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Equivalent fracture models are widely used for simulations of groundwater exploitation, geothermal reservoir production, and
solute transport in groundwater systems. Equivalent permeability has a great impact on such processes. In this study, equivalent
permeability distributions are investigated based on a state-of-the-art numerical upscaling method (i.e., the multiple boundary
method) for fractured porous rocks. An ensemble of discrete fracture models is created based on power law length distributions.
The equivalent permeability is upscaled from discrete fracture models based on the multiple boundary method. The results
show that the statistical distributions of equivalent permeability tensor components are highly related to fracture geometry and
differ from each other. For the histograms of the equivalent permeability, the shapes of kxx and kyy change from a power law-
like distribution to a lognormal-like distribution when the fracture length and the number of fractures increase. For the off-
diagonal component kxy , it is a normal-like distribution and its range expands when the fracture length and the number of
fractures increase. The mean of diagonal equivalent permeability tensor components increases linearly with the fracture density.
The analysis helps in generating stochastic equivalent permeability models in fractured porous rocks and reduces uncertainties
when applying equivalent fracture models.

1. Introduction

Modeling flow and its coupled processes in fractured porous
rocks are important for subsurface environmental and
energy problems [1, 2], such as solute transport in groundwa-
ter or at radioactive waste disposal sites [3–5], geothermal
energy exploitation [6, 7], gas hydrate stability [8], and coal
mine water inflows [9]. The numerical models can be roughly
divided into two categories: equivalent fracture models and
discrete fracture models [10–12]. For discrete fracture
models, fracture geometry is depicted either deterministically
or stochastically (e.g., [13]); however, the simulations at the
field scale are too computationally expensive to applications
when the fracture density is large. For equivalent fracture
models, permeability is upscaled from discrete fracture
geometry to grid blocks, which reduces the complexity of
simulations and makes the equivalent fracture models appli-
cable at the field scale (e.g., [14]).

For equivalent fracture models, a major part of uncer-
tainty comes from the characterizations of permeability
fields (e.g., [15]). Upscaling permeability for heterogeneous
porous rocks has been comprehensively reviewed (e.g., [16,
17]). Nevertheless, the permeability of fractured porous
rocks is relatively complex as it is highly heterogeneous
and anisotropic and varies with the scale of measurement
(e.g., [18–21]). Upscaling permeability from multiple-scale
discrete fractures to equivalent fracture models was widely
studied in the last decades, which contributes to a better
knowledge of permeability underground as well as reduces
the uncertainty of equivalent fracture models [2, 22, 23].
Bogdanov et al. [24] calculated equivalent permeability
numerically by solving flow problems in three-
dimensional models consisting of both discrete fractures
and rock matrix. Öhman and Niemi [25] compared two
upscaling methods for fractured media, a classical fracture
network-based approach and a new enhanced stochastic
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continuum approach. Frampton and Cvetkovic [26] stud-
ied reactive tracer transport through discrete fracture net-
works using a stochastic Lagrangian framework,
combined with the methodology for upscaling particle
arrival times. Gong et al. [27] developed an upscaling
method to build a dual-porosity, dual-permeability model
from discrete fracture characterizations. Ebigbo et al. [28]
studied the inclusion-based effective medium models to
calculate the permeability of three-dimensional fractured
porous rocks. Recently, Rajeh et al. [29] developed a mod-
ified semianalytical superposition method considering the
hydraulic conductivity of the porous matrix and the frac-
tures, as well as the connectivity of the conductive fracture
network. Sweeney et al. [30] presented a computational
geometry-based upscaling approach to accurately capture
the dynamic processes considering the fracture geometric
properties and the matrix properties. We should note that
flow can also occur between disconnected fractures if the
rock mass has some porosity and permeability, which
would mean some differences in calculations of equivalent
permeability [31, 32]. Furthermore, Laubach et al. [33]
reviewed the diagenetic or chemical processes in fractured
porous rocks, which tend to disconnect fracture trace
patterns.

