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Most classical predictive models of relative permeability conceptualize the pores in porous media as assemblies of uniform capillary
tubes with different sizes. However, this simplification may overestimate the transport capacity of porous media due to overlooking
the effects of the pore nonuniformity. This study presents a simple way to quantify the effect of the nonuniformity of pore cross
section on the transport characteristic of unsaturated porous media. The way is based on the index relationship between the
porosity of a newly defined reference cross section and that of porous media, which satisfies the intrinsic constraints for the
nonuniform porosity of cross sections in porous media. Moreover, the index factor can be captured by a newly defined
parameter, called the nonuniformity factor, which is used to establish an extended Darcy’s law. Based on these, a fractal-based
continuous analytical model and a fractal-based Monte Carlo model of relative permeability as well as a permeability-porosity
model are established. Experimental data of five wetting-nonwetting phase systems, including the water-air, water-steam, water-
nitrogen, water-oil, and oil-gas systems, are selected to assess the performance of the proposed model. The results confirm the
proposed model’s capacity in capturing the transport properties of various porous media. It is found that the nonuniformity of
pores can significantly increase the resistance of fluid flow and thus reduce the transport capacity of porous media.

1. Introduction

The relative permeability of both wetting and nonwetting
phases is a significant parameter to many engineering fields,
e.g., chemical engineering, environmental engineering, and
oil and gas reservoir [1, 2]. It is also essential for the numer-
ical simulation of heat and mass transfer in unsaturated
porous media [3–6].

In the past few decades, numerous studies about the rel-
ative permeability for two-phase flow in porous media have
been done, containing experimental measurements and
model predictions. The steady-state method is a common
method for measuring the relative permeability of porous
media in the laboratory. It involves that the fixed ratio of
the two phases is simultaneously driven in porous media at
a given rate and pressure until the sample saturation and
pressure differential become constant, e.g., [7–10].

Predictive models describing relative permeability-
saturation relationships can be divided into empirical models,
statistical models, and fractal models [11–13]. The empirical

models express the relative permeability of a given phase
as a power function of the corresponding phase saturation,
which involves the best fitting of existing mathematical
formulas to the available experimental data, e.g., [14, 15].
Therefore, these models ignore the pore space characteris-
tics (e.g., tortuosity, pore size distribution, and connectiv-
ity) of porous media. Typical representatives of statistical
models are the Burdine model and the Mualem model
which rely on the pore size distribution function obtained
by the water retention curve [16–18]. However, these
models usually involve complex integral operations, e.g.,
[9, 11, 18, 19]. The fractal feature of pores in porous media
(e.g., rock, soil, sediment, chemical material, and biological
tissue) has been widely recognized and successfully used to
study the transport properties of porous media [20, 21].
Unlike the statistical model, since the pore size distribution
of porous media is assumed to obey the fractal scaling law,
the fractal permeability model can be obtained by Poisson’s
law and Darcy’s law rather than the water retention curve,
e.g., [22–25].
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The transport characteristic of multiphase flow in porous
media is governed by pore space characteristics, e.g., pore size
distribution, the roughness and wettability of pore inner sur-
face, tortuosity, the nonuniformity of pore cross section, and
connectivity [9, 26–29]. Compared with the empirical and
statistical models, the fractal model is easier to simulate the
effect of pore size distribution and pore tortuosity on the
permeability of porous media. Moreover, it is also easier to
obtain an analytical solution without complicated mathemat-
ical operations, which is beneficial to engineering applica-
tions. However, existing fractal models typically simplify
the pores into parallel and uniform ideal capillary bundles,
e.g., [12, 22, 23, 27, 30]. This is suspected of oversimplifica-
tion, which ignores the effect of the roughness of pore inner
surface and the nonuniformity of pore cross section on
the transport of multiphase flow. Babadagli et al. [28, 29]
have shown that the roughness of the pore inner surface
plays an important role in the endpoint of relative perme-
ability curves and in determining the shape of curves. More
research on roughness can be found in the literature [31–33].
Nonuniformity of pore cross section can increase the resis-
tance of fluid transport, so ignoring the effect of that may lead
to established models that overestimate the transport capac-
ity of porous media. Unfortunately, the effect is rarely dis-
cussed and considered in the study of transport properties
of porous media.

This paper is aimed at studying the effect of pore non-
uniformity on the transport properties of unsaturated
porous media. To do that, a simple pore model with differ-
ent cross-sectional sizes is established to simulate the pore
nonuniformity. And the nonuniformity can be further inte-

grated into the extended Darcy’s law. Based on fractal theory
and Monte Carlo technology, the relative permeability-
saturation curves for wetting and nonwetting phases are
derived. The proposed model is evaluated by the experimen-
tal data of five wetting-nonwetting phase systems (including
water-air, water-steam, water-nitrogen, water-oil, and oil-gas
systems), and results show good consistency. Additionally,
the effect of model parameters on the relative permeability
is addressed.

