
Research Article
Influence of Stress Sensitivity on Water-Gas Flow in
Carbonate Rocks

Shuaishi Fu ,1,2,3 Lianjin Zhang,4 Yingwen Li ,1,2 Xuemei Lan,4 Roohollah Askari,5

Junjie Wang,4 Wen Wen,4 Xinze Li ,1,2 Shaobin Cai ,1,2 Ke Wang ,1,2 Jie Liu ,1,2

Yushu Wang ,1,2 and Yongfei Yang 1,2

1Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education,
Qingdao 266580, China
2Research Center of Multiphase Flow in Porous Media, School of Petroleum Engineering, China University of Petroleum (East China),
Qingdao 266580, China
3School of Energy resources, China University of Geosciences (Beijing), Beijing 100083, China
4Exploration and Development Research Institute of PetroChina Southwest Oil & Gas Field Company, Chengdu,
610041 Sichuan, China
5Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, Michigan, USA

Correspondence should be addressed to Yongfei Yang; yangyongfei@upc.edu.cn

Received 5 October 2020; Revised 11 November 2020; Accepted 20 November 2020; Published 7 December 2020

Academic Editor: Amgad Salama

Copyright © 2020 Shuaishi Fu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Carbonate reservoirs significantly contribute to exploitation. Due to their strong heterogeneity, it is of great significance to study
core seepage capacity and gas-water two-phase flow of reservoirs with various pore structures under different stresses for
productivity prediction, gas reservoir development, and reservoir protection. We utilize micrometer-resolution X-ray
tomography to obtain the digital rocks of porous, fractured-porous, and fractured-vuggy carbonate rocks during pressurized
process and depressurization. The Lattice Boltzmann method and pore network model are used to simulate the permeability
and gas-water two-phase flow under different confining pressures. We show that at the early stage of pressure increase,
fractures, vugs, or large pores as the main flow channels first undergo compaction deformation, and the permeability decreases
obviously. Then, many isolated small pores are extruded and deformed; thus, the permeability reduction is relatively slow. As
the confining pressure increases, the equal-permeability point of fractured-porous sample moves to right. At the same confining
pressure, the water saturation corresponding to equal-permeability point during depressurization is greater than that of
pressurized process. It is also proved that the pore size decreases irreversibly, and the capillary force increases, which is
equivalent to the enhancement of water wettability. Therefore, the irreversible closure of pores leads to the decrease of
permeability and the increase of gas-phase seepage resistance, especially in carbonate rocks with fractures, vugs, and large pores.
The findings of this study are helpful to better understand the gas production law of depletion development of carbonate gas
reservoirs and provide support for efficient development.

1. Introduction

Carbonate reservoirs contribute enormous oil and gas reserves
and production around the world, accounting for approxi-
mately 60% of total oil and gas production [1–3]. However,
under the influence of diagenesis process, carbonates show

strong heterogeneity in terms of pore structure and petrophysi-
cal parameters [4]. Generally, the internal space can be divided
into intergranular pore, intragranular pore, vug, and fracture
[5]. The simultaneous existence of different pore spaces leads
to complex pore structure. When the formation pressure
changes, the pore structure also changes, which further
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complicates the internal flow as shown in Figure 1 [6]. To
develop carbonate reservoirs more effectively, it is necessary
to study their internal flow rule [7].

Affected by bottom and edge water, potential water-gas
two-phase flows exist in carbonate reservoirs due to the
possible water invasion [8, 9]. More than 95% of the devel-
oped carbonate gas reservoirs have edge-bottom water, of
which more than 75% exhibit strong water influx [10]. More
recently, a few researchers focused on the study of gas-water
two-phase flow in carbonate using different methods. The
fundamental regulation for fluid flow is the NS equation.
The three most commonly used methodologies to investigate
the fluid-fluid interactions in porous media by numerical
simulation are bundle of capillary tube modeling (BCTM)
[11], direct pore scale modeling (DPSM), and pore network
modeling (PNM) [10]. DPSM generally requires reconstruc-
tion of three-dimensional digital rock to describe porous
structure using micro-X-ray computed tomography (micro-
CT) and SEM, then performs the flow simulation based on
more accurate numerical simulation models than capillary
tube. To complete the simulation of water-gas two-phase flow,
the Lattice Boltzmann method (LBM) [12], which employs
particle distribution function, the smoothed particle hydrody-
namics (SPH) methods [13–15], the level set (LS) [16, 17],
volume of fluid (VOF) method [18], and the phase-field
method (PFM) [19–21] are used to describe the interaction
between fluids. Besides, PNM is incorporated to describe the
complicated pore structure to simulate the internal flow by
solving flow and transport equations on the network, which
represents the pores and throats [22–24].