Specifically, the relationship between equivalent perme-
ability and fracture geometry has been extensively investi-
gated based on either analytical or numerical upscaling
methods [34–36]. de Dreuzy et al. [37] analyzed the influ-
ences of fracture length distribution on equivalent perme-
ability for two-dimensional discrete fracture networks in
which the matrix is assumed as impervious. Baghbanan
and Jing [38] studied the equivalent permeability and the
representative elementary volume (REV) of two-
dimensional fractured rocks considering the correlation
between fracture aperture and fracture length. Lang et al.
[39] developed a numerical method to compute the equiv-
alent permeability for three-dimensional discrete fracture
models based on the volume averaging of pressure and
flux. For discrete fracture models with power law length
distribution and with aperture-length correlation, two-
dimensional cut planes could underestimate the equivalent
permeability by up to three orders of magnitude compared
to that for three-dimensional models. Li et al. [40] estab-
lished analytical expressions for equivalent permeability
and fractal aperture distribution based on a multiple frac-
tal modeling considering both the rock matrix and discrete
fracture network (i.e., the discrete fracture model). Maillot
et al. [41] calculated equivalent permeability for three-
dimensional discrete fracture networks with a self-similar
power law fracture length distribution and compared the
difference between Poisson models in which the fractures
are distributed randomly and kinematic fracture model
which mimics dynamic fracturing processes. Hardebol
et al. [42] integrated multiple-scale datasets for generating
discrete fracture models. Their simulation results show
that the equivalent permeability of fractured porous rocks
can be two to three orders of magnitude higher than the
matrix permeability, which is highly controlled by the con-
nectivity of the fractures. Recently, Chen et al. [43] calcu-

lated the equivalent permeability distributions for a well-
connected model and a poorly connected discrete fracture
model and analyzed equivalent permeability distribution
statistically based on histograms. However, only a few
studies investigate the fracture geometry to equivalent per-
meability distributions for an equivalent fracture model,
which has important implications for creating stochastic
permeability fields for fractured porous rocks.

In this study, the influences of fracture network geom-
etry on equivalent permeability distributions in fractured
porous media are systematically quantified. The originality
of the work is studying the correlation between the equiv-
alent permeability distributions and the fracture geometry
by using the novel upscaling method, namely, the multiple
boundary method [44] for fractured porous rocks. This
paper is structured as follows: first, the geometrical properties
of an ensemble of synthetic two-dimensional discrete fracture
models are described. Then, the equivalent permeability for
the discrete fracture models is upscaled to equivalent fracture
models by using the multiple boundary method. Lastly, the
statistical distribution of the equivalent permeability and the
correlations between equivalent permeability and the fracture
density are analyzed, which quantitatively illustrates how
equivalent permeability distributions are influenced by the
fracture network geometry.

2. Generating and Upscaling for Discrete
Fracture Models

For investigating the equivalent permeability distributions
in fractured porous rocks, two main procedures are
involved. First, discrete fracture models are created sto-
chastically based on fracture geometric parameters. Then,
the equivalent permeability fields are calculated from the
discrete fracture models with the multiple boundary
method.

2.1. Stochastic Discrete Fracture Models. A discrete fracture
model, which includes fractures and rock matrix, depicts
fracture geometry explicitly. The fracture geometry mainly
includes fracture length, fracture orientation, fracture posi-
tion, and fracture density. According to multiple-scale frac-
ture characterization data, the fracture length can be
described by a power law distribution in natural fracture sys-
tems [45]:

n lð Þ = Al−a, ð1Þ

where l is the fracture length, nðlÞdl is the number of frac-
tures with sizes in the range ½l, l + dl�, A is a constant, and a
is a power law exponent. As the length of fractures is limited
by the rock size in the Earth’s crust, it should have upper and
lower bounds in the power law distribution. The power law
exponent a represents the growth properties of the fractures
and varies from 1.3 and 3.5 [45, 46].