2. Theory

2.1. The Permeability of Nonuniform Cross-Sectional Pores.
The complexity and irregularity of pore structure make it
difficult to study the transport properties using natural
shape of pores in porous media. As an alternative, the
application of simplified pore models (e.g., capillary model
and parallel rod model) is acceptable for studying the trans-
port of porous media, e.g., [27, 34, 35]. Although these
models are successful in estimating the approximate trans-
port capacity of porous media, they cannot accurately cal-
culate the permeability of wetting and nonwetting phases
due to overlooking the nonuniformity of pores. Given this
consideration, the capillary model containing different
cross-sectional sizes is employed here to simulate the non-
uniformity of pores, as shown in Figure 1. In this study,
the reference cross section is processed as the research
object and associate with other cross sections by parameters
a and b. Note that to simplify the model, this study assumes
that the capillary parameters of all sizes have the same
parameters a and b.
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Figure 1: A representative elementary volume (REV). (a) The reference cross section of the REV filled by reference radii. (b) The pore space
and flow paths in the REV. (c) The simplified capillary containing two different cross-sectional sizes.
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2.1.1. Saturated Flow. For capillary flow, the flow resistance
of an individual tube can be approximated as follows [36]:

Ω =
ð 1+að ÞτL0

0

8μ
πr4 lð Þ dl =

8μχ
π

τL0
r4

, ð1Þ

where χ = ð1 + a/b4Þis a resistance coefficient related to the
nonuniformity of pore cross section, where a ða > 0Þ and b
ð0 < b ≤ 1Þ are the length factor and size factor of the capil-
lary-throat, respectively, and μ is the fluid viscosity. τ = Lt/
L0 ðτ ≥ 1Þ is the pore tortuosity, where Lt and L0 are the tor-
tuous length and representative length of capillary tubes,
respectively. Note that under the assumption of laminar
flow, the local energy loss caused by the sudden expansion
or contraction of the pore size is negligible compared to
the viscous energy loss (see Appendix A); therefore, only
the viscous resistance is considered here.

Since pores in the REV are simplified as capillary bun-
dles, combining Equation (1), it can calculate the cumula-
tive volumetric flow rate by the Hagen-Poiseuille equation
as follows:

Q = 〠
n

i=1

ΔP
Ωi

= ΔPπ
8μχL0

〠
n

i=1

r4i
τi
, ð2Þ

where n is the total number of pores in the REV, ΔP is the
pressure gradient, and subscript i indicates the ith capillary
tube.

As seen from Figure 1, the cross-sectional porosity of the
REV is not unique. In this figure, the reference porosity ϕr of
the reference cross section is larger than that of the effective
porosity ϕ of porous media determined by experiment. If
the reference cross section is used as the research object, the
relationship between the effective porosity ϕ and the refer-
ence porosity ϕr can be expressed as ϕ = ϕr

c, where c is
defined as the nonuniformity factor. However, in practice,
the reference porosity is not necessarily greater than the
effective porosity [37], so the range of the nonuniformity fac-
tor c should be c > 0, more specifically, when the reference
porosity is greater than the effective porosity, c > 1; when
the reference porosity is less than the effective porosity, 0 <
c < 1; and when the reference porosity equals to the effective
porosity, c = 1.

Therefore, for a given REV with nonuniform pores,
Darcy’s law [38] can be extended as follows:

Q = ks
ΔP
L0

Ap
ϕ

= ks
ΔP
L0

Ap
ϕr

c , ð3Þ

where ks is the permeability of the saturated REV, Ap is
the average pore area of the REV cross section, and thus,
Ap/ϕ = Ap/ϕrc = AREV, where AREV is the cross-sectional area
of the REV. Furthermore, substituting Equation (2) into the
rearranged Equation (3) yields the following:

ks =
πϕr

c

8μχAp
〠
n

i=1

r4i
τi
: ð4Þ

Equation (4) is the permeability model of the saturated
REV on a statistical scale, which describes the relationship
between the transport characteristics of porous media and
pore structure parameters (e.g., porosity ϕ, pore size r, pore
tortuosity τ, and the nonuniformity factor c).

2.1.2. Unsaturated Flow. For the unsaturated flow in porous
media, the liquid configuration of capillary water can be
determined as filling the entire pore and being retained by
the tension of meniscus, water pressure, and air pressure.
According to the capillary law (also called Young-Laplace
equation) [39], small pores are easier to be filled by the wet-
ting phase and larger pores are occupied by the nonwetting
phase. Here, the maximum radius of pores filled by the wet-
ting phase is defined as the critical radius rc. Therefore, the
volumetric flow rate of the wetting and nonwetting phases
in unsaturated porous media can be determined as follows:

Qw = ΔPwπ

8μχL0
〠

nw rcð Þ

i=1 rminð Þ

r4i
τi
, ð5Þ

Qnw = ΔPnwπ

8μχL0
〠

n rmaxð Þ

i=nw+1

r4i
τi
, ð6Þ

where ΔPw and ΔPnw are the pressure difference of wetting
and nonwetting phases along the REV, respectively.

