In the previous researches for synthetic
logging, training well data have been selected by physical dis-
tance without considering domain knowledge but the data
are chosen based on geological meaning in this study.
Figure 2(a) is redrawn into Figure 2(b), which clearly shows
the red coloured wells in the research area without the
boundaries and highlighted area. Some wells have neither
sonic nor density logs, although both data types are required
to train a DNN model. Among the red wells, only 34 wells
have both sonic and density data, and they are carried to
the preprocessing stage.

Figure 3(a) presents the location of the 34 wells. First, we
check the quality of the wells based on domain knowledge.
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FiGuRre 1: Overall procedure for the generation of pseudodensity log data using DNN.

Five wells belong to the black dotted ellipse in Figure 3(a),
which indicates the Golden field. We excluded abnormal
sonic and density data according to density correction log
and caliper log, which provide conditions of borehole such
as mud cake or washing-out. Typically, we expect the cor-
relation between the sonic and density data to have a pos-
itive value because the higher the speed of the sonic data
is, the higher the density of the rock. In this study, the
correlation between the sonic and density logs is supposed
to have a negative value because the sonic data have a unit
of time over distance. Therefore, if a correlation coefficient
presents a positive value, the data should be not used for
training a prediction model.

In Figure 3(b), the data of the five blue coloured wells,
numbers 4, 9, 19, 22, and 25, are removed from the well
list because they showed strong positive correlation coeffi-
cients or curiously constant values. The wells 4, 9, and 25
among the excluded five wells in Figure 3(b) have more
than +0.3 as correlation coefficient between the sonic and
density logs. In addition, the wells 19 and 22 are deleted
from the training data because of their flat values, without
any trend.

In Case 1, from a total of 34 wells in Figure 3(a), five
wells (the blue circles) are removed because of its poor

data quality and other five wells (in the black dotted area)
in the Golden field are hypothetically considered as not
existent (Figure 3(b)). Thus, the remaining 24 wells are
used for further processing, and one well among the 24
wells is set as the test well (the red circle).

Case 2 is set for comparison with Case 1 so that the
effect of well data at the target field could be examined.
Case 2 utilises both the 24 wells of Case 1 and the five wells
in the target field (Figure 3(c)). The test well in Case 1
belongs to a training set, and the five abnormal data are still
not used. Case 2 assumes one well among the five wells at
the target field as the test well. In Case 1, trainings are con-
ducted to select the preferred training conditions (e.g., opti-
misation algorithm and the number of neurons in the
hidden layers) and the hyperparameters from Case 1 are
applied to Case 2.

A reliable neural network can be built by properly pre-
pared training data. We already applied the two steps of
preprocessing. After the selection of well data from a simi-
lar geologic depositional system to that of the Golden field,
the five well data were entirely eliminated because their
overall trends are not acceptable. In the case of the remain-
ing 24 wells, partly wrong logs are removed and the
remaining logs are utilised for training.
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F1GURE 2: Filtered wells, in red colour, located in the SLVP Formation, Alberta, Canada, (a) with the geological frontier (solid red and blue
lines) and the same depositional area (blue coloured highlight) and (b) without them. The purple circle indicates the Golden field.

Figure 4 presents examples of proper or improper log
data. The x-axis means data depth and the y-axes at the left
and the right denote the sonic and density data, respectively.
Figures 4(a)-4(d) correspond to the wells 1, 6, 2, and 4 of
Figure 3(a). Figures 4(a) and 4(b) are examples of the quali-
fied data showing negative correlation between the sonic
and density data without abnormal values. In Figure 4(c),
the well 2 has partly not proper sonic and density logs. Both
sonic and density data are acceptable from 1607 to 1620 m.
However, after 1620 m, the sonic data have unreasonable
constant values. Moreover, after approximately 1635m, all
the density data indicate —999, which means malfunction of
the logging equipment or some problems. Those useless parts
are eliminated for training. The correlation coefficient of the
well 2 improves after the elimination (-0.0573 to —0.2885 in
Figure 4(c)). In the case of Figure 4(d), because the overall
trend of the correlation shows a high positive value, 0.4861,
the entire data of the well 4 are removed instead of partial
treatment.