However, previous researches usually focused on charac-
terization at one scale to analyze the pore structure of carbon-
ate. For large-scale vugs and fractures, several models have
been developed to simulate the production of carbonate
reservoirs [25, 26]. The studies about the gas-water two-

phase flow of carbonate rocks mainly relied on experimental
results to obtain phase permeability curves at the core scale
[8, 27]. Most of the numerical models used in previous studies
were mainly based on ideal pore structure or thin sections,
basically in two-dimensional, which cannot restore real pore
structure. Using advanced mico-imaging methodologies such
as micro-CT and SEM, we can obtain the detailed micro-
structures of carbonate including micro-fractures, micro-vugs,
and interparticles [28, 29]. This paper is aimed at studying the
effects of stress on two-phase flow characteristics during the
pressurized process and depressurization based on digital
rocks obtained by X-ray computed tomography.

The carbonate gas reservoirs with deep burial depth are
characterized by high temperature, high pressure, and high
stress. The fractures and vugs pose significant challenges to
achieving efficient recovery rate mainly due to their stress-
sensitive nature [30, 31]. In previous work, we have charac-
terized the pore structure variation under the change of the
confining pressure in vuggy and fractured carbonate rocks
[32]. The results indicated that the porosity showed an expo-
nential decreasing trend and then followed an increase that
did not recover to its initial value during pressurized process
and depressurization process, due to the stress effect on large
structures. The changes of pore structures will inevitably
affect fluid flow. Thus, the influence of pressure on flow
characteristics cannot be neglected.

In this paper, we extend our previous study and investigate
the effect of stress sensitivity on the flow characteristics of
carbonate reservoirs [33]. We use the micrometer-resolution
X-ray tomography to obtain the digital rocks of porous,
fractured-porous and fractured-vuggy carbonate rocks during
pressurized process and depressurization. Based on digital
rocks and pore network models, we simulate single-phase
and two-phase flow using the Lattice Boltzmann method
and pore network modelling, respectively. We then obtain
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Figure 1: The change of percolation caused by the change of formation pressure and pore structure.
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the microscopic flow characteristics mainly the permeability
and relative permeability of carbonate reservoirs considering
different types of pore space and confining pressure. This work
reveals the flow behaviors and their influencing factors in the
three-dimensional porous media of carbonate, which provides
a theoretical basis for the development of carbonate reservoirs.

2. Experimental and Simulation Methods

We put a sample into the holder made of PEEK material,
fixed the holder on the sample table, and scanned the sample
under the initial state. Next, we gradually increased the
confining pressure to 5MPa, 10MPa, 15MPa, and 20MPa,
then gradually reduced the confining pressure to 15MPa,
10MPa, 5MPa, and 0MPa, and scanned the cores under
each stress state. Finally, 9 groups of pore structure images
under different confining pressures were obtained. On the
basis of CT images, we carried out the following LBM and
pore network model simulation to study the single-phase
and two-phase flow.

2.1. Lattice Boltzmann Mathematical Model. The Lattice
Boltzmann method (LBM) is derived based on the molecule
dynamics and the statistical mechanics [34–36]. A discrete
velocity model is generated through the mass conservation,
momentum conservation, and the energy conservation from
particle scale to microscale [37, 38]. Then, the particle distri-
bution function is generated via the discretion of velocity
model and is calculated by statistical mechanics, so that the
macroscale velocity and pressure are obtained.

In LBM, according to the statistical mechanics, Boltz-
mann's equation is expressed by Equation (1):

∂f
∂t

+ v
∂f
∂t

+ α
∂f
∂r

=Q fð Þ: ð1Þ

If the external force is ignored, the particle velocity of v is
discretized as ei, and the Equation (1) can be rewritten as
Equation (2):

f i x + eiΔt, t + Δtð Þ = f i x, tð Þ − 1
τ

f i x, tð Þ − f eqi x, tð Þ� �
: ð2Þ

The uniform LBMmodel can be applied to porous media
at microscale. This property gives LBM a great advantage in
the study of nonequilibrium dynamic models, especially,
when fluid flow involves interface dynamics and complex
boundary geometry. To the uniform LBMmodel, the equilib-
rium distribution function is written as Equation (3).

f eqi ρ, u, Tð Þ = ωip 1 + eiu
RT

+ ei ⋅ uð Þ2
2 RTð Þ2 −

u2

2RT

" #
: ð3Þ

In this study, a D2Q9 model is chosen to work on two-
dimensional flow simulations, where ω0 = 4/9, ωi = 1/9
ði = 1, 2, 3, 4Þ and ωi = 1/36ði = 5, 6, 7, 8Þ.