In this study, two-dimensional discrete fracture models
with varied geometric properties are generated stochasti-
cally in a 20m × 20m domain based on the ADFNE code
[47]. The fracture centers are seeded over in the domain.
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The fracture length follows power law distribution, and
the lower bound lmin and the upper bound lmax are 4m
and 40m, respectively. For the fractures partially within
the domain, they are truncated by the boundaries. For
the multiscale length fracture network, it is hard to avoid
the censor effect in a given domain for a randomly distrib-
uted fracture network, which may underestimate the real
fracture length for the fracture network. Nevertheless, for
a power-law distribution of lengths, it is not usually a seri-
ous problem in this study [48].

The lower bound of the fracture length lmin increases
from 4m to 6m, 8m, and 10m. The number of fractures
N increases from 50 to 75, 100, and 125. Accordingly, the
varied fracture length and fracture density yield sixteen
discrete fracture models (Figure 1). The fracture orienta-
tion and the fracture position are generated randomly.
Fracture apertures range from μm to cm and depend on
the scale of measurement [45]. As investigating the effect
of fracture network properties on equivalent permeability
distributions is the primary goal of this study, a constant
fracture aperture of 1:2 × 10−4 m is assumed to ensure that
all fractures influence fluid flow and to get rid of other
affecting factors [42, 49]. For the domain of 20m × 20m,
the aperture value in this study is comparable to those
in Baghbanan and Jing [38], Lei et al. [50], and Agheshlui
et al. [51]. However, we should note that for naturally
fractured porous rocks, the rock stress and rock-fluid
interaction may result in varied apertures of fractures
[18], which will be elaborated further in the discussion
section. The fracture permeability is 1:2 × 10−9 m2 accord-
ing to the cubic law [52]. The matrix permeability is
assumed as km = 9:87 × 10−16 m2 (1md).

2.2. Equivalent Permeability Upscaling. The upscaling
methods for fractured porous rocks can be roughly classified
as analytical and numerical methods [22]. The analytical
method calculates equivalent permeability efficiently by
using an analytical function; however, its uncertainty
increases as the fracture geometry tends to multiscale and
complex. For the numerical method, after dividing the whole
fracture network into grid blocks of an equivalent fracture
model (Figure 2(a)), it requires to mesh the discrete fracture
model (Figure 2(b)) and solve steady flow problems numeri-
cally with specified boundary conditions for each grid block
(Figures 2(c) and 2(d)). Based on the results of the solution,
the equivalent permeability is calculated inversely according
to Darcy’s law. The procedures of the numerical method
are more complex than that of the analytical method as the
meshing code, and the flow simulation code are required,
whereas the accuracy will be improved regarding the com-
plex fracture network geometry (e.g., [53]).

In this study, the multiple boundary method is applied
[44] for calculating the equivalent permeability. Inspired by
the single boundary method (e.g., [54]), the multiple bound-
ary method utilizes flow rate information on multiple bound-
aries for calculating equivalent permeability. For example,
when the linear boundary conditions are applied along the
x-axis, the flow rates along the x- and y-axis, qx and qy, are

calculated as follows:

qx =
ðly
0
vr∙nxdy +

ðlx
0
vu∙nxdx +

ð lx
0
vl∙nxdx,

qy =
ðlx
0
vu∙nydx +

ð lx
0
vl∙nydx +

ðly
0
vr∙nydy,

ð2Þ

where vr , vu, and vl are the specific discharges on the right,
upper, and lower boundaries; nx and ny are unit vectors along
the x- and y-axes; and lx and ly are dimensions of the grid
block in the x- and y-directions. Then, the equivalent perme-
ability components can be calculated based on the matrix
form of Darcy’s law:

−
1
μ

kxx kxy

kyx kyy

" #
∇Px

∇Py

" #
=

qx

qy

" #
, ð3Þ

where μ is the dynamic viscosity and ∇Px and ∇Py are pres-
sure gradients along the x-axis and y-axis, respectively. In
the case of applying linear boundary conditions along the x
-axis, ∇Py is equal to zero and kxx and kyx can be calculated.
By using the linear boundary condition along the y-axis, ∇
Px equals zero and the other equivalent permeability compo-
nents kxy and kyy can be calculated in the same way. As the
calculated equivalent permeability components kxy and kyx
are not inherently consistent, the symmetric permeability
tensor can be obtained by averaging the off-diagonal
components.

It should be noted that the flow boundary conditions
affect the resulting equivalent permeability. They can be
mainly classified into three categories: no-flow, linear, and
periodic boundary conditions (e.g., [27, 49, 54, 55]). Regard-
ing the multiple upscaling method, the linear boundary con-
dition is applied as it mimics the realistic flow condition
underground to some extent and the resulting equivalent
permeability matches well with the analytical solutions [44].
By contrast, applying no-flow boundary conditions or the
single boundary method, which calculates the flow rate qx
or qy only on the right or the top boundary (see Equation
(2)), may underestimate the flow rate and therefore result
in a smaller equivalent permeability than that of the analyti-
cal solution. In this study, the dimensions of the grid block lx
and ly are 2m and the pressure gradient of the linear bound-
ary conditions is 1 Pa/m. During the upscaling procedure, the
MATLAB Reservoir Simulation Toolbox (MRST) is used for
meshing and solving flow problems for the discrete fracture
models [56, 57].

3. Results

For the discrete fracture models with fractures shown in
Figure 1, the equivalent permeability is upscaled from the
discrete fracture models to the equivalent fracture models.
For yielding generalized results for the statistical distribu-
tions of the equivalent permeability, ten realizations are cre-
ated for a given set of fracture geometric parameters. The
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equivalent permeability tensor consists of four components,
kxx, kxy, kyx, and kyy, for two-dimensional models as shown
in Equation (3). Herein, the equivalent permeability tensor
is assumed to be symmetric, i.e., kxy = kyx. The statistical dis-
tributions of the equivalent permeability and the correlation
between the equivalent permeability and the fracture geo-
metric parameter are analyzed in the following.

3.1. Statistical Distributions of the Equivalent Permeability.
The Cartesian grid of the equivalent fracture models and
the upscaled equivalent permeability field for kxx, kxy, and
kyy and for lmin = 4m and N = 50 are plotted in Figure 3.
The diagonal components of equivalent permeability tensor
kxx and kyy are of the same order of magnitude and less than
3 × 10−13m2. However, the range of kxy lies between −2 ×
10−13 and 2 × 10−13m2. This is because the diagonal compo-
nents kxx and kyy should always be positive according to the
physical meaning of the permeability in Darcy’s law, whereas
the off-diagonal term kxy could be positive or negative which
depends on the angle between the axes of the equivalent per-
meability tensor ellipse and the coordinate axes. The range of
absolute value of kxy is smaller than those of kxx and kyy as the
equivalent permeability tensor should be positive definite
matrices [58]. For the grid blocks where the fractures have
a large density and their orientations tend to along the x
-axis, kxx is bigger. This is also similar for kyy. It should be

noted that although the range of kxx and kyy is close, their
spatial distributions are different (Figure 3) which is primar-
ily dominated by fracture orientations.

The histograms of equivalent permeability for the frac-
ture networks are plotted in Figure 3. The ranges of kxx, kyy ,
and kxy are divided equally into 10 bins and are gathered
on the same frame. It shows that the histograms of kxx, kyy ,
and kxy exhibit different shapes. For kxy , they tend to be sym-
metrically distributed with a middle value around 0m2. For
kxx and kyy, they are all positive and exhibit a power law-
like distribution. The histograms for kxx, kyy, and kxy are also
fitted by the solid lines with the least square method
(Figure 3).

