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Recently, there are increasing interests in chemical enhanced oil recovery (EOR) especially surfactant-polymer (SP) flooding.
Although alkali-surfactant-polymer (ASP) flooding can make an incremental oil recovery factor (IORF) of 18% original oil in
place (OOIP) according to large-scale field tests in Daqing, the complex antiscaling and emulsion breaking technology as well as
potential environment influence makes some people turn to alkali-free SP flooding. With the benefit of high IORF in laboratory
and no scaling issue to worry, SP flooding is theoretically better than ASP flooding when high quality surfactant is available.
Many SP flooding field tests have been conducted in China, where the largest chemical flooding application is reported. 10
typical large-scale SP flooding field tests were critically reviewed to help understand the benefit and challenge of SP flooding in
low oil price era. Among these 10 field tests, only one is conducted in Daqing Oilfield, although ASP flooding has entered the
commercial application stage since 2014. 2 SP tests are conducted in Shengli Oilfield. Both technical and economic parameters
are used to evaluate these tests. 2 of these ten tests are very successful; the others were either technically or economically
unsuccessful. Although laboratory tests showed that SP flooding can attain IORF of more than 15%, the average predicted IORF for
these 10 field tests was 12% OOIP. Only two SP flooding tests in (SP 1 in Liaohe and SP 7 in Shengli) were reported actual IORF
higher than 15% OOIP. The field test in Shengli was so successful that many enlarged field tests and industrial applications were
carried out, which finally lead to a commercial application of SP flooding in 2008. However, other SP projects are not documented
except two (SP7 and SP8). SP flooding tests in low permeability reservoirs were not successful due to high surfactant adsorption. It
seems that SP flooding is not cost competitive as polymer flooding and ASP flooding if judged by utility factor (UF) and EOR cost.
Even the most technically and economically successful SP1 has a much higher cost than polymer flooding and ASP flooding, SP
flooding is thus not cost competitive as previously expected. The cost of SP flooding can be as high as ASP flooding, which indicates
the importance of alkali. How to reduce surfactant adsorption in SP flooding is very important to cost reduction. It is high time to
reevaluate the potential and suitable reservoir conditions for SP flooding. The necessity of surfactant to get ultra-low interfacial
tension for EOR remains further investigation. This paper provides the petroleum industry with hard-to-get valuable information.

1. Introduction

Surfactant-polymer (SP) flooding has advantages of both
mobility control and increasing capillary number due to
increased viscosity of displacement phase and reduced inter-
facial tension (IFT), which are key mechanisms of enhanced
oil recovery (EOR) in polymer flooding and surfactant
flooding, respectively. Sweep efficiency can be significantly
enlarged by reduced mobility ratio of displacement phase

(water) divided by displaced phase (oil), while displacement
efficiency can be largely increased by reducing IFT to ultra-
low level [1]. SP flooding has combined advantages of poly-
mer and surfactant, while it can avoid the disadvantage of
scaling in alkali-surfactant-polymer (ASP) flooding [2–5].
Recently, there are increasing interests of SP flooding in
China [6–12]. Evaluation of field tests changes to the criteria
and perspective, while incremental oil recovery factor (IORF)
is the most frequently used and well-accepted parameter in
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China. It should be noted that this method cannot reflect the
cost regarding to the oil price. IORF by polymer flooding in
field tests is 7%-14% OOIP [13], while ASP can enhanced
oil recovery by 18-30% OOIP according to field tests in Daq-
ing [14]. Typical SP flooding can increase oil recovery by
more than 15% OOIP [15]. SP flooding is believed the devel-
opment trend of chemical flooding in China [13, 16], and five
large-scale field tests have been carried out by China National
Petroleum Company (CNPC) since 2011 [13]. Although a
successful single-well SP field test was reported in Hungary
[17], large-scale SP flooding field tests were only reported
in China. A critical review and comparison of recent large-
scale SP flooding field tests in China is of importance but
not found yet. This paper reviews 10 major SP flooding field
tests in China which includes one offshore field test.