Fractured‐porous sample Porous sample Fractured‐vuggy sample

Figure 2: The pore phase of 3D digital rock.

(a) (b)

Figure 3: (a) A 2D slice of fractured-porous carbonate rock (pore is white andmatrix is black); (b) the image of digital rock constructed byMatlab.
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Figure 4: The images of streamlines in the fractured-porous sample.

Table 1: LBM-simulated permeability data for fractured-porous
sample.

Pressure/MPa Porosity/%
Dimensionless
permeability

Permeability/μm2

Initial 14.26 0.31 5.67

5 13.35 0.15 2.71

10 13.24 0.08 1.49

15 13.08 0.06 1.02

20 12.74 0.04 0.74

15 13.01 0.04 0.79

10 13.16 0.06 1.05

5 13.26 0.08 1.54

0 14.05 0.14 2.62
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Figure 5: The permeability versus confining pressure for fractured-
porous sample.
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In the uniform model, u′ and �u are defined as Equation
(4) and Equation (5):

u′ = I + 1
2 k

� �
I − τ −

1
2R

� �� �
⋅ u, ð4Þ

�u = 1 − 1
2τ

� �
u + 1

2τ u
′: ð5Þ

When only the resistance tensor on the main diagonal
is considered, the above equations (Equation (4) and Equa-
tion (5)) can be reduced to Equation (6):

uα′ −
1 − τ − 1/2ð ÞRα

1 + 1/2Rα

uα: ð6Þ

Therefore, the equilibrium distribution function of the
uniform LBM model can be rewritten as Equation (7):
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Figure 6: The images of streamlines in the porous sample.

Table 2: LBM-simulated permeability data for porous sample.

Pressure/MPa Porosity/%
Dimensionless
permeability

Permeability/μm2

Initial 7.69 1:46 × 10−3 26.41

5 6.00 6:92 × 10−4 12.56

10 2.76 2:74 × 10−4 4.97

15 2.40 2:28 × 10−4 4.14

20 1.85 2:09 × 10−4 3.79

15 2.32 2:11 × 10−4 3.83

10 2.48 2:36 × 10−4 4.29

5 2.72 4:10 × 10−4 7.43

0 6.55 1:05 × 10−3 19.10
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f ∗i ρ, u, Tð Þ = ωip 1 + eiu′
RT

+
eiu′

� 	2

2 RTð Þ2 −
�u2

2RT

2
64

3
75: ð7Þ

2.2. Two-Phase Pore Network Simulation. Given that the
image-based direct simulation results in ultrahigh computa-
tional cost, quasi-static pore network model is used to
simulate the gas-water two-phase flow [39, 40]. In this
work, the drainage process in water-wet rock is simulated,
in which water is the defended phase and is displaced by
gas. At the initial state, the network model is saturated with
water, then, gas is injected from the inlet pores.

Combined with the percolation theory, the pores and
throats are invaded in the order of capillary pressure [41,
42]. After the fluid pressure exceeds the threshold pressure
of a throat, the injected phase enters the throat totally or
partially filled with defended phase. The threshold capillary
pressure of a throat depends on fluid phase configuration
inside it and the simulated displacement process. For this
gas-driving-water process, only the piston-like displacement
occurs. The capillary pressure of a throat is determined by
the Young-Laplace equation:

Pcgw = Pg − Pw = σgw
1
r1

+ 1
r2

� �
, ð8Þ

where σgw is the gas-water interfacial tension; r1 and r2 are
the principal radius of interface curvature. If the pore
shape and contact angle are given, Equation (8) can be
used to obtain the capillary pressure. The derivations of
capillary pressures of throats with cross-sectional shape of
circle, triangle, and square are displayed in supplementary
materials.

As injecting gas phase invades the water saturated in the
network model, water saturation decreases and flow capacity

of gas increases. The water/gas saturation and relative perme-
ability during the displacement process are calculated and
plotted as two-phase relative permeability curve. The detailed
calculation processes are shown in supplementary materials.