The fitted lines of the histograms of kxx, kyy, and kxy for all
realizations are gathered on the same frame (Figure 4). The
statistical properties of equivalent permeability also change
with the fracture geometric parameters. For the discrete frac-
ture model with lmin = 4m and N = 50, the modes of kxx and
kyy are less than 1 × 10−13m2 and kxy is distributed roughly
between −1 × 10−13 and 1 × 10−13m2. The shapes for kxx and
kyy tend to a power law shape which are similar to that of
the upscaled equivalent permeability for a three-dimensional
poorly connected discrete fracture model [43]. This is primar-
ily due to the fact that a lot of grid blocks are dominated by the
matrix permeability where the fractures inside do not pene-
trate the grid blocks or below the percolation threshold. When
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Figure 1: Fracture network geometry with different geometric parameters.
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Figure 2: (a) Unstructured meshes of the discrete fracture model within the grid block. (b) Cartesian grid for the equivalent fracture model
with lmin = 4m and N = 50; the corresponding solutions of the steady-state flow problems with the linear boundary conditions (c) along the x
-axis and (d) along the y-axis.
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Figure 3: The spatial distribution (top) and the histograms (bottom) of the equivalent permeability tensor components kxx , kyy , and kxy for
the discrete fracture model corresponding to that in Figure 2(b).
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lmin or N increase, the shapes for kxx and kyy change: the
modes migrate from a low value to a high value and the range
of kxy expands symmetrically. It should be noted that the
shapes of the histograms for kxx and kyy tend to lognormal-
like distributions whereas they keep as a normal-like distribu-
tion for kxy during the increase of lmin and N. The Gaussian
distribution or log-normal distribution for equivalent perme-
ability is commonly assumed in equivalent fracture models
(e.g., [15]) and is supported by field measurement data (e.g.,
[59]). The results in Figure 4 support this assumption, which
are based on upscaling permeability for fractured porous
rocks. In particular, the fitting curves in Figure 4 further show
how the shapes of the histograms of equivalent permeability
migrated from power law like to lognormal-like distributions
with the change of fracture geometries. The results highlight
the importance of fracture geometries on equivalent perme-
ability distributions.

3.2. Correlation between Equivalent Permeability Distribution
and Fracture Network Geometry. For analyzing the correla-
tions between the equivalent permeability and the fracture
network geometry, the dimensionless equivalent permeabil-

ity k’ of the grid block and the dimensionless fracture density
ρ for the discrete fracture model are defined [60], respec-
tively, as follows:

k′ = k
km

, ð4Þ

ρ = 1
A
〠
N

i

li
2

� �2
, ð5Þ

where k denotes the components of the equivalent perme-
ability, li denotes the fracture length of the i-th fracture,
and A is the area of the discrete fracture model which is
400m2 in this model. For each discrete fracture model, the
mean and standard deviation of the dimensionless equivalent

permeability components k′xx, k′yy , and k′xy , and σðk′xxÞ, σ
ðk′yyÞ, and σðk′xyÞ as well as the dimensionless fracture den-
sity ρ are calculated. The statistical properties of equivalent
permeability tensor components for all 160 discrete fracture
models are plotted in Figure 5.
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Figure 5: Continued.
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It is shown that a strong correlation exists between the
diagonal components of equivalent permeability tensor and

the fracture network geometry: k′xx and k′yy increase with
the dimensionless fracture density. The standard deviation
for k′xx and k′yy also increases with ρ which is reasonable
as few grid blocks may be interconnected by several fractures.