Figure 5 shows the effect of elimination of improper
data for the 29 wells. Figure 5(a) presents the correlation
coeflicients of sonic and density data from each of the
29 wells before any data preprocessing. The correlation coeffi-
cients are separately calculated for each well. Figure 5(b)shows
the changed distribution of correlation coeflicients after
the entire or partial elimination of abnormal values for
each well. The mean of the correlation coeflicient is
improved in terms of the negative correlation between
sonic and density data from -0.2647 to —0.3913. For
example, well 27 has a positive correlation coefficient
(Figure 5(a), the red coloured frequencies). However, that

is because of a strange flat constant, not because of a
wrong relationship between the sonic and density log data.
After the elimination, all the data presenting positive cor-
relation coefficients are removed (Figure 5(b)). The pre-
processing for the data is critical for the overall training
performance, and the difference in prediction performance
depending on the data preprocess is presented in Results
and Discussion.

For a single well, the log data are evenly spaced and each
well has nearly two hundred data points. However, the num-
ber of data points is different depending on the wells because
the interval of log data may differ for each well (e.g., 2.5, 10,
12.5, 15.2cm). For Case 1, the training and validation data
points are 8,684 from the 23 wells and the test data points
are 219 for the test well (Figure 3(b)). Note that each data
point consists of latitude, longitude, depth, sonic, and den-
sity data. Thus, the preprocessed training and validation
dataset is a 5 by 8,684 matrix and the test dataset is a 5
by 219 matrix. For Case 2, the training and validation data
points are more than 9,000 because Case 2 has more data
from the additional wells. Compared to Case 1, Case 2
includes the test well of Case 1 and the four wells at the
Golden field. In Case 2, the number of data points depends
on which well, among the five wells at the Golden field, is
classified into the test data.

One of the factors affecting the training performance of a
neural network is normalisation of the given data. All the
data, such as latitude, longitude, depth, sonic, and density,
have different units and scales. The depth unit is m and the
sonic and density log units are ys/m and kg/m”, respectively.
Table 1 presents statistical information of the training and
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FIGURE 3: Location of wells in the same depositional environment. (a) Total wells, (b) 29 wells without 5 wells at the Golden field for Case 1,

and (c) 29 wells including 5 wells at the Golden field for Case 2.

validation data. Those values in different units need to be nor-
malised in a consistent way for proper training of a DNN
model [16]. Min-max normalisation is usually applied for
deep learning data because it can transform the given data into
a range between 0 and 1 without exception [17, 18]. Each cat-
egory of data is normalised by the following equation:

Data — Data,;,

Data =
1o Data — Data,

(1)

where Data, ., is the normalised data between 0 and 1, Data
are the raw data of each parameter (i.e., latitude, longitude,
depth, sonic, and density data), and Data_,, and Data_, are

the maximum and minimum values of the raw data, respec-
tively. These preprocessed data are utilised for training of a
DNN-based prediction model.

2.2. Structure of Neural Network. The structure of a neural
network is definitely important for generation of pseudoden-
sity data based on sonic data. Because there might be nonlin-
ear relationship between the sonic and density log data, it is
difficult to generate pseudodensity data from a single input
feature (sonic data). In log data, there is information of 3D
location: latitude, longitude, and depth, and this spatial infor-
mation would help find the intrinsic relationship between the
sonic and density data. Thus, the latitude, longitude, depth,
and sonic data are applied to the input layer of a neural
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TaBLE 1: Statistics of training and validation data.

Latitude (degree) Longitude (degree) Depth (m) Sonic (ps/m) Density (kg/m3)
Min 56.127 -116.65 1,595 134 2,079
Max 56.737 -116.05 1,893 298 2,885
Average 56.302 -116.17 1,720 186 2,695
Standard deviation 0.1397 0.1493 75 29 88
and they are compared with the synthetic density data from
First Second
the DNN model.
Input layer hidden layer hidden layer Output layer
&, IL-FH X FH-SH n

i

FIGURE 6: Structure of the DNN for generation of pseudodensity
data from sonic data.

network and the density data are placed on the output layer.
Figure 6 shows the neural network used in Case 1. The
subscript 4, IL, FH, SH, and OL refer to the ith training data,
input layer, first hidden layer, second hidden layer, and out-
put layer, respectively.