3. Results and Discussion

3.1. Influence of Stress Sensitivity on Single-Phase Flow
Characteristics. The Lattice Boltzmann method (LBM) has
the advantages of high simulation precision and easy imple-
mentation, but it has a high requirement on the runningmem-
ory of the computer. We consider the requirements between
computer operation efficiency and model size, and we extract
a subvolume (200 × 200 × 200 voxel) from digital rocks
(852 μm× 852 μm× 852 μm) of fractured-porous sample,
porous sample, and fractured-vuggy sample (Figure 2). We
simulate a single-phase flow based on the extracted digital
rock sample at the same position under different confining
pressures and analyze the influence of stress changes on the
permeability.

In this study, we use Palabos, an open source LBM solver,
to calculate the permeability. The first step is to prepare the
image for the application. We take the digital rock of
fractured-porous sample as an example, since Palabos can
only read image files in BMP black and white binary format.
Avizo is used to save 3D pore phase digital rock in BMP
image format, as shown in Figure 3(a). Then we transform
the BMP file to a DAT file with MATLAB as shown in Figre
3(b). Finally, the generated DAT file is imported into Palabos
to calculate the permeability. The simulation results are
imported into Paraview to draw the flow diagram, and the
simulated streamlines of fractured-porous sample is shown
in Figure 4.

By analyzing the above images, we note that the fractures
are the main flowing channels for fractured-porous carbonate
sample. With confining pressure increasing, the streamlines
begin to decrease, indicating that the fracture conductivity
begins to decline, while the streamlines in pores begin to
disappear. When the confining pressure increases to 20MPa,
the streamlines except for fracture basically disappear, indicat-
ing that many pores have been closed. After the pressure is
recovered (0MPa), the number of streamlines in the fracture
increases again, but the area with streamline is significantly
reduced, showing that the rising and falling process of confin-
ing pressure makes the fracture close irreversibly, compressing
fluid flow space. The result of LBM-simulated permeability
data is presented in Table 1.

As the pressure increases, the permeability of fractured-
porous sample declines rapidly at the low-stress stage
(Figure 5). This indicates that at the low-stress stage, the
compressive deformation first occurs in the fractures with good
connectivities, which leads to a poor connectivity of the main
flow channels, and thus, the permeability drops significantly
at the initial stage. However, in the pressure recovery process,
the overall permeability recovers to about a half of the initial
state after the complete pressure relief. The fracture recovery
is slow. Even after the confining pressure is completely
unloaded, the fracture morphology cannot return to the initial
state, and an irreversible closure occurs. As a result, the
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Figure 7: The permeability versus confining pressure for porous
sample.
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permeability cannot return to the initial level after the stress
cycle is completed and even drops significantly.

Figure 6 shows that the streamline changes for the porous
sample. The observation and analysis of the images show that,
for porous carbonate rocks, the streamlines in pores are signif-
icantly reduced as the confining pressure increases. When the
confining pressure increases to 20MPa, no obviously
connected streamlines are found, indicating that pores are
constantly squeezed and deformed, and some flow channels
are blocked. After the confining pressure disappears, it can
be observed that the streamlines in the pores basically recover
compared with the initial state, that indicates the rise and fall
of confining pressure makes some pores close, but it has less
impact on the main flow channels. Table 2 shows the
permeability results of the carbonate rocks obtained from
simulations.

As shown in Figure 7, the permeability of porous carbon-
ate decreases rapidly at the low-stress stage. However, the
permeability recovery is not obvious at the initial stage of
the pressure drop. Until the pressure is 0, the permeability
recovers greatly, which is basically consistent with the
phenomenon of fractured-porous carbonate rocks. In addi-
tion, the permeability recovery ability of porous carbonate
is greater than that of fractured-porous carbonate, which
indicates that the stress sensitivity of porous sample is weak.

Figure 8 shows the streamline of fractured-vuggy sample
at the initial state confining pressure of 10MPa. At the initial
state, the streamline is concentrated around the vugs and
discontinuous, which also leads to poor flow capacity of the
fractured-vuggy sample. We find that some streamlines in
pores disappear under a confining pressure of 10MPa,
indicating that the flow capacity of fractured-vuggy sample is
significantly affected by pores, and the closure of pores may
lead to the isolation of individual vugs and affect the overall
permeability. Table 3 shows the simulated permeability of
fractured-vuggy sample.