The correlation between k′xx and k′yy and ρ can be built by
the fitted line:

k′diag = a∙ρ + b, ð6Þ

where ρ is in the range of 2-14, k′diag is the diagonal compo-
nents of the equivalent permeability tensor which is in the
range of 50-350, a is the slope about 20, and b is the constant
about 30 here. Leung and Zimmerman [60] investigated the
equivalent permeability of a single grid block, and the results
show that the equivalent permeability increases linearly with
the fracture density. Similar results are also observed for the
mean equivalent permeability of grid blocks, as shown in
Figure 5. The slope coefficient of a in this study is comparable
for those in a single grid block. Although the main scope of
the paper concentrates on the influence of fracture network
geometries on equivalent permeability distribution, the fac-
tor of varied fracture aperture, which makes the model com-
plex, needs to be considered in further studies.

For kxy, the mean k′xy shows a small fluctuation around
zero with the changes of ρ. Furthermore, for kxy, its range var-
ies when the fracture network properties change (Figure 4).

When ρ increases, the ranges for k′xy and σðk′xyÞ also
increase. This is mainly because for a grid block with an
inclined fracture with azimuth θ, the absolute value of kxy

increases with kxx and kyy, which is given by [61] the following:

k θð Þ =
kxx kxy

kyx kyy

2
4

3
5

=
k∗x cos2θ + k∗y sin2θ k∗x − k∗y

� �
cos θ∙sin θ

k∗x − k∗y
� �

cos θ∙sin θ k∗x sin2θ + k∗y cos2θ

2
664

3
775,

ð7Þ

where k∗x and k
∗
y are the components of the equivalent perme-

ability tensor in x- and y-axes when the fracture azimuth is 0°.

4. Discussion and Conclusions

The results and their implications are mainly twofold: (1)
the shapes of histograms for equivalent permeability tensors
varied with fracture network properties, which helps gener-
ate stochastic permeability fields at the continuum scale for
fractures porous rocks, and (2) correlating fracture network
properties with the equivalent permeability tensors quantita-
tively; i.e., it would be possible to infer the mean of equiva-
lent permeability tensors from the fracture density. The
connectivity, which can be defined as the intersection
between fractures or the percolation parameter related to
fracture lengths in a volume [34, 37], is an important prop-
erty for discrete fractures. Thus, two key parameters of the
fracture network are considered: the fracture length and
the fracture number, which have a great effect on hydraulic
property or connectivity of fracture networks. Although gen-
erated synthetically, the fracture network geometry is com-
parable to those of realistic models. The domain size
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Figure 5: Plots of the mean and standard deviation of the dimensionless equivalent permeability tensor components with the dimensionless
fracture density ρ for varied fracture geometric parameters.
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(20m × 20m) is a compromise of the availability of fracture
geometric data at the field scale and the computation effort.
In this study, the fixed domain size is comparable with
related studies (e.g., [60]) and coordinates with the fracture
geometries. Specifically, the areal fracture intensity P21,
which denotes the length of fracture traces per unit area
[62], varies from 0.79 to 4.03m/m2 in these discrete fracture
models and falls within a reasonable range of values from the
measurement data in the Äspö Hard Rock laboratory [63].
Regarding the power-law distribution of fracture length,
ten realizations for a set of fracture geometric parameters
seem a bit few to get a representative sample. Based on the
results shown in Figure 4 that all ten realizations under the
same fracture geometric parameters yield similar results
and the histograms vary obviously with the fracture geomet-
ric parameters, these mostly indicated that the realizations
yield relatively stable statistical results. Accordingly, the
domain size and the number of realizations fulfill the
requirement of the study. Whereas the current model only
considers the fracture network geometries, when adding
other factors (e.g., varied aperture), which will make com-
plex models, the multiple domain size would be considered
[42] for yielding comprehensive and statistically stable
results.

The spatial and statistical distributions of equivalent per-
meability are influenced by fracture network geometry as well
as the matrix permeability (e.g., for the discrete fracture model
with lmin = 4m and N = 50). For the equivalent permeability
tensor components, their spatial distributions differ from each
other for a given discrete fracture model, which reflects the
high anisotropy of the equivalent permeability in fractured
porous rocks. Such differences emphasize the importance of
considering a full tensor form of equivalent permeability for
modeling flow in naturally fractured porous rocks.