The number of hidden layers is set as two because two
hidden layers are likely to be advantageous than one hidden
layer for solving the complicated and nonlinear relation
between the sonic and density data. However, three hidden
layers are excessive as they increase the computational cost,
and thus, result in inefficient performance. Each hidden layer
has 10 nodes for the basic case.

2.3. Selection of the Training Algorithm and Hidden Layer
Nodes. The process of training a neural network is, in prac-
tice, the updating of weights and biases between layers to
obtain an optimised network. Usually, the default object
function is the mean square error (MSE) between the outputs
by the DNN and the target outputs (Equations (1) and (3)).
In this study, the target outputs are the original density data

1
MSE = 7 Z (D; = ais1-01)" (2)

i=1

NS
Aisu-oL =f (Z a;rr-su X WisH-oL + biaSSHOL> > (3)
=
where f is an activation function, MSE is the error between
the target density data D; and the predicted density data
a;si_oL» and n and N are the number of training data
and the number of neurons in the second hidden layer.

To minimise the objective function MSE, weights and
biases are updated by the training algorithm. This study is
implemented with the deep learning package in MATLAB
and it provides some training functions. We tested eight
training functions, listed in Table 2, to find the appropriate
one. The algorithms are divided into three categories: gradi-
ent descent, conjugate gradient, and quasi Newton. Gradient
descent is a method to minimise an objective function by tak-
ing steps proportional to the negative of the gradient of the
objective function [19]. The conjugate gradient method is
the numerical solution algorithm of linear equation systems
whose matrix is symmetric and positive-definite [20, 21].
Quasi Newton is an alternative method to the full Newton’s
method when its application is too cost-expensive and
complicated [22].

In terms of the hidden layer’s node, there could be infi-
nite combinations theoretically. As mentioned in Section
2.2, the number of hidden layers is set as two with 10 nodes
for each layer during determination of the best training
algorithm. Then, the number of nodes in the hidden layers
is analysed to find a proper combination of nodes.

2.4. Cases 1 and 2. Table 3 compares Cases 1 and 2 with
regard to training and test data. In Case 1, the DNN is opti-
mised using the 23 wells for training and it is verified by
one well data for the test (Figure 3(b)). The test well (the well
29) is selected from the central part because it is spatially not
biased. Compared to Case 1, Case 2 has data from the five
additional wells, which belong to the Golden field (black
dotted ellipse in Figure 3(c)). In Case 2, one of the five wells
in the Golden field is set as the test well, and the remaining
four are used as the training and validation data. According
to the combinations of training and test data, five subordi-
nate cases exist: Case 2-1, 2-2, 2-3, 2-4, and 2-5, listed in
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TaBLE 2: Eight training algorithm functions for optimizing a neural network.

Category Code symbol in MATLAB Training algorithm
traingd Gradient descent

Gradient descent traingdm Gradient descent with momentum backpropagation
trainrp Resilient backpropagation
trainscg Scaled conjugate gradient

Conjugate gradient traincgp Polak-Ribiére conjugate gradient
traincgf Fletcher-Powell conjugate gradient

. trainbfg Broyden-Fletcher-Goldfarb-Shanno

Quasi Newton .

trainlm Levenberg-Marquardt

TasBLE 3: Comparison of Cases 1 and 2 in terms of training, validation, and test data.

Category Case 1 Case 2
28 wells: 24 wells (the 23 training wells and 1 test well in Case 1)
nearby the field + 4 wells among the 5 additional wells at the field
(Case 2-1: 274, 374 4'h and 51)
Training and validation data 23 wells (Case 2-2: 1%, 3", 4™ and 5th)

(Case 2-3: 1%, 274 4 and 5%)
(Case 2-4: 1%, 2", 3™ and 5%)
(Case 2-5: 1%, 279, 379 and 4™)

Test data 1 well (no. 29)

The remaining 1 well among the 5 additional wells at the field
(Case 2-1: 1%)
(Case 2-2: 2™%)
(Case 2-3: 3'%)
(Case 2-4: 4™)
(Case 2-5: 51

Table 3. Note that the five additional wells (1** to 5™) at the
Golden field are presented in Figure 3(c).