The permeability of the fractured-vuggy carbonate rock
is lower than the other two samples due to its poor connec-
tivity. With the increase of confining pressure, the decreas-
ing trend of permeability is fast initially, and then slows
down (Figure 9). It is considered that at the initial stage
of stress application, the large pores or vugs as the main
flow channels are first compressed and deformed, which
leads to a rapid increase of fluid flow resistance and obvious
decrease of permeability. However, in the later stress
application, the mainly squeezed pores are isolated small
ones, accordingly, the permeability decreases slowly in the
later period.

The stress sensitivity of reservoir rocks can be evaluated
by irreversible permeability damage rate, and the calculation
formula is as follows:

Dp =
Ki − K ′

Ki
× 100%, ð9Þ

where Dp presents irreversible permeability loss rate, Ki is the

initial permeability, and K ’ is the permeability at the initial
static stress point. Based on Equation (9), the irreversible
permeability loss rates of fractured-porous sample and porous
sample are calculated as 53.74% and 27.69%, respectively.
According to the Pressure Sensitivity Evaluation Standard
recommended by SY/T 5358-2010 (Table 4) [43], the stress
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Figure 8: The images of streamlines in the fractured-vuggy sample.

Table 3: LBM-simulated permeability data for fractured-vuggy
sample.

Pressure/MPa Porosity/%
Dimensionless
permeability

Permeability/μm2

Initial 4.03 8:98 × 10−6 0.16

5 3.67 5:70 × 10−6 0.10

10 3.33 3:50 × 10−6 0.06

15 3.82 2:23 × 10−6 0.04

20 3.78 1:78 × 10−7 0.03
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sensitivity of fractured-porous sample is moderately strong,
while that of porous sample is weak.

3.2. The Effect of Stress Sensitivity on Two-Phase Flow
Characteristics. Due to the poor connectivity of porous sam-
ple and fractured-vuggy sample, we select fractured-porous
carbonate rock for two-phase flow simulation. Note that the
volume of digital rock is in 400 × 400 × 400 voxels, and its
actual physical size is 1704μm× 1704 μm× 1704 μm. Then,
we extract a corresponding pore network model and obtain
the relative permeability curves for each confining pressure
(Figure 10). The specific parameters are as follows:

(1) Air-water interfacial tension: 70mN/m
(2) Range of water-phase contact angle: 30°-60°

(3) Viscosity: 1 cp in water phase and 0.01806 cp in gas
phase

(4) Density: 1000 kg/m3 for water phase and 0.72 kg/m3

for gas phase
The distribution range of equal-permeability point

mainly concentrates at 65%-87%. As the confining pressure
increases, the equal permeability points continue to move
to right. Because the decrease of pore size leads to the
increase of capillary force (capillary force curves are shown
in Figure 11), and the equal permeability points move to
right. Furthermore, during depressurization, the pore struc-
ture cannot be completely recovered. Thus, the equal perme-

ability points of the depressurization process are closer to
right than those of the pressurized process under the same
confining pressure.

4. Summary and Conclusions

The Lattice Boltzmann method and the pore network model
are used to simulate single-phase and two-phase flow under
different confining pressures in fractured-porous, porous, and
fractured-vuggy carbonate rocks. The variation rules of gas-
water relative permeabilities of carbonate rocks with different
pore structures and different confining pressures are summa-
rized, which has a guiding significance for gas reservoir exploi-
tation. However, there is one limitation of the current work.
Due to the limited number of experimental samples, only three
samples are selected to represent fractured-porous, porous, and
fractured-vuggy carbonate rocks, respectively. If more repre-
sentative cores are used for each pore structure to carry out
pressure cycle test, the gas-water two-phase percolation law
obtained by flow simulation on this basis will be more universal
and practical.

The simulation results show that:
(1) In the process of rising confining pressure, the

decline trend of the permeabilities of the three types of
carbonate rocks is fast initially, and then slows down. It
indicates that in the low-stress stage, the deformation
compaction first occurs in the main flow channels such
as fractures, vugs, or large pores. As a result, the resistance
of fluid flow increases rapidly and the permeability
decreases significantly. However, at the high-stress stage,
many isolated small pores are mainly squeezed, so the
decrease in permeability in the later period of pressuriza-
tion is relatively slow.