The fracture network geometries are broadly regarded
as critical for understanding hydraulic properties (e.g.,
[37]). Considering the main scope of this study is to inves-
tigate how fracture network geometries (i.e., the connectiv-
ity) affect equivalent permeability distributions and devoid
of other relevant factors; the aperture is assumed as con-
stant, which indicates that each fracture contributes
equally to the fluid flow in fracture networks with an iden-
tical permeability, even though the constant aperture is a
common assumption for modeling flow in fractured reser-
voirs or related studies [37, 42, 64]. It should be noted
that the varied apertures seem more realistic for the natu-
rally fractured rocks, which is another key property of nat-
urally fractured rocks [45]. They can be characterized by
statistical models [34, 65] and are correlated with fracture
length [66, 67] and with rock mechanical stress state [18,
68, 69]. The constant aperture can lead to an increase of
the equivalent permeability of up to a factor of six as com-
pared to aperture heterogeneities [70]. When the fracture
aperture is correlated with fracture trace length, the equiv-
alent permeability of the model can be controlled by fewer
numbers of large fractures with large apertures [71]. Such
aperture models open the way to study equivalent perme-
ability distributions for naturally fractured rocks and
should be addressed in further work.

Another limitation of this research is that the current
fracture model is analyzed in two dimensions, which cor-
responds to layered models and is a simplification for nat-
urally fractured porous rocks based on outcrop data [50,
55, 69]. In the two-dimensional models, the fractures are
assumed to extend vertically, whereas when fractures are
not vertical and their dip angles scatter randomly, the
fracture connectivity and equivalent permeability may vary
from two-dimensional to three-dimensional models [39,
72]. So it is not very straightforward for correlating results
from two dimensions to three dimensions, which depends
on specific geological settings and fracture geometric prop-
erties. Although when fracture densities are high, three-
dimensional equivalent permeability can be predicted with
proper corrections based on two-dimensional results [39].
The methodology applied in this study does not have
any limitations on three-dimensional naturally fractured
porous rocks. For the upscaling procedure, the flow rate
is calculated based on three boundaries of the grid block
for the two-dimensional discrete fracture model, as shown
in Equation (2). In contrast, for three-dimensional models,
the flow rated is calculated based on five boundaries,
which may have outflows [43]. The analysis of three-
dimensional fractured porous rocks has several limitations:
(1) the availability of multiscale three-dimensional fracture
geometry data, (2) corrections of sampling bias [73], (3)
lack of benchmarking models for naturally fractured rocks,
and (4) efficient computational platforms for simulating
flow in three-dimensional discrete fracture models.

To conclude, the equivalent permeability distributions of
two-dimensional stochastic discrete fracture models are
studied. The fracture length follows a power law distribution,
and the equivalent permeability was upscaled from a discrete
fracture model to an equivalent fracture model by using the
multiple boundary method. The spatial and statistical distri-
butions of equivalent permeability depend on the fracture
network geometry as well as the matrix permeability. The
spatial distributions of kxx , kyy, and kxy differ from each other
which is primarily dominated by the fracture geometry. The
histograms of equivalent permeability tensor components
are also different. Initially, the diagonal components, kxx and
kyy, tend to a power law-like distribution. The off-diagonal
component, kxy, tends to a normal-like distribution and is sym-
metrically distributed around zero. When the fracture length
and fracture number increase, the shapes of the histograms of
kxx and kyy change to a lognormal-like distribution and the
ranges of kxy expand. The mean of the diagonal equivalent per-
meability tensor components kxx and kyy increases linearly with
the fracture density with the coefficient about 20. The standard
deviation of kxx and kyy also increases with the fracture density.
Nevertheless, the mean of kxy distribution keeps as zero
whereas its standard deviation increased.
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