2. EOR Mechanisms

A brief introduction about the EOR mechanism is helpful to
understand EOR field tests [18]. The basic mechanism of SP
flooding includes increase displacement efficiency and enlarg-
ing sweep volume. Displacement efficiency is mainly deter-
mined by interfacial tension, wettability, and microscopic
heterogeneity while sweep efficiency is affected by mobility
ratio, macroscopic heterogeneity, and well pattern [1]. It is
notable that effective displacement is based on effective contact
or sweep. Polymer can increase sweep efficiency significantly.
Polymer’s effect on displacement efficiency remained disputed.
Surfactant can increase displacement efficiency when oil-water
interfacial tension (IFT) is reduced to ultra-low. However, sur-
factant flooding has limited IORF because it cannot increase
sweep efficiency due to poor mobility control. ASP flooding
can both increase displacement efficiency and sweep efficiency
thus canmake a very high IORF. SP flooding has advantages of
both polymer flooding and surfactant flooding, and most ben-
efits of ASP flooding. Polymer can improve the mobility ratio
between the displacing phase (water or polymer solution)
and displaced phase (oil), which has been under investigation
for decades. Polymer effect on the reduction of residual oil sat-
uration (ROS) has been deemed limited or negligible for a long
time until recently. The polymer effect on displacement effi-
ciency due to the viscoelasticity effect is drawing more and
more attention [19–25], while its mechanism explanation is
not satisfactory or even contradictory [19]. Some researchers
investigate microscopic residual oil remobilization mecha-
nisms [26–30]. However, the claimed displacement improve-
ment due to polymer viscoelasticity and normal stress
difference [25, 31] is not inconsistent with other researchers’
observation [19]. Wettability alternation by polymer may be
partly responsible for ROS [19]. Mistaking the remaining oil
for residual oil accounts for many reported significant ROS
reduction in core flooding tests [2]. SP flooding mechanisms
are believed quite similar to ASP flooding [10, 15]. Mecha-
nisms of ASP flooding includes reduction of water mobility
by polymer [21, 32], reducing IFT by surfactants added or/and
in situ produced [33–37], wettability alternation due to alkali
and surfactants [32, 38], and emulsification [39–44]. Although
the detailed contribution degree of emulsification due to
addiction of alkali in ASP flooding is still unknown, it is well

accepted that emulsification plays a very important role in
chemical flooding [45–48]. Surfactant adsorption can be
reduced by 50% or less by the polymer in SP flooding due
to competitively adsorption between surfactants and poly-
mers [49]. However, the surfactant reduction in SP (less than
50%) is much smaller than ASP (surfactant adsorption
reduced to almost zero) [50, 51]. Surfactant adsorption dif-
fers in SP and ASP flooding [2–4]. The laboratory screening
of polymers and surfactants are available in some references
[52–59] while it is not the emphasis of this paper.

3. Field Tests

Since the laboratory study of core flooding or flow test has
some limitations in reflecting actual reservoir conditions, the
field test is not only necessary but also the best way to check
technology application [60, 61]. The field tests can also verify
that whether conclusions from laboratory test results are cor-
rect. Typical ten SP flooding field tests (SP1 to SP10) in China
are summarized to help understand the benefits and challenges
of SP flooding. Outside China, few SP flooding field tests are
reported in recent years except one in Hungary [17], although
manymicellar flooding field tests have been conducted decades
ago in the USA [1]. The surfactant cost was too high to be used
in high surfactant concentration micellar flooding. This is the
background of surfactant-polymer flooding attractiveness in
recent years. For convenience, ten SP flooding field tests in
Tables 1 and 2 are named SP1 to SP10. SP1 to SP5 are orga-
nized and implemented at the same time by CNPC [10, 12,
15, 62, 63]. Among these field tests, only SP10 is in the offshore
heavy oil reservoir [64–66]. This field test was changed from an
offshore polymer flooding field test [67–69]. SP7 and SP8 are
both in heavy oil reservoirs in Shengli, SINOPEC [70–72],
while the other 7 field tests are all light oil. Typical laboratory
screenings for surfactants and polymer are available in refer-
ence [73]. Other references [74–83] are also reviewed for more
information of SP7 and SP8. SP7 is well introduced in a refer-
ence [70]. SP6 [84–90] was carried out in central China in
He’nan Oilfield, a subcompany of SINOPEC. SP9 in Daqing
Oilfield is carried out in postpolymer flooding reservoirs [91–
94]. These 10 field tests are not the whole SP flooding field tests
in China, but most typical ones that can be found. These field
tests are the ones that can be accessible to publications. Many
SP flooding field tests, especially in Shengli Oilfield, are not well
documented due tomany reasons including technology protec-
tion considerations.

Basic information of reservoir formation and chemical
flooding schemes of these tests are given in Tables 1 and 2.
Since polymer flooding is mature in China and other places
except some harsh reservoirs like high temperature and
carbonate reservoirs, we do not focus on the polymers in
this paper. However, it is worth to mention that all polymer
used in these ten field tests are synthetic polymers (Partially
hydrolyzed polyacrylamide, HPAM) and only in one (SP9) is
associate polymer. Although surfactant flooding is reported
decades ago [1], commercial use of surfactant in EOR is still
not well documented. About the surfactant flooding mecha-
nism, one may refer to a critical review on surfactant EOR
progress [95]. The surfactant type and performance is of vital
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importance for surfactant EOR. Unfortunately, little infor-
mation is available about the surfactants used in these ten
field tests. Thus, only surfactant type is given in Table 2
according to surveys from various references. Since reducing
oil/water IFT to ultra-low is a basic requirement of surfactant
in current surfactant screening standard, all surfactants used
in these ten field tests are claimed to meet the requirement.
The requirement of surfactants and polymers for chemical
EOR is available elsewhere [10, 62, 96, 97].