Besides, Buckingham-Darcy’s law [40]describes the trans-
port law of unsaturated flow. Similarly, considering the pore
nonuniformity like Equation (3), the extended Buckingham-
Darcy’s law can be written as follows [12, 16]:

Qw = kw
ΔPw
L0

Ap
ϕrSewð Þc , ð7Þ

where kw is the permeability of wetting phase in unsaturated
porous media.

Substituting Equation (5) into the rearranged Equation
(7) yields the following:

kw = π ϕrSewð Þc
8μχApw

〠
nw rcð Þ

i=1 rminð Þ

r4i
τi
: ð8Þ

Equation (8) is a generalized permeability function of
wetting phase in unsaturated porous media.

Additionally, based on the above analysis, the saturation

of wetting phase can be determined as Sew =∑nwðrcÞ
i=1ðrminÞr

2
i /

∑nðrmaxÞ
i=1ðrminÞr

2
i . It should be noted that in this study, Sew is the sat-

uration of capillary tubes and the effective saturation of
porous media. Therefore, combining Equations (4) and (8),
the relative permeability of wetting phase in porous media
can be determined by kr = kw/ks.
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krw = Scew ⋅
∑nw rcð Þ

i=1 rminð Þr
4
i /τi

∑n rmaxð Þ
i=1 rminð Þr

4
i /τi

=
∑nw rcð Þ

i=1 rminð Þr
2
i

∑n rmaxð Þ
i=1 rminð Þr

2
i

0
@

1
A

c

⋅
∑nw rcð Þ

i=1 rminð Þr
4
i /τi

∑n rmaxð Þ
i=1 rminð Þr

4
i /τi

:

ð9Þ

The computation of the relative permeability of the non-
wetting phase is identical to that of wetting phase except that
the nonwetting phase is considered to occupy pores which
size in the range of rc − rmax.

krn = 1 −
∑nw rcð Þ

i=1 rminð Þr
2
i

∑n rmaxð Þ
i=1 rminð Þr

2
i

0
@

1
A

c

⋅
∑n rmaxð Þ

i=nw+1r
4
i /τi

∑n rmaxð Þ
i=1 rminð Þr

4
i /τi

: ð10Þ

Equations (9) and (10) are the statistical scale models of
relative permeability for wetting and nonwetting phases,
respectively. These equations simulate the transport charac-
teristics of porous media with nonuniform pores. However,
Equations(9) and (10) cannot directly be used to predict the
relative permeability. We need to define the pore size distri-
bution (PSD) of porous media. Indeed, most existing PSDs
can be embedded in these equations to develop a specific
model, e.g., Gaussian and fractal distributions [12, 22, 38,
41]. In the next section, we will illustrate the application of
the proposed statistical scale model by taking the fractal dis-
tribution of pore size as an example.

2.2. The Analytic Expressions of Relative Permeability Based
on Fractal Theory. The pore size distribution of most nat-
urally porous media has been proven to obey the fractal
scaling law. In this study, we assumed that the pore size
distribution of the reference cross section obeys the fractal
scaling law. Therefore, the cumulative number of the pores
whose size larger than a measured scale r can be expressed
as follows [21, 22]:

N ε ≥ rð Þ = rmax
r

� �Df , ð11Þ

where r is the radius of pores in the reference cross section
(see Figure 1), N is the cumulative number of capillary
tubes whose radius is greater than or equal to r, and Df
is the area fractal dimension in the range of 1-2.

Since Equation (11) is considered as a continuous and
differentiable function, the number of pores in the infini-
tesimal range r to r + dr can be obtained by differentiating
Equation (11) with respect to r as follows:

−dN =Df r
Dfmaxr

− Df +1ð Þdr, ð12Þ

where dN > 0 and the negative sign (-) implies that the
number of capillary tubes decreases as the capillary radius
increases.

2.2.1. Permeability-Porosity Curve. In order to develop a
specific permeability model, the number of pores with a size
r determined by Equation (12) can be substituted into
Equation (4) as follows:

ks =
π

8μχAREV

1
τa

ðrmax

rmin

r4dN rð Þ

= 1
8μχτa

π

AREV

Df r
Dfmax

4 −Df
r4−Dfmax − r4−Df

min

� �
,

ð13Þ

where τa is the average pore tortuosity of porous media.
On the other hand, porosity of the REV can be calculated

by substituting Equation (12) into Equation (B.1) (see
Appendix B)

ϕr =
π

AREV

ðrmax

rmin

r2dN rð Þ = π

AREV

Df r
Dfmax

2 −Df
r2−Dfmax − r2−Df

min

� �
:

ð14Þ

Here, ln ϕr = ð2 −Df Þ ln ðrmin/rmaxÞ [22] can be intro-
duced into Equation (14) yields the following equation:

ϕr =
π

AREV

Df
2 −Df

1 − ϕrð Þ r2max: ð15Þ

Therefore, the permeability-porosity curve can be deter-
mined by substituting Equation (15) into Equation (13),
that is,

ks = C
ϕ2/c

1 − ϕ1/c
� �2 , ð16Þ

where

C = 1
8μχτa

AREV
π

2 −Dfð Þ2
4 −Dfð ÞDf

: ð17Þ

Note that in Equation (16), ϕr = ϕ1/c and
ðrmin/rmaxÞ4−Df ≈ 0 have been introduced to simplify the
model [22]. Interestingly, Equation (16) is very similar to
the Kozeny-Carman (KC) equation [42, 43], which reads
as follows:

k = CKC
ϕ3

1 − ϕð Þ2 , ð18Þ

where CKC is a fitting parameter related to pore-specific sur-
face area and tortuosity. And the comparison of Equation
(16) with the KC equation is discussed further in Section 3.

2.2.2. Relative Permeability-Saturation Curve. Similarly, in
order to develop a specific fractal model of relative perme-
ability, the number of pores with a size r computed by Equa-
tion (12) can be substituted into Equation (9).

krw =
Ð rc
rmin

r2dN rð ÞÐ rmax
rmin

r2dN rð Þ

" #c
⋅

Ð rc
rmin

r4/τa
� �

dN rð ÞÐ rmax
rmin

r4/τað ÞdN rð Þ

= rc
2−Df − r2−Df

min

r2−Dfmax − r2−Df
min

" #c
⋅
rc

4−Df − r4−Df
min

r4−Dfmax − r4−Df
min

:

ð19Þ
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According to the capillary law, h = C/r, where h is the
capillary head and C is a parameter related to the contact
angle and liquid surface tension; Equation (19) can also be
written as follows:

krw = hc
Df−2 − hDf−2

max

hDf−2
min − hDf−2

max

 !c

⋅
hc

Df−4 − hDf−4
max

hDf−4
min − hDf−4

max
, ð20Þ

where

hc
Df−2 − hDf−2

max
hDf−2
min − hDf−2

max
= Sew: ð21Þ

And substituting Equation (21) into Equation (20), it can
obtain the relative permeability krw of the wetting phase
expressed by the saturation Sew .

krw = Scew Sew 1 − ϕ1/c
� �

+ ϕ1/c
� �η, ð22Þ

where η = ð4 −Df Þ/ð2 −Df Þ and ϕ1/c = ϕr. Note that ln ϕr =
ð2 −Df Þ ln ðrmin/rmaxÞ and ðrmin/rmaxÞ4−Df ≈ 0 have been
introduced into Equation (22) to simplify the model. Simi-
larly, the relative permeability of the nonwetting phase can
be given as follows:

krn = Scen
1 − 1 − Sen 1 − ϕ1/c

� �� �η
1 − ϕη/c

: ð23Þ

Equations (22) and (23) describe the transport character-
istics for two-phase flow in the fractal porous media. As seen
from Equations (22) and (23) that the relative permeability
for both wetting and nonwetting phases is governed by pore
structure parameters, i.e., porosity ϕ, the nonuniformity fac-
tor c, and the fractal dimension Df .

2.2.3. Fractal-Based Monte Carlo Solutions. As a powerful
and unambiguous numerical technique, Monte Carlo simu-
lation is used here to capture the transport characteristics of
porous media with nonuniform pores.

Based on the fractal scaling law, the total number of pores
can be determined by Equation (11).

N t ε ≥ rð Þ = rmax/rminð ÞDf : ð24Þ

Dividing Equation (12) by Equation (24) gives

−dN/N t = f rð Þdr, ð25Þ

where f ðrÞ =Df rmin
Df
r−ðDf +1Þ. Yu et al. [23] argued that if the

pore radius of the porous media satisfies ðrmin/rmaxÞDf ≈ 0,
f ðrÞ can be regarded as a probability density function of pore
size. Fortunately, for natural porous media (e.g., soil), rmin/
rmax≪10−2 so that ðrmin/rmaxÞDf = 0 holds approximately.
Therefore, the cumulative probability (R), from the smallest
radius rmin to the radius r, can be written as follows:

R rð Þ =
ðr
rmin

f rð Þdr = 1 − rmin
r

� �Df
: ð26Þ

Equation (20) describes the random probability of the
pore size distribution in the range of rmin − rmax, and when
r⟶ rmin, R⟶ 0 as well as r⟶ rmax, R⟶ 1.

On the other hand, if R is regarded as a random number
from 0 to 1, the pore radius of porous media can be expressed
as follows:

ri =
rmin

1 − Rið Þ1/Df
, ð27Þ

where rmin < r < rmax. Equation (27) is a probability model
for the pore size simulated by Monte Carlo method [12, 23,
44]. Therefore, the randomness of pore size distribution can
be reproduced by computer-generated random numbers, as
shown in Figure 2.

Substituting Equation (27) into Equations (9) and (10), it
can obtain the Monte Carlo solutions of the relative perme-
ability for wetting and nonwetting phases.

krw =
∑nw

i=1
rmin≤r≤rc

1/ 1 − Rið Þ2/Df

∑n

i=1
rmin≤r≤rmax

1/ 1 − Rið Þ2/Df

0
BB@

1
CCA

c

⋅

∑nw
i=1

rmin≤r≤rc

1/τi 1 − Rið Þ4/Df

∑n

i=1
rmin≤r≤rmax

1/τi 1 − Rið Þ4/Df
,

ð28Þ

krn =
∑n

i=nw+1
rc≤r≤rmax

1/ 1 − Rið Þ2/Df

∑n

i=1
rmin≤r≤rmax

1/ 1 − Rið Þ2/Df

0
BB@

1
CCA

c

⋅

∑n

i=nw+1
rc≤r≤rmax

1/τi 1 − Rið Þ4/Df

∑n

i=1
rmin≤r≤rmax

1/τi 1 − Rið Þ4/Df
,

ð29Þ

where

Sew =

∑nw

i=1
rmin≤r≤rc

1/ 1 − Rið Þ2/Df

∑n

i=1
rmin≤r≤rmax

1/ 1 − Rið Þ2/Df
, ð30Þ

and R is a computer-generated random number in the
range of 0-1, and the subscript i indicates the ith random
number. n is the running total number of the Monte Carlo
simulations and the subscript w indicates the number of
pores occupied by the wetting phase. The maximum radius
of pores occupied by the wetting phase is defined as the
critical radius rc. rmin and rmax are the minimum and
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maximum pore sizes of the REV, respectively. τ is the tor-
tuosity of pores in the REV and the subscript i indicates
the ith capillary. Equations (28), (29), and (30) simulate
the transport characteristics of porous media with nonuni-
form pores by the reconstructed pore space based on the
Monte Carlo method. Therefore, these equations can cap-
ture the relative permeability of the wetting and nonwetting
phases.

3. Applications

3.1. Permeability-Porosity Curve. Fractal-based permeability-
porosity curve (Equation (16)) contains two parameters,
i.e., C and the nonuniformity factor c. In order to evaluate
the proposed permeability model, three data sets are
selected, i.e., fine-grained sandstone, silty sandstones, and
Timimoun Basin (“tight gas” sandstones) from Chilindar
[45] and Hirst et al. [46], respectively. For each type of
porous media, Equation (16) is fitted to the corresponding
data set by calculating the minimum root-mean-square
error (RMSE).

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

〠
M

j=1
ln kmeas:

r,j

� �
− ln kpred:r,j

� �h i2vuut , ð31Þ

where M is the number of the test data, kr,j
meas: is the jth

measured data point, and kr,j
pred: is the corresponding pre-

dicted relative permeability. Here, a logarithmic scale is
applied to accommodate a wide range of variations in per-
meability. Besides, in this section, the KC equation (Equa-
tion (17)) is also compared with the proposed model. The
fitted parameters and the corresponding RMSE of Equa-
tion (16) and the KC equation are listed in Table 1. It
can be seen that the RMSE of Equation (16) is smaller
than that of the KC equation for each material. Figure 3
shows that the proposed permeability-porosity model pre-

dicts good the measured data over a wide range of magni-
tude (about 4 to 11 orders of magnitude).

3.2. Relative Permeability-Saturation Curve

3.2.1. Methods. Fractal-based analytic expressions (Equations
(22) and (23)) of the relative permeability contain three
parameters, i.e., c, ϕ, and Df . ϕ is the porosity of porous
media determined by experiments, c is the nonuniformity
factor of pore cross section, and Df is the fractal dimension
determined by the best-fitting or the box-counting method
[47, 48]. In this section, model parameters are also deter-
mined by fitting measured data and calculating the minimum
RMSE between prediction values and experimental data.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

〠
M

j=1
kmeas:
r,j − kpred:r,j

� �2vuut : ð32Þ

Fractal-based Monte Carlo solutions (Equations (28) and
(29)) of the relative permeability contain parameters c, Df ,
and τi. In this study, Monte Carlo method simulates the ran-
domness of pore sizes based on fractal in porous media. The
algorithm for the determination of the relative permeability
for unsaturated porous media is summarized as follows:

(1) Give a porosity ϕ and find a nonuniformity factor c of
pore cross section

(2) Find fractal dimensionDf , rmin, rmax and calculate the
running total number n of the Monte Carlo simula-
tions according to Equation (24)

(3) Generate a random number Ri between 0 and 1

(4) Calculate ri by Equation (27) and rmin ≤ ri ≤ rmax;
otherwise, return to procedure (3)

(5) Generate random tortuosity τi of 1.25-1.78 suggested
by Xu et al. [12]

(6) Calculate the saturation Sew and relative permeability
kr (krw and krn)

(7) Calculate X times kr,x at a same saturation Sew, and

then find an average value kr according to kr = ð1/XÞ
∑X

x=1kr,x

(8) Calibrate model parameters by comparing prediction
data with experimental data

As seen from the above algorithm, based on fractal the-
ory, procedures (1)-(5) reconstruct the pore size distribution
in porous media. Evaluation of the model and comparison
with other models will be further analyzed and discussed in
the next sections.

3.2.2. Results and Discussion. Eight data sets are selected for
evaluating the proposed model. These data sets involve five
fluid systems, i.e., water-air, water-nitrogen, water-steam,
water-oil, and oil-gas systems. The pore structure parameters
of these porous media are listed in Table 2.
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Figure 2: Pore sizes simulated by the Monte Carlo method.
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Figure 4 shows measured data of the water-air system
and predicted relative permeability curves by the fractal anal-
ysis and Monte Carlo method. These data obtained by the
instantaneous profile method in Grenoble sand, Berea sand-
stone, Hygiene sandstone, and Oso Flaco sand [7, 9, 49]. As
shown, the predicted relative permeability (including wetting
and nonwetting phases) is in good agreement with the exper-
imental data.

For water-nitrogen and water-steam systems, Figure 5
shows that both the Monte Carlo solutions and the fractal

analytical solutions make a good prediction of the relative
permeability, except for the steam phase. This may attribute
to the instability of water-steam system in which the immo-
bile steam easily condenses into water so that there is a defect
inaccuracy in determining the steam saturation [8].

Studying the relative permeability of water-oil and oil-gas
systems is significant for contamination in oil reservoirs as
well as in soils. Figure 6(a) shows the predicted relative per-
meability curves of the oil-water system against the corre-
sponding experimental data [50]. The predicted relative

Table 1: Values of the fitted parameters and the corresponding RMSE.

Porous media c C RMSE CKC RMSE Reference

Fine-grained sandstone 0.347 7:8 × 106 0.282 3:4 × 104 0.912 Chilindar [45]

Silty sandstones 0.382 5:3 × 105 0.402 7:7 × 103 0.648 Chilindar [45]

Timimoun Basin 0.395 3:1 × 105 1.794 1:6 × 102 2.811 Hirst et al. [46]
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Figure 3: The predicted permeability-porosity curve and the comparison to the KC equation and measured data.

Table 2: The pore structure parameters of porous media and the corresponding RMSE.

System (wetting-nonwetting) Porous media ϕ Df c
RMSE

Reference
krn krw

Water-air Hygiene sandstone 0.250 1.21 1.98 0.012 0.074 Brooks and Corey [7]

Water-air Berea sandstone 0.206 1.14 3.73 0.041 0.059 Brooks and Corey [7]

Water-air Grenoble sand 0.370 1.75 2.18 0.050 0.034 Touma and Vauclin [49]

Water-air Oso Flaco sand 0.400 1.45 1.90 0.026 0.012 Tuli and Hopmans [9]

Water-nitrogen Berea core 0.240 1.23 2.40 0.033 0.032 Li and Horne [10]

Water-steam Core 0.250 1.77 1.35 0.108 0.020 O’Connor [8]

Water-oil Berea core 0.225 1.18 1.96 0.021 0.110 Kleppe and Morse [50]

Oil-gas Pyrex core 0.374 1.66 2.18 0.012 0.054 Gates and Leitz [51]
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permeability of nonwetting phase (oil) is in good agreement
with the experimental data while that of wetting phase
(water) is not such a good match. The prediction bias may
be due to the fact that oil and water are coupled in terms of
viscosity or tension, which makes the wetting phase perme-
ability insensitive to changes in saturation. As seen in
Figure 6(b), for the oil-gas system, the proposed model
can also well determine the relative permeability of both
wetting and nonwetting phase in the full range of saturation
in Pyrex core [51].

On the whole, these examples illustrate that the proposed
physics-based model, which considers the nonuniformity of
pore cross section, can generally capture the transport char-
acteristics for both wetting and nonwetting phase in various
porous media. It should be noted that due to the power-law
feature of the fractal distribution of pore size, the proposed

fractal models in this paper may not be applicable to the
porous media of multimodal pore structure, which involves
the multipeak distribution of pore size [41].

3.2.3. Comparison with Other Models. To further verify the
validity of the developed model, the proposed model is com-
pared with the other two models. In the Brook and Corey-
Mualem model (BC-M) and the van Genuchten-Mualem
model (VG-M) [18, 52], the relative permeability of wetting
and nonwetting phases is, respectively, calculated by BC-M:

krw = Sew
2:5+2/λ,

krn = 1 − Sewð Þ0:5 1 − Sew
1+1/λ

� �2
,

ð33Þ
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Figure 4: Predicted relative permeability for water-air system and the comparison to the experimental data.
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VG-M:

krw = Sew
0:5 1 − 1 − Sew

1/m� �mh i2
,

krn = 1 − Sewð Þ0:5 1 − Sew
1/m� �2m, ð34Þ

where λ is a model parameter related to the pore size distri-
bution of porous media and m is a fitted parameter.

Similarly, RMSE is used for the evaluation of these
models. Table 3 summarizes the RMSE of krw and krn pre-
dicted by each model (BC-M, VG-M, and proposed models)
for various porous media. For the sake of interpretation, the

smallest values of RMSE are highlighted in bold. As seen
from Table 3, compared with the BC-M and VG-M models,
the proposed model performs best, occupying eleven out of
sixteen highlighted values. This overall performance can be
reflected by the average values of RMSE (aveRMSE), which
are only 0.049 and 0.038 for wetting and nonwetting
phases, respectively.

Additionally, the differences between these models can be
clearly visualized as scatter plots of measured and predicted
relative permeability values shown in Figure 7. As shown,
the BC-M and VG-M models tend to generally overestimate
the transport capacity of porous media over the full range of
saturation, which may be attributed to the fact that the
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Figure 6: Predicted relative permeability for (a) water-oil system and (b) oil-gas system as well as the comparison to the experimental data.
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Figure 5: Predicted relative permeability for (a) water-nitrogen system and (b) water-steam system as well as the comparison to the
experimental data.

9Geofluids



nonuniformity of pores was overlooked. In contrast, the pre-
dicted relative permeability values (both krw and krn) of the
proposed model are close to the measured values, and these
data sets show a much better linearship.

Note that thin-film flow is not considered in this paper,
and the film flow is usually distributed on the particle surface
or the inner surface of the capillary to form an annular fluid
structure [53]. Therefore, the continuous capillary model
developed in this study may overestimate the krn of the non-
wetting phase and underestimate the krw of the wetting
phase, especially in the low relative permeability stage, which
can be seen in Figure 7.

3.2.4. Parameter Analysis. In this section, the effect of model
parameters Df and c on the relative permeability of porous
media is also addressed. As seen from Figure 8, the relative
permeability of wetting phases decreases as the fractal

dimension Df increases, while enhances that of nonwetting
phase. This is because a larger Df means a larger percent of
small pores, which will decrease the critical radius with a
given wetting saturation. Therefore, the transport of wetting
phase requires a larger pressure gradient, which reduces its
relative permeability and increases the relative permeability
of nonwetting phase.

From Figure 9(a), the relative permeability of both wet-
ting and nonwetting phases decreases as the nonuniformity
factor c increases. Under the assumption of laminar flow,
the pressure drop per unit length caused by the flow resis-
tance can be obtained (see Appendix B).

ΔP

L′
= 4μτ

r2
1 + ϕ2−2/c

2 − ϕ1/c−1
� �2

" #
vs: ð35Þ

Table 3: RMSE values obtained with the BC-M, VG-M, and proposed models.

System (wetting-nonwetting) Porous media
RMSE (BC-M) RMSE (VG-M) RMSE (model)
krn krw krn krw krn krw

Water-air Hygiene sandstone 0.022 0.070 0.020 0.072 0.012 0.074

Water-air Berea sandstone 0.201 0.096 0.090 0.183 0.041 0.059

Water-air Grenoble sand 0.112 0.116 0.110 0.079 0.050 0.034

Water-air Oso Flaco sand 0.082 0.014 0.041 0.030 0.026 0.012

Water-nitrogen Berea core 0.054 0.090 0.042 0.103 0.033 0.032

Water-steam Core 0.103 0.122 0.123 0.052 0.108 0.020

Water-oil Berea core 0.028 0.038 0.016 0.032 0.021 0.110

Oil-gas Pyrex core
0.019 0.119 0.009 0.128 0.012 0.054

0.078 0.083 0.056 0.085 0.038 0.049
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Figure 7: Scatter plot of measured versus predicted values for BC-M, VG-M, and the proposed models.
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And Figure 9(b) shows that pressure drop increases sig-
nificantly with the increase of c, which means that increasing
in the nonuniformity factor c can enhance the fluid resistance
and thus lower the transport capacity of porous media.

4. Conclusions

In this paper, a new permeability model is established to
describe the transport characteristics of porous media with
nonuniform pores. The nonuniformity of pores is charac-
terized by capillary tubes with different cross-sectional sizes
which cause cross-sectional porosity to be not unique. Fur-
thermore, the nonuniformity factor is introduced to cap-
ture the nonunique of porosity and extend Darcy’s law.
Based on these and combined with the fractal theory and
Monte Carlo technique, the fractal analytical solutions
and Monte Carlo solutions of relative permeability are
derived, respectively.

Sample calculations for eight data sets involving five
wetting-nonwetting systems, i.e., water-air, water-steam,
water-nitrogen, water-oil, and oil-gas systems, show the
rationality of the proposed model in the entire range of wet-
ting saturation. Besides, compared with the BC-Mmodel and
the VG-M model, the proposed model has great advantages
in predicting the accuracy of relative permeability, especially
for nonwetting phase. It has also been found that the nonuni-
formity of pores can significantly increase the resistance of
fluid flow and thus lower the transport capacity of porous
media. Besides, the permeability-porosity curve is also
derived and it is found that the proposed permeability-
porosity model is better than the KC equation in predicting
measured data sets.