3. Results and Discussion

3.1. Case 1. As mentioned in Section 2.1, the preprocessed
data are applied to the default neural network: two hidden
layers with the basic 10-10 node combination. The structure
of the default neural network is schematically presented in
Figure 7. More detailed training options are summarised in
Table 4. In Section 3.1.1., the default training condition of
the neural network is decided first. Then, a sensitivity analy-
sis of the training algorithms is conducted using the default
settings because it is important to efficiently find a training
condition to show a trustworthy training performance
considering a training cost. Moreover, based on the default
condition of the neural network, the performances of the
trained neural networks before and after the preprocess of
data are analysed to verify the effectiveness and necessity of
the preprocess. In Section 3.1.2., another sensitivity analysis
is performed to determine the number of nodes in the hidden
layers. A hierarchical analysis is used to find the best combi-
nation of the number of neurons in the hidden layers.

3.1.1. Sensitivity Analysis for Training Algorithm. There are
two aspects that we considered to decide whether a training
is properly designed and well performed: errors with the val-
idation data and test data. In Case 1, the training and valida-
tion data are randomly selected among 8,684 data points with
the assigned ratios of 0.85 and 0.15 (Table 4), although the
well 29 is fixed as the test well data (219 data points). The val-
idation and test data ratio over the training data is about 18%.
Figure 8 presents two examples of the dataset representing
randomness about the selection of training and validation
data. The x- and y-axes are the normalised scale of the sonic
and density logs, respectively. Figures 8(a) and 8(b) show
two randomly selected training and validation data, and
Figures 8(c) and 8(d) depict the zoomed-in area of the
black dotted rectangle in Figures 8(a) and 8(b), respectively.
The red circles mean the validation data that are differently
chosen in each case.

Even if the structure and hyperparameter of a specific
neural network are the same, it might give somewhat differ-
ent trained results owing to the random selection of the
training and validation datasets. We build several prediction
models to mitigate the effect of the random selection. Based
on the central limit theorem, a total of 30 prediction models
are created and their average is regarded as the performance
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FIGURE 7: Default condition of the DNN for the generation of
pseudodensity data using spatial information and sonic data.
Network lines are presented alternatively by the highlighted area.

TaBLE 4: Training options for the DNN.

Parameter Condition

Training algorithm One of the algorithms from Table 1
Log-sigmoid (for both the first
and second hidden layers)

1,000

Activation function

Maximum number of epochs

Maximum number of

1. . 1
validation failures 0

Ratio of training and

0, 0, 1
validation data 85%, 15% (random selection)

of the trained DNN in this study. In other words, we pre-
dict the 30 synthetic density logs for the same input sonic
log according to each prediction model.

In terms of the validation and test data, two errors are
compared in the eight training algorithm functions.
Figure 9 shows the MSEs of the validation data in each train-
ing algorithm in a bar chart. The bar of each algorithm means
the average error of 30 pseudodensity logs from randomly
selected training and validation datasets under the same
training conditions. In Figures 9(a) and 9(b), both validation
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and test errors are consistently calculated with the prepro-
cessed values by Equation (1). These results are normalised
in the range between 0 and 1 to fairly reflect both the valida-
tion and test errors (Figures 9(c) and 9(d)).

Some training algorithms such as trainbfg, trainrp, and
trainscg (Table 2) show decent performances in the valida-
tion error compared to trainlm (Table 2). However, there is
a difficulty in having a consistent result for trainlm for both
the validation and test errors. Figure 9(e) is the sum of
Figures 9(c) and 9(d) to provide a general comparison of
the errors of the eight algorithms. The best training algo-
rithm is trainrp, because it showed not only a fast but also
a stable performance in both cases of errors. Therefore,
trainrp is selected as the default algorithm and it is used
for a sensitivity analysis of the number of neurons in the
hidden layers in Section 3.1.2.

