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Fluid flow in