From Table 1, it is obvious most SP flooding field test
scale is very large, and one of the main purposes is to develop
all the related technologies including surfactants production
and evaluation, polymer preparing and injection, and pro-
duced fluid processing in actual field sites. All the three
national oil companies in China (CNPC, SINOPEC, and
CNOOC) have implemented at least one SP flooding field
test, indicating that SP flooding is drawing the most attention

in China where most chemical EOR happens. Among these
10 typical SP flooding field tests, only Shengli Oilfield from
SINOPEC has carried out more than 2 SP flooding field
tests (SP7 and SP8). Actually, many other SP flooding field
tests and applications in Shengli are implemented but not
reported. We will discuss this later. It is also Shengli Oilfield
that first carried out SP flooding as well as ASP flooding
through large-scale field tests. SP flooding can be regarded
as development based on polymer flooding because the poly-
mer make-up process is quite similar. Up to present, polymer
flooding is the most wide-used chemical EOR technique in
China, and it has been commercially used in Daqing and
Shengli in 1996 and 1997, respectively [8, 9, 98]. These two
oilfields are also the largest and second-largest oil produc-
tion companies in China at present. Experience and lessons
from polymer flooding provide ideas for SP flooding and
ASP flooding. Different from Daqing Oilfield, where polymer

Table 1: Basic information of typical SP flooding field tests in China.

No. 1 2 3 4 5 6 7 8 9 10

Oilfields Liaohe Xinjiang Jilin Changqing Dagang He’nan Shengli Shengli Daqing CNOOC

Location J16 7ZQ H113 MLB3 GX3Q 438 GD7 GD6XB XQ JZ9-3

Start time
May
2011

Aug
2011

Jan
2010

Sep 2014 Mar 2012
June
2009

Sep 2003 Jan 2006 Dec 2008 Oct 2010

Injectors 24 18 9 16 11 15 10 37 6 8

Producers 35 26 16 25 26 20 16 60 12 Irregular

Well pattern 5 spot 5 spot 5 spot 5 spot NA Irregular Line
Inverted

9
5 spot

Inverted
9

Well spacing (m) 150 150 141 150 150-200 202-210 300 × 150 212 × 106 250 350-400

Area (km2) 1.28 1.21 0.68 1.12 0.45 0.93 0.94 2.8 1.08 NA

OOIP (10 4 ton) 298 120.8 93 105.8 205.4 296 277 645 262.41 4874

Strata depth (m)
1255-
1460

1146 1202 1670 1300 1415
1261-
1294

1350
1040-
1050

NA

Pressure (MPa) 12.4 16.07 7.66 13.48
9.14-
12.85

13.8 12.4 13.37 10.3 13.4-14.8

In situ oil viscosity (cP) 14.3 6.0 12.9 2.3 19-37.5 7.6 45 66.9 12.8 17.1

Soi (%) 60.6 70.0 64.5 65.0 - 65-70 72 65.8 NA NA

Acid value (mgKOH/g) 1.2 0.7 0.14 0.90 2.60 NA 3.0 3.0 0.02 NA

Temperature (°C) 55 40 55 50 53 67 68 67.5 45 57

Porosity (%) 29.1 17 21 15 31 17.5 34 33.9 22-26 22-36

Permeability (mD) 3442 94 115 110 936 569 1320 1079 706 10-5000

Dykstra-Parsons
coefficient

0.76-1.78 1-2 0.70 0.90 2.60 0.72 0.58 0.6-0.8 0.72 NA

Formation brine TDS
(ppm)

2467 14250 15168 19000 14350 2765 8307 8436 4264
6401-
9182

Brine Ca2++Mg2+ (ppm) 10.4 151.2 47.3 539.0 77 NA 231 195 55 50

Injection water TDS
(ppm)

2748.9 3681.1 1200.0 5000.0 6726.0 5012 8246 7749 4012 2902

Inj. water Ca2++Mg2+

(ppm)
0 43.4 20 0 53 NA 276 266 40 30

Predicted IORF (%OOIP) 20 18.0 13.8 14.5 12.1 9.01 18 9.3 6.3 6.7

Actual IORF (%OOIP) 16.3 13.7 NA NA NA 2 16.8 6.19 2.4 1.34

UF >45 NA NA NA NA 10.1 >49 NA NA

NA: not available.
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flooding has been mature for about twenty years, and ASP
flooding has entered into the industrial stage in 2014, Shengli
Oilfield has turned to SP flooding after carrying out two
large-scale ASP flooding field tests. In 2008, SP flooding
was reported to put into industrial use in Shengli. The SP
flooding production in Shengli in 2016 is more than 2 million
tons [99], which is most in the world to the best of our
knowledge.