Among the eight algorithms, the reconstruction perfor-
mances for the test data of four representative algorithms
are compared in Figure 10. They are chosen from each cate-
gory of training algorithms: traingdm and trainrp of gradient
descent, trainscg of conjugate gradient, and trainlm of quasi
Newton (Table 2). In Figure 10, the blue lines indicate the
mean of 30 synthetic density logs from 30 trained neural net-
works, and the red lines are the true density log of the test
well data. Thus, the closer the match between the blue and
red lines is, the better the prediction performance of the
training algorithm. The two pictures in the first row are good
matching examples (Figures 10(a) and 10(b)). In contrast, the
two results in the second row are poor matching examples
(Figures 10(c) and 10(d)). In Figure 10(a), trainscg gives an
average line following the test well trend. In spite of some
discrepancy between the test and the reconstruction, the
overall trends matched with each other. In Figure 10(b),
trainrp gives a good matching performance with the test line,
as good as that in Figure 10(a), although the middle part
between 50 to 150 has an almost flattened trend. In
Figure 10(c), compared to the remaining three training algo-
rithms, the average by trainlm does not follow the trend of the
reference well data. It results in the high error in Figure 9(d).
In Figure 10(d), traingdm has a flattened prediction and it
does not represent the pattern of the real density data.

In Section 2.1, the importance of a proper preprocess
for the density and sonic log data is highlighted. The results
of Figure 10 are from preprocessed training data and
Figure 11 shows the prediction results without a proper
preprocess. In Figures 11(a) and 11(b), the trend of the blue
lines is similar to those in Figures 10(a) and 10(b). How-
ever, the gap between the blue and red lines becomes larger
because the deviations of the blue lines decreased in both
trainscg and trainrp (Figures 11(a) and 11(b)). trainlm still
presents a large discrepancy between the test data and the
reconstructed density log (Figure 11(c)). Figure 11(d) high-
lights how improper training data affect the training perfor-
mance. It seems that poor training data cause flattening in
the estimations of the test data because faulty data make
it difficult to find the essential intrinsic relationship between
the input and output data.

Although the results of the four algorithms seem to have
a similar pattern in Figures 10 and 11, Table 5 quantitatively
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FIGURE 8: Randomness of data selection for training and validation in (a, b) two examples and (c, d) their zoomed-in pictures.

presents the difference in performance according to data pre-
process. The discrepancy between the true and predicted
density data is calculated with the mean of the RMSE in the
following equation:

Mean RMSE = %Z %Z (Test; - Reconi’j)z, (4)
1 =1

where Test means the density log of the test well and Recon
denotes the reconstruction values corresponding to Test.
The subscripts i and j indicate the ith data point and jth
trained model, respectively. m is the number of data point
of the test well, and # is the number of the trained neural net-
work. In this study, m and » are 219 and 30, respectively.

The data preprocess results in decreased errors for the all
four training algorithms. trainlm shows an unreliable train-
ing performance regardless of the data preprocess and the
results of traingdm are sensitive to the preprocess of data.
The overall reduced errors in Figure 10 verify the necessity
of proper preprocessing for qualified training data. These
results are in agreement with the results of previous studies,
which mentioned the importance of data processing [4, 6].

3.1.2. Sensitivity Analysis for the Number of Neurons in
Hidden Layers. Another sensitivity analysis is implemented
for the combination of number of neurons in the first and
second hidden layers. Because there are infinite combina-
tions, we use a hierarchical approach to determine the num-
ber of neurons efficiently. First, we assume that the two
hidden layers have the same number of neurons. After the
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FiGUure 9: Comparison of errors with the validation and test well data. (a) Errors between validation data and reconstructed data, (b) errors
between test well data and its reconstruction, (c) normalised errors of (a), (d) normalised errors of (b), and (e) sum of the two normalised errors.
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Figure 10: Comparison of the test well data and reconstructed data using four training algorithm functions. (a) trainscg, (b) trainrp, (c)

trainlm, and (d) traingdm.

eight combination cases, 10-10, 20-20, 30-30, 40-40, 50-50,
60-60, 70-70, and 80-80, are compared by both validation
and test errors, a preferred range of the number of neurons
is determined approximately. Second, to find the best case,
we set 200 combinations by varying the two parameters
within the preferred range independently. Note that the train
algorithm is fixed as trainrp.

Figure 12 shows the error results of the eight combi-
nations. Here, one error value for each combination
means an average error of 30 synthetic density data.
Figures 12(a) and 12(b) are the validation and test errors,
respectively. In Figure 12(a), the validation error consis-
tently decreases as the number of nodes of the hidden
layers increases. A large number of nodes have advantage
in the validation data error. However, the test error

moves up and down as the number of nodes in the hid-
den layers changes (Figure 12(b)). The lowest test error is
shown in the combination of 30-30 hidden layer nodes. It
seems that the behaviours of the validation and test
errors are different because the test dataset does not have
exactly the same distribution of the training or validation
data. This problem can be solved if sufficient data are
available.

In spite of that discrepancy of trend in the validation
and test errors, we should make a compromise between
the two errors to decide an appropriate combination of
hidden layer nodes. Thus, we calculate the total error of
the two normalised errors (Figure 12(e)) after the valida-
tion and test errors are normalised, as shown in
Figures 12(c) and 12(d). Consequently, there would be a
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FiGure 11: Comparison of the test well data and reconstructed data by four training algorithm functions without the proper preprocess of the

training data. (a) trainscg, (b) trainrp, (c) trainlm, and (d) traingdm.

TaBLE 5: Comparison of test well data error (RMSE) by data
preprocess.

traing it [ N s ]
trainscg 49 54 10
trainrp 58 62 7
trainlm 288 316 10
traingdm 60 76 27

proper combination of hidden layer nodes around the
30-30 case. From the eight combinations at the first
level of the hierarchical approach, we can make a rea-
sonable combination of neurons for further analysis.

We randomly generate 200 combinations by changing
the number of neurons for the two hidden layers from 5 to
45 because the 30-30 combination is preferred in Figure 12.
Figure 13 shows the 200 combinations of the first and second
hidden layer nodes. The x and y-axes mean the number of
nodes in the first and second hidden layers, respectively. Each
circle represents one combination. The red and blue circles
are the best and worst 20 combinations, respectively. The
performance of the 200 combinations is estimated in the
same way as that in Figures 9(e) and 12(e), which is the
sum of the normalised validation and test errors. The blue
and red circles are obviously separated into the left and right
sides. It is revealed that, first, a large number of nodes are
needed in the first hidden layer to achieve a high perfor-
mance. Second, compared to the first hidden layer, the
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FI1GURE 12: Error estimation of validation and test data depending on combination of hidden layer nodes (first-second hidden layer: 10-10,
20-20, 30-30, 40-40, 50-50, 60-60, 70-70, and 80-80). (a) Validation error, (b) test error, (c) normalised validation error, (d) normalised test

error, and (e) sum of two normalised errors.

overall performance by the second hidden layer is not sensi-
tive to the number of nodes.

The best combination among the 200 combinations is the
45-14 case, which is marked with a red dotted circle in
Figure 13 and the worst combination, the 5-33 case, is marked
with a blue dotted circle. After the best and worst combina-

tions are trained with the 23 wells in Case 1, the two prediction
models are applied to the test well in Case 1 (Figure 14) and
the additional five test wells in the Golden field (Figure 15).
As aforementioned, although the five additional wells are
supposed to be used in Case 2 (Figure 3(c)), they are used
for a comparison of the best and worst combinations. In
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F1GURE 14: Comparison of reconstructions for the test well data in Case 1 by (a) the best and (b) the worst combination of nodes in the hidden

layers.

Figures 14(a) and 14(b), pseudodensity data are generated by
the DNNs, which have the best and worst combinations of
hidden layer nodes. Compared to the 5-33 combination, the
average of the reconstructions by the 45-14 combination
gives a better matching with the trend of the test data.

The difference in performance of the best and worst com-
binations appears more clearly in the additional five test well
data (Figure 15). In both the best and worst combinations,

there must be a large uncertainty due to the limited well log
data for the additional five test wells (Figure 3(c)). Even
though the best combination is trained with limited informa-
tion, its averages (the blue lines in Figures 15(a) to 15(e)) tend
to follow the overall trend of the test wells. In contrast, the
worst one presents large discrepancies between the blue and
red lines (Figures 15(f) to 15(j)). Although the blue lines seem
to mimic the pattern of the test data, they underestimate the
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F1Gure 15: Comparison of reconstructions for a test well among the five

worst combination of nodes in the the hidden layers.

TaBLE 6: Comparison of test data error (RMSE) in Cases 1 and 2.

Test well Case 1 (the best)  Case 1 (the worst)  Case 2
The 1% well 119 129 68
The 2™ well 121 260 57
The 3" well 129 237 48
The 4™ well 107 172 61
The 5% well 139 292 88
Average 123 218 64

density data of the test wells and the degree of underes-
timation is worse than that of the best combination.
Table 6 compares the performance of the best and worst
cases with the RMSE. Each RMSE indicates the mean of
the reconstruction results from 30 trained networks
(Equation (4)). The worst case has generally two times
larger RMSE compared to that of the best case. The
larger discrepancy with the test data mostly results from
the underestimation. Except for the test well 1, the worst
case for the rest of the four wells shows worse underesti-
mation than the best (Figure 15).

3.2. Case 2. In both the best and worst combinations of
neurons in the hidden layers, the underestimation problem
of the pseudodensity data compared to the actual test data
occurs (Figure 15). In [4], the authors mentioned that the
prediction of performance of the wells located in the mid-
dle is better because a neural network may interpolate the
information of adjacent wells. Also, Zhang et al. stressed
that the prediction performance can be significantly
improved by the information in the target field [1]. There-
fore, to solve the problem, Case 2 uses the 5 additional
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G
additional wells at the Golden field by (a)-(e) the best and (f)-(j) the

wells in the Golden field to train and test the best combi-
nation case, as presented in Table 3 and Figure 3(c).
Figure 16 reveals that Case 2 has five subordinate cases:
2-1, 2-2, 2-3, 2-4, and 2-5. For example, Case 2-2 has
one test well (number 2 among the five wells) and the
remaining four well data (numbers 1, 3, 4, 5) as training
data (the upper graph in Figure 16(b)). It is expected that
Case 2 would bring better test performance compared to
Case 1 because of the additional amount of training data
from the target field. Note that the test well in Case 1 also
belongs to training data in Case 2.

In Figures 16(a)-16(e), the graphs in the first row are
the synthetic density logs for each test well. They should
be compared with Figures 15(a)-15(e) to analyse the effect
of additional training data. The pictures in the second row
are the location of the wells. In case of Figure 15, only the
23 training wells are used, and they are separated to some
extent from the interested target field. The 23 wells are
usually located in the longitude —116.1° and the latitude
56.3%, although the Golden field including the five wells
is positioned in the longitude —116.2° and the latitude
56.5°. Therefore, it is a difficult to properly predict the
density logs for the five test wells in Figure 15 without
the geologically and spatially related data.

The prediction of the test data in Figure 16 shows an
improved performance compared to the prediction in
Figure 15. No matter which well is set as the test data among
the additional five wells, they show better results compared to
those in Figures 15(a)-15(e). Especially, in Figures 16(b) and
16(c), the underestimation problem in Case 1 is mitigated
compared to that in Figures 15(b) and 15(c). Figure 16(d)
shows better matching with the fluctuating trend of the true
log. Especially, it properly follows most peaks of the test data.
For a quantitative comparison of Cases 1 and 2, the RMSEs of
the test data for each well are calculated (the last column in
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Ficure 16: The five subordinate cases 2-1, 2-2, 2-3, 2-4, and 2-5 with different test wells in Case 2.

Table 6). Generally, the test error of Case 2 decreases by
about a half of the error from the best of Case 1. These results
can be derived owing to two aspects. First, the number of
training data increases in Case 2 over Case 1. Second, geolog-
ically and spatially suitable wells are helpful to figure out the
nonlinear relationship between the sonic and density logs for
the target field.

However, a limitation still exists. Although the synthetic
log in Figure 16(e) mimics the overall trend of the true den-
sity curve, it fails to predict the abnormal value around
2,400 kg/m’ near the 50th data point. Despite this problem,

the results in Figure 16 can be seen as a reasonable prediction
because it is more difficult to generate density log than other
logs, such as acoustic and resistivity logs [1, 4].

Table 7 summarises the results of error calculation
according to the following equation.

Error, = i% |Recony ; — Testy|

% 100 (%),
Testk,l ( 0)

fork=1,---,5

(5)

my =1
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TaBLE 7: Comparison of the relative test data error in Cases 1 and 2.

Test well Case 1 (the best) Case 1 (the worst) Case 2
The 1% well 3.03 3.11 2.23
The 2™ well 2.06 461 1.50
The 3™ well 2.71 5.56 1.26
The 4™ well 1.93 2.49 1.60
The 5™ well 2.98 475 2.34
Average 2.54 4.10 1.79

where Error; is the error of the kth test well and m; is the
number of data points of the kth test well. Recony; is the
reconstruction for the I/th data point of the kth test well,
and Testy is the true density log corresponding to Recony.
The difference between the error calculations in Equations
(4) and (5) is the use of normalisation with the true value
in Equation (5). In general, if an error is 10%, it means that
the reconstruction is deviated from the test as much as
10%. In the best and worst of Case 1, the errors are approxi-
mately 2% to 5% (Table 7). Especially, the test wells 3 and 5
show large errors. On the contrary, Case 2 gives acceptable
errors for both wells. Especially, the error of the test well 3
in Case 2 is outstanding compared to the best one of Case 1.
Generally, the overall relative errors by Equation (5) are
within 2.5% for Case 2 and they can be taken as reasonable
predictions.

4. Conclusions

This study proposed how to determine the structure of a
neural network (input and output layers) in terms of fit-
for-purpose of a target field and how to prepare the training
data based on geological knowledge. After an intensive
review of the target field, we decided the sonic and density
logs as input and output parameters in the neural network,
respectively. Because only the 5 wells were available in the
target field for training, the additional 29 pairs of the sonic
and density logs were obtained by the criterion of deposi-
tional environment of the 5 wells.

Three conclusions were obtained from this study. First,
the proper procedure of data acquisition was necessary for
the successful generation of pseudodensity data. Although
the trained network of Case 1 showed the underestimation
problem for the five wells in the Golden field, its hyperpara-
meters were suitable to train the data in Case 2. That meant
the data of Case 1 work for determining proper training con-
ditions for the geological environment in the target field. Sec-
ond, all the obtained data should be carefully preprocessed
based on proper domain knowledge considering the circum-
stances in the target field. We filtered unqualified data based
on the correlation between the sonic and density log data.
Further, unrealistic log data (e.g., constant or positive values)
were eliminated. Because the logs and location data had dif-
ferent scales and units, min-max normalisation was applied
for each parameter. Third, additional data that were geologi-
cally related to the target field were critical for the perfor-
mance of a trained network. In Case 2, the four well data in
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the Golden field were helpful to solve the underestimation
problem of the synthetic density log from Case 1. The average
of relative errors between the synthetic and true density logs
were 2.54% and 1.79% in Cases 1 and 2, respectively.

In a future study, we will prove the benefit of the
proposed approach for building a porosity model and predic-
tions of oil production rates. Using the trained DNN, the 12
sonic log data can be transformed to synthetic density logs
and both the given 17 density logs and the synthetic 12
density logs can be used in a combined way for building a
porosity model. Then, it can be used to implement reservoir
simulation for predicting well performances. These results
will be compared with a porosity model from only the 12
density logs and its well predictions.
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