The study in this paper better reflects the general law of
fluid transport in porous media with nonuniform pores,
which helps to reveal the inherent physical mechanism of
heat and mass transfer in porous media.

Appendix

A. Energy Loss

A.1 Viscous Energy Loss. Under the assumption of laminar
flow, the superficial velocity of fluid passing through a
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Figure 10: Pore model for calculating local energy loss.
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Figure 9: The effect of nonuniformity factor c on the relative
permeability of porous media and pressure drop (μ = 0:8937 ×
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capillary channel can be determined by the Hagen-Poiseuille
equation.

vs =
ΔP1/Ω
πr2

= r2

8μχτL0
ΔP1: ðA:1Þ

Therefore, the pressure drop caused by viscous energy
loss can be written as follows:

ΔP1
L′

= 8μχ′τ
r2

vs, ðA:2Þ

where L′ = ð1 + aÞL0 and χ′ = χ/ð1 + aÞ = ð1 + a/b4Þ/ð1 + aÞ,
which is defined as the resistance coefficient.

A.2 Local (Kinetic) Energy Loss. In order to determine the
local energy loss during the fluid through the cross section
of sudden expansion or contraction, we consider the capillary
as shown in Figure 10 and assume that the fluid flows from
the A1 section to the A3 section.

The loss of pressure head caused by the change of cross
section can be expressed as follows [54]:

hl =〠ξ
�v2

2g , ðA:3Þ

where �v is the real average velocity of the cross sections A1 or
A3. ξ is the coefficient of local energy loss.

For a sudden contracting pore of cross section A2, the
coefficient of local energy loss can be written as follows:

ξc =
1
2 1 − A2

A1

	 

= 1
2 1 − b2
� �

: ðA:4Þ

In this case, the loss of head can be determined by

hlc =
1
2 1 − b2
� � �v2

2g : ðA:5Þ

On the other hand, for a sudden expending pore of cross
section A3, the coefficient of local energy loss can be written
as follows:

ξe = 1 − A2
A3

	 
2
= 1 − b2
� �2

: ðA:6Þ

Hence, the loss of head during the fluid flows through the
expending pore can be calculated as follows:

hle = 1 − b2
� �2 �v2

2g : ðA:7Þ

Combining Equations (A.5) and (A.7) as well as ΔP2 =
ρghl, the pressure drop caused by local energy loss can be
written as follows:

ΔP2
L′

= 3
2 −

5
2 b

2 + b4
	 


ρ

2ϕ2 1 + að ÞL vs
2: ðA:8Þ

Note that vs = �v/ϕ has been introduced into Equation (A.8).
Therefore, we can obtain the total pressure drop per unit

length during the fluid flows through the capillary tube (see
Figure 10) by Equations (A.2) and (A.8).

ΔP

L′
= ΔP1 + ΔP2

L′

= 8μχ′τ
r2

vs +
3
2 −

5
2 b

2 + b4
	 


ρ

2ϕ2 1 + að ÞL vs
2:

ðA:9Þ

As seen from Equation (A.9), the energy loss increases as
the fluid flow rate increases. However, for soils and rocks, the
superficial velocity vs of fluids is typically much less than 10-
2m/s, in which case the local energy loss caused by the
change in pore cross-sectional size can be neglected com-
pared to the viscous energy loss.

B. Pressure Drop-Nonuniformity Factor Curve

As shown in Figure 1, the porosity of the reference cross sec-
tion can be calculated as follows:

ϕr =
1

AREV
〠
n

i=1
πri

2: ðB:1Þ

Similarly, the porosity of the cross section with a radius
br can be calculated as follows:

ϕ′ = 1
AREV

〠
n

i=1
π brið Þ2 = b2ϕr: ðB:2Þ

Therefore, the porosity of the REV in Figure 1 can be
written as follows:

ϕ =
Vp
V

= AREVϕrL0 + AREVϕ′aL0
AREV 1 + að ÞL0

= 1 + ab2

1 + a
ϕr: ðB:3Þ

Combined with ϕ = ϕcr , the nonuniformity fractor c can
be written as follows:

c = 1 + ln 1 + ab2
� �

/ 1 + að Þ� �� �
ln ϕ1/c

= 1 + ln 1 + ab2
� �

/ 1 + að Þ� �� �
ln 1/AREVð Þ∑n

i=1πri
2ð Þ :

ðB:4Þ

It can be found from Equation (B.4), when b⟶ 1, c
equals 1, which means that the size of pore section is unique.
If the parameter a is set to a constant (e.g., let a = 1), com-
bined with Equations (A.9) and (B.4) and neglecting the local
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energy loss, the pressure drop per unit length caused by the
flow resistance can be obtained.

ΔP

L′
= 4μτ

r2
1 + ϕ2/c−2

2 − ϕ1/c−1
� �2

" #
vs: ðB:5Þ
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