3.1. Reservoir Petrophysics. Although all the key parameters
regarding SP flooding are given in Tables 1 and 2, only the
most representative ones such as reservoir temperature, for-
mation permeability, slug size, injection rate, and IORF are
discussed here. Some key parameters like Dykstra-Parsons
coefficient, well pattern, in situ oil viscosity, and formation
brine are not discussed here. As for the 10 SP field tests, 9
are sandstone reservoir and one conglomerate one (SP2).
At present, carbonate reservoir chemical flooding is not
reported in China, although conglomerate reservoir polymer
flooding has been developed recently in Xinjiang Oilfield.
The reservoir or formation temperature is shown in
Figure 1. Three field tests (SP6, SP7, and SP 8) are in a
high-temperature reservoir which is around 68°C. Other SP
flooding is tested in medium or low-temperature reservoir
between 40°C and 57°C. Temperature has an important effect
on polymer viscosity and thermal stability [100–102]. Labo-
ratory studies and field tests in China indicate that after tem-

perature goes higher than 65°C, some measures have to be
taken to reduce or minimize the effect of dissolved oxygen.
Thus, it is more challenging for three high-temperature
reservoirs to use polymer flooding and SP flooding than
others. Permeability is another significant parameter that
affects EOR effects. Although chemical flooding EOR tech-
niques have been used in low permeability reservoirs,
medium to high permeability reservoirs are better screening
candidates according to different screen criteria. Figure 2
shows the average formation permeabilities for these SP field
tests. Among these blocks, SP1 is in really high permeable
formation (K = 3442mD), and SP10 is generally in high
permeability reservoir although this offshore block has wide
permeability range. Since SP10 is in high permeability heavy
oil reservoir, the permeability of 2500mD is regarded as the
average permeability in Figure 2. It must be mentioned that
only a permeability range is given in corresponding refer-
ences. SP2, SP3, and SP4 have much lower permeabilities
than other blocks. SP3 from Changqing Oilfield and SP4
from Jilin Oilfield are typical low permeability reservoirs,
and it may have much lower permeability than the values
in Table 1 and Figure 2, which are directly collected from
references. These two blocks are selected to see whether it
is possible to use the ultra-low IFT SP system to develop low
permeability reservoirs. Laboratory core flooding tests regard-
ing these tests go well before these field tests are conducted.
The laboratory screening of polymers and surfactants for these
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Figure 1: Reservoir temperature of SP field tests.
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Figure 2: Formation average permeability of SP field tests.

5Geofluids



10 SP field tests is beyond the scope of this paper. It is not easy
to deploy surfactant flooding in low permeability due to high
surfactant adsorption and this will be discussed later.

Chemical slug injected in these tests are shown in
Figure 3 and Table 2. SP6 is injected with the least chemical
slug among these tests, which have 0.7 PV for most cases.
The slug size is determined mainly but not fully by numerical
simulation based on reservoir conditions. However, some
projects selected chemical slugs more from previous projects
rather than other reasons. After all, it is more natural to inject
a proper slug similar to a previous block, although the simi-
larity between projects has not been given enough emphasis.
If the field test goes as or better than expected, the slug size is
usually to be expanded and vice versa. This is based on that
fact that polymer flooding cost is much lower than the oil
price. This implied that SP6 performance is not good.
Figure 4 summarized the injection rate during these field
tests. Except the two blocks of SP10 and SP 9, the other injec-
tion rate is higher than 0.10 PV per year. The injection rate
was believed to affect the recovery factor due to numerical
simulation results. However, this depends on the proper geo-
logical models that are built and good reservoir simulation.

For chemical flooding projects in China, the injection rate
tends to be as high as possible because the operators hope
to get positive results. Typical injection rate for polymer
flooding is between 0.10 PV per year (PV/year) and 0.15
PV/year, and 0.20PV/year only for some very close well
(75m) projects. Among these blocks, SP1 adopted an injec-
tion rate of 0.15 PV/year, while 6 blocks used 0.10 PV/year.
SP10 is an offshore reservoir, and its injection rate is much
lower than onshore ones. SP9 in Daqing is in postpolymer
flooding block, and the injection rate is lower than most the
other projects in Daqing Oilfield.

Figure 5 shows the reported actual IORFs of these blocks.
Note that SP6, SP7, and SP8 have a much higher temperature
than others. SP9 is postpolymer flooding block, which is the-
oretically more difficult for EOR. The expected or predicted
IORFs are given in Table 1 and Figure 5. SP1 and SP2 were
predicted 20% and 18% OOIP, much higher than IORF of
15% OOIP which is the expectation of SP flooding on some
typical reservoir conditions like Daqing. SP2 and SP3 were
predicted with high IORF, although their formation perme-
abilities were much lower than others. Predicted IORF of
SP6 and SP8 were lower than others because they have higher
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Figure 3: Chemical slug size of SP flooding field tests.
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reservoir temperature and oil viscosity. SP7 is an exception
considering its high reservoir temperature and higher oil vis-
cosity. SP9 IORF seems lower because this is a polymer flood
block. If an IORF of 10% OOIP was calculated for this Daq-
ing block, the predicted IORF is 16.3%, on the same level as
others. Actual IORFs are given in Table 1, and some data
are not available. Except for three blocks, actual or updated
IORF are lower than the predicted. IORF of SP1 and SP2 in
Table 1 are not finally values and according to the references,
final incremental oil recovery factor is probably close to or
even higher than the predicted value. Some projects are so
unsuccessful that they are not further reported. Generally
speaking, EOR field tests in China will be reported or pub-
lished frequently unless they are too unsuccessful to be men-
tioned. However, all data including some failures are very
valuable for the EOR community because they provide valu-
able references for similar or potential projects. Learning
from failures saves lots of money in EOR since any field test
involves a huge investment. Although three blocks’ IORFs
are not available, the information shows that they are much
lower than predicted values. Those blocks with poor recovery
performance are terminated. SP1 is so successful that a much
more enlarged field test has been conducted recently [103].

4. Performance Evaluation

How to evaluate field test result is not an easy work. Many
factors like reservoir sedimentation characteristics and
understanding degree, well pattern and reserve control
degree, well drilling quality, development scheme appropri-
ateness, and operator management level affect the develop-
ment performance [8, 9, 11, 104]. Since the OOIP in a
certain block is fixed, although sometimes it is changed, the
ultimate recovery factor (URF) or IORF compared with
waterflooding is often selected as the most important criteria
in chemical flooding field practice. Typical SP flooding is
believed to enhance oil recovery by 13-17% OOIP, while
polymer and ASP are 8-13% and 16-22%, respectively [99].
A recent study shows that ASP flooding IORF can be as high
as 30% OOIP in Daqing [14, 105]. From Table 1, predicted
SP flooding incremental oil recovery can be as high as 20%.

Actual staged IORF in Liaohe (SP1) is 16.3% OOIP, and the
current recovery factor is 66% OOIP [15]. Water flooding
recovery before SP flooding in Liaohe is 49.9% OOIP.
Although some SP flooding field tests (SP1, SP2, and SP7)
are very successful if judged by incremental oil recovery,
other field tests are not so successful. For instance, ongoing
SP3, SP4, and SP5 field tests results are far below expecta-
tions. Finished SP6 and SP9 also failed to meet the goal. Inad-
equate injection schemes and management defects at least
partly account for the failure in some SP flooding field tests
[54, 103, 106, 107]. Lessons from these field tests will be dis-
cussed in the next session. More recovery or enhanced oil
recovery means more benefits if the oil price exceeds oil pro-
duction cost. However, if the oil price is lower than the oil
production cost, the recovery factor should not be the evalu-
ation criteria. Thus, other parameters like Net Present Value
(NPV) [108], output-input ratio (OIR) [3], and utility factor
(UF) [109] are also used. Among these parameters, IRF and
UF do not depend on oil price, while NPV and OIR highly
depends on the oil price. IORF cannot reflect the cost and
oil price effect, while UF can partly indicate the cost effect
since the polymer price keeps stable during a long period.
Due to the limited information available, we can only provide
some UF in terms of polymer in Table 1. Figure 6 shows three
SP field tests UFs. Current commercial polymer flooding UFs
in Daqing [110] shown as “P” in Figure 6 is given for compar-
ison. UF of SP7 is predicted 49 before field test [111], while
UF of SP1 is high than 45 [112]. These two field tests are
the most successful ones among all the SP flooding field prac-
tice. UF of SP6 is 10.1 [86], which indicates the failure.
Although RF and UF from SP3, SP4, and SP5 are not made
public, some information indicates that these SP flooding
performances are not as good as expected. Polymer flooding
field test UF from Daqing and Shengli is also given in
Figure 6, shown as “P1”. From Figure 6, we can see that
SP1 and SP7 are economically successful and UF is compara-
ble to that of polymer flooding. SP1 and SP7 and SP6 are cur-
rently the most successful SP flooding field tests. However,
these large-scale SP flooding field tests UF are much lower
than that of early polymer flooding field tests in Daqing
and Shengli (P1 in Figure 6).
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Since oil production cost is confidential for most oil com-
panies, the actual cost in chemical flooding is not available.
Under current oil price circumstances, whether chemical
flooding like SP flooding and ASP flooding cost exceeds oil
price is of vital importance. ASP flooding field test cost is
reported between 30-45 USD/bbl in Daqing [15], while in
another study the comprehensive ASP flooding cost without
tax is estimated between 28-50 UDS/bbl [113]. SP flooding
cost was believed lower than ASP flooding, but higher than
polymer flooding. According to a previous study [15], SP
flooding cost can be as low as 1000 Yuan/ton (about 21
USD/bbl). This value, however, is too optimistic. It is proba-
bly operation cost or chemical cost. It is reported in 2015 that
the staged operation cost of SP1 is 1389 Yuan/ton (around 29
USD/bbl) [114]. It is worth to note that SP1 is currently the
most successful SP flooding field test which oil production
rises from 63 ton/day to 351 ton/day [11]. Table 3 is the cost
estimation between polymer flooding, SP flooding, and ASP
flooding. The first columns are from the reference [15], while
the column with an asterisk (∗) is an optimistic estimation
based on reference [15]. The last column with a pound sign
(#) in Table 3 is an estimation based on data from reference
[114]. It can be seen that even the most successful SP flooding
is not cost competitive in current low oil price circumstances,
and the cost of SP flooding can be as high as or higher than
ASP flooding. Surfactant cost mainly accounts for the high
price. Thus, much work has to be done to reduce the SP
flooding cost [115].

5. Lessons Learned

5.1. SP Flooding Technology Is a Very Promising but Also
Risky Technology. From Tables 1 and 3, it is obvious that
not all SP flooding makes high or expected IORF. Among
the 10 SP field tests in Tables 1 and 2, only SP7, SP1, and
SP 2 are reported high IRFs. More information about SP7 is
available in reference [70]. Central producer performance
of SP7 is shown in Figure 7 [70]. In Figure 7, “0309” means
September 2003. The maximum oil production increased
by 12 times, the highest among all the SP flooding field tests.
In contrast, daily maximum oil production increased by 5

times in SP1 [11]. The oil production rate of SP1 (Liaohe)
and SP2 (Xinjiang) is shown in Figure 8 [116]. However,
the daily oil rate in SP1 and SP2 is much more drastic than
that of SP7. Causes remain to be studies. The success of SP7
in Shengli Oilfield leads to many enlarged SP flooding field
tests and finally industrial promotion of SP in 2008 in Shengli
[117]. The success of SP2 in Xinjiang Oilfield also leads to a
much more enlarged industrial SP flooding test [116]. Oil
production from SP flooding in Shengli in 2016 is more than
2 million tons, and the average IORF is 10.2% OOIP [117].
Considering the high oil viscosity and high temperature in
Shengli, IORF of 10.2% is quite high. It is not known yet
whether the 10.2% IORF in SP flooding in Shengli is actual
field practice performance or merely predicted value. Other
field tests or practices of SP flooding in Shengli are not as suc-
cessful as SP7 and are seldom reported. It is worth to mention
that the final recovery factor of SP7 is 54.3% OOIP, while
before SP flooding the water flooding recovery is 36.3%
OOIP [117]. It is generally accepted that the higher recovery
factor, the more difficult to enhanced oil recovery, thus it is
much easier to enhance oil recovery at higher remaining oil
saturation. Perhaps due to the risk or unsatisfactory effects
of actual SP flooding performance, another new technology
called heterogeneous combination flooding system (HCFS)
consisting of polymer, surfactant, and preformed particle
gel has been developed with great effort in Shengli [118].
HCFS can be seen as PPG enhanced SP flooding [119]. After
some field tests, HCFS has been widely promoted in Shengli
Oilfield since 2015 [120]. Since all chemical flooding field
tests or applications adopted profile control slug before
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Figure 6: Utility factor comparison between polymer flooding and SP flooding.

Table 3: Cost comparison between polymer, SP, and ASP flooding.

Content Polymer ASP SP SP∗ SP1#

Construction cost (Yuan/ton) 350 550 / 360 550

Chemicals cost (Yuan/ton) 250 625 / 570 481

Operation cost (Yuan/ton) 325 650 / 500 1389

Total (Yuan/ton) 925 1825 1000 1430 2420

Total (USD/bbl) 19.4 38.5 21.1 28.9 51.8

8 Geofluids



chemicals injection, it is not clear that whether it is PPG or SP
mainly works in PPG enhanced SP flooding.

5.2. The Economic Performance of some SP Flooding Was Not
as Attractive as Expected. Table 3 gives the expected SP flood-
ing cost (third column) and actual field tests SP flooding cost
(last column, SP#). In SP#, only construction cost is esti-
mated the same as that of ASP, considering the same well
injection facilities between SP flooding and ASP flooding.
There is no alkali facility in SP flooding actually, but the cost
increase in ASP flooding can be balanced by more oil pro-
duced. Other data in SP# is collected from reference [114],
which is based on the most successful SP1 in recent years.
Even a very high IRF is achieved in SP1; its cost is high too.
The cost of main chemical flooding techniques is given in
Figure 9. Without alkali, the surfactant cost is high due to
increased surfactant quality and quantity. Even the most suc-

cessful SP flooding test (SP1) has a much higher total EOR
cost than polymer flooding and ASP flooding. High surfac-
tant cost due to high concentration compared with polymer
and high surfactant price mainly accounts for the high cost.
In SP6 and SP7, high concentration surfactant is used, which
at least partly accounts for the success. Since no special mea-
sures are taken to reduce surfactant adsorption like alkali in
ASP flooding, the actual surfactant adsorption in strata is
high. Surfactant adsorption value with measures taken in
SP6 is 4.17mg/g sand [111]. Some study [121] indicates that
the low IFT state can be only maintained for a very small dis-
tance from injectors. The desorption of some surfactant may
contribute to reducing IFT; however, whether this contribu-
tion results in ultra-low IFT remains to be investigated.

5.3. It Is Very Difficult to Use SP Flooding in Low Permeability
Reservoirs. Since surfactant adsorption in low permeability
reservoir is much higher than that for higher permeability
one, it is theoretically difficult or impossible for surfactant
flooding in low permeability reservoirs. This may explain
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why no SP flooding was reported technical successful in low
permeability reservoirs in China. In fact, until 2009, no com-
mercial surfactant flooding projects were reported in the
world according to a critical review [95]. It is worthy to men-
tion that SP flooding was reported to use commercially in
Shengli Oilfield [96], although few publications were avail-
able. To assure the development effect of surfactant flooding,
either higher surfactant concentration and/or measures to
reduce surfactant adsorption in formation should be used.
This will add to the cost. In another successful SP field test
in Hungary [17], high concentration surfactant (1.5%) was
used together with a pretreatment potassium chloride (KCl)
injection to reduce surfactant adsorption. IFT in the oil-
water interface is estimated 10-2mN/m [17], while the basic
requirement of surfactant is to reduce IFT to 10-3mN/m
at a concentration 0.3% in China. Since most surfactants
are adsorbed in near injectors regions, the necessity of reduc-
ing IFT by surfactant to 10-3mN/m as a criterion is worth
further investigation.

5.4. Polymer Viscosity and Concentration Should Be Carefully
Selected in SP Flooding. If polymer concentration and viscos-
ity is too high, strata may be blocked [122, 123]. If polymer
centration and viscosity is too low, the mobility reduction is
inadequate. Recently, there are increasing interests in poly-
mer viscoelasticity which is reported to have a great effect
on ROS [22, 124–128]. However, the risk of blocking strata
should be given priority when high concentration and high
molecular weight polymer is injected since the blocking is
irreversible in reservoir conditions. Among some not suc-
cessful field tests, SP2, SP3, and SP4 are all suffered serious
blocking in strata, especially SP2. High concentration poly-
mer was believed beneficial to polymer flooding due to its vis-
coelasticity effect to reduce ROS [129]; however, it does have
great risk to block low permeability strata. This is well
reflected in SP2, where significant change also called dynamic
adjustment has been made [116]. Since the field test block
permeability in the north part (94.8mD) is higher than in
the south part (46mD), with the same injection scheme, pro-
duction performance in the north part is much better than

that in the south part after polymer concentration was grad-
ually reduced [130]. In contrast, at the polymer high concen-
tration injection stage, the production performance was not
good. After both polymer concentration and molecular
weight (Mw) were reduced significantly, the oil production
performance got better [116]. The southern SP flooding was
terminated in advance. This cease in advance means at least
some kind of failure. More information about SP2 polymer
viscosity adjustment is available in reference [116]. For high
permeability strata of SP1 in Liaohe, when the polymer con-
centration was reduced, the field test production perfor-
mance tended to get worse [112]. After the concentration
was increased, the production performance got better. The
failure of SP6 has much to do with the water channel, which
is not plugged by profile control techniques. The polymer
concentration and Mw was low in view of the temperature
and high water cut in SP6. Thus, proper selection polymer
is the key to SP flooding. Other important factors concerning
polymer viscosity include bacteria and reducibility ions like
Sulphur iron and ferrous ion (Fe2+) in injection pipelines
and produced water. Viscosity can be seriously damaged by
pipeline deposits. In SP2, viscosity was increased by 35% after
the H2S and Fe2+ were removed in water used for polymer
preparing [130]. At the early stage of SP flooding in Xinjiang
(SP2), the viscosity loss from the pump outlet to injectors was
as high as 38.07% [131]. After taking measures, the polymer
viscosity loss from makeup to injectors was lower than 10%
[131]. Oxygen and ions has a significant effect on polymer
viscosity, and this has been well studied [127, 132, 133]. Thus,
one advice for polymer and SP flooding is to carefully check
the pipeline to control Sulphur iron and Ferrous ion as well
as oxygen content. If the polymer is prepared by produced
water, the water quality should be carefully studied to meet
requirements.

6. Discussion

Although many chemical flooding field tests in China were
reported high IORFs, the IORF values are often overesti-
mated. One reason is that many measures like fracturing
and acidizing are taken in chemical flooding stage. When cal-
culating water flooding recovery, the contributions of these
measures are not deduced. Since the operation levels vary
from companies, the comparison between different field tests
produces some errors. In addition, SP flooding started at dif-
ferent comprehensive water cut and this provides more diffi-
culty to compare. If one chemical flooding field test started at
a higher water cut and gets a higher water cut drop than
others, it can be regarded as better than others. However, if
it starts at a lower water cut and gets a higher water cut drop,
its performance cannot be regarded better. Since there is no
identical the same reservoir, a comparison between different
projects provides limited reference. Figure 10 is the water cut
change between SP1 and SP2. Although SP2 has much more
obvious water cut reduction, we cannot say SP2 has better
performance than SP1 even other conditions are assumed
the same. It is quite strange that the water cut in SP2 goes
so drastic. Since detailed production information is not
available, we cannot explain it. Production enhancement
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measures may account for this. It is also quite strange that
the water cut drop of SP1 in Figure 10 is not as good as other
polymer flooding and ASP flooding but reported a predicted
comparable IORF.

Some ASP flooding field tests water cut change is given in
Figure 11 [9]. This ASP flooding reported IORF of 18-28%
OOIP. Besides, the water cut reduction seems more gradual
and stable than that of SP flooding in Figure 10. It seems
SP7 in Figure 7 has similar water cut shape with ASP flood-
ing. Whether SP flooding is better than ASP flooding is still
hard to judge. From these 10 SP flooding field tests, the high-
est IORF is comparable with that of ASP flooding if taken res-
ervoir difference and management into accounted. However,
SP flooding seems to be more challenging than ASP flooding
if judged by IORF. Figure 12 shows the IORF of polymer, SP,
and ASP for medium temperature reservoir. In this figure,
IORF of polymer flooding (10%OOIP) and ASP flooding
(18% OOIP) is from field test proven values in Daqing. IORF
of SP flooding (12% OOIP) is the average predicted value
from these ten field tests in Table 1. ASP flooding is well
tested in Daqing, and the first and only commercial applica-

tion was reported. Most ASP flooding field tests have been
conducted in Daqing [4]. However, only one SP flooding in
Daqing is reported. Figure 13 shows the SP and ASP IORF
comparison under Daqing reservoir condition. Since SP9 in
Figure 13 is conducted in a postpolymer flooding reservoir,
if assuming an IORF of 10% OOIP for polymer flooding,
SP9 is predicted 16% OOIP, much lower than average IORF
of 18% OOIP which is verified by many field tests. It is to be
noted that SP9 IORF is only predicted. Actual IORF is much
lower than this value. If IORF (Figures 12 and 13) and EOR
cost (Figure 9) are used as the criteria, SP flooding is not as
good as ASP flooding. This is not in agreement with many
publications. Please keep in mind that SP flooding was
reported to have been used commercially in 2008.

7. Conclusions

SP flooding is a very promising but also challenging chemical
EOR technique. Field tests indicate SP flooding can make an
IORF of 20% OOIP in a high permeability reservoir in Liaohe
Oilfield. Oil increase in SP7 is as high as 12 times.
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Although some SP flooding field tests are very suc-
cessful, others fail to meet the design goal of IORF. High
surfactant concentration is necessary for the success of SP
flooding when surfactant adsorption in strata is taken into
consideration.

Adequate polymer viscosity helps to reduce displacing
phase mobility but avoid causing blocking to strata. Bacteria
and reducibility ions like Sulphur iron and ferrous ion in
injection pipelines and produced water seriously affect poly-
mer viscosity. High Mw and concentration polymer is only
possible for high permeability formation.

Since most surfactants are adsorbed in near-injector
regions, the necessity of reducing IFT by surfactant to
10-3mN/m as a criterion is worth investigation.

Although SP flooding is regarded more competitive
than ASP flooding by many researches, the actual field test
result shows that the comprehensive cost of SP flooding
can be as high as ASP flooding. SP flooding is regarded
as not as good as ASP flooding at least under Daqing reser-
voir condition.

Without economic surfactants and good measures to
reduce surfactant adsorption to accepted low level, SP flood-
ing is only possible for a high permeability reservoir. It
should be very careful to use SP flooding in low permeability
reservoir since all field tests seem to go without success.

UF, IORF, and total EOR cost should be used together to
evaluate SP flooding field tests for cautious reference.

Nomenclature

EOR: Enhanced oil recovery
SP: Surfactant-polymer
ASP: Alkali-surfactant-polymer
Mw: Molecular weight
TDS: Total dissolved solids
NA: Not available
URF: Ultimate recovery factor
IORF: Incremental oil recovery factor
NPV: Net Present Value
UF: Utility factor
OIR: Output-input ratio
KPS: Karamay petroleum sulfonate
OOIP: Original oil in place
HCFS: Heterogeneous combination flooding system
PPG: Preformed particle gel
ROS: Residual oil saturation
IFT: Interfacial tension
HPAM: Partially hydrolyzed polyacrylamide
CNPC: China National Petroleum Company
SINOPEC: China Petroleum & Chemical Corporation
CNOOC: China National Offshore Oil Corporation
Inj.: Injection
Soi: Initial oil saturation
Con: Concentration
P: Polymer
S: Surfactant
PS: Petroleum sulfonate
SPS: Shengli petroleum sulfonate
KCL: Potassium chloride.
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