(2) For fractured-porous carbonate rocks, fractures are
main flow channels. According to the permeability calcula-
tion, the conductivities of fractures are 2-3 orders of magni-
tude greater than those of pores. In the process of
depressurization, the recovery ability of the fractures is poor.
Even if the confining pressure is completely released, some
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Figure 9: The permeability versus confining pressure for fractured-vuggy sample.

Table 4: The evaluation standard of stress sensitivity.

The injury rate of pressure sensitive/% Extent of damage

D < 5 -

55 <D < 30 Weak

30 <D < 50 Medium weak

50 <D < 70 Medium to strong

70 <D < 90 Strong

D > 90 Very strong
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fractures still have irreversible closure, and the permeability
decreases significantly.

(3) With the confining pressure increasing, the perme-
ability loss of the porous sample is lower than that of the
fractured-porous sample, and its permeability recovery abil-
ity is stronger than that of fractured-porous carbonate rock
during depressurization. It indicates that the stress sensitivity
of the fractured-porous sample is stronger.

(4) Pore connectivity of the fractured-vuggy sample is
poor, and its simulated permeability is relatively low. Stream-
lines in some pores and vugs disappear by increasing the con-

fining pressure. It indicates that the flowing capacity of the
fractured-vuggy sample is greatly affected by the closure of
pores. The closure of pores may isolate some vugs being iso-
lated and affect the overall permeability.

(5) Under different confining pressures, the distribution
range of the equal permeability points of the fractured-
porous sample mainly concentrates at 65%-87%. As the con-
fining pressure increases, the equal permeability point moves
to the right. At the same confining pressure, the equal perme-
ability point of the gas-water relative permeability curve is
closer to the right during depressurization. It indicates that
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Figure 10: Gas-water relative permeability curves for fractured-porous carbonate rock through pore network model simulation. (a)
Pressurized process and (b) depressurization process.
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Figure 11: Capillary pressure curves for fractured-porous carbonate rock. (a) Pressurized process and (b) depressurization process.
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the pore size decreases as the confining pressure increases;
thus, the capillary force increases, and the saturation of the
wetting phase (water) increases.

Nomenclature

f iðx, tÞ: Particle distribution function of node x at time t
in the direction of i

f eqi : Equilibrium particle distribution function
f : Single particle distribution functionr
r: Coordination
v: Particle velocity
α: Acceleration caused by external force
Qð f Þ: Collision operator
f eqi : Equilibrium distribution function
R: Ideal gas constant
u: Velocity
ρ: Fluid density
T : Temperature
ei: Discrete velocity
ω: Correlated weight coefficient
R : Resistance tensor
k: Permeability tensor
t: Time
cs: Lattice sound speed
I : Unit matrix
τ: Relaxation time
p: Pressure
σgw : Gas-water interfacial tension, N/m
r1 and r2: Principal radius of interface curvature, m
θgwr: Receding gas-water contact angle, rad
r: The radius of pores and throats, m
Fd : Dimensionless correction factor
R: The radius of curvature, m
βi: The half angle of corner i, rad
G: Shape factor of pores and throats, dimensionless
A: The cross-sectional area of pores and throats, m2

P: The perimeter of cross section of pores and
throats, m

Ag: The effective area occupied by gas, m2

Aw: The effective area occupied by water, m2

Sw: Water saturation
Viw: The volume occupied by water in pore (or throat)

i, m3

Vi: The volume of pore (or throat) i, m3

kri: The relative permeability of phase i
qtmi: Total flow rate of phase i for multiphase flow,

m3/s
qtsi: Total flow rate when the network model is satu-

rated by single phase i, m3/s
qi,jk: The flow rate of phase i from pore j to pore k, m3/s
gi,jk: The hydraulic conductance of phase i between

pore j and pore k, m4/(Pa•s)
pi,j: Pressure of phase i in pore j, Pa
pi,k: Pressure of phase i in pore k, Pa
Ljk: The distance between center of pore j and pore

k, m

Lj: The length of half-pore j, m
Lk: The length of half-pore k, m
Lt : The length of the throat connecting pore j and

pore k, m
gi,t : Hydraulic conductance of the throat connecting

pore j and pore k, m4/(Pa•s)
gi,j: Hydraulic conductance of half-pore j, m4/(Pa•s)
gi,k: Hydraulic conductance of half-pore k, m4/(Pa•s).
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flow rates of throats during gas-water two-phase flow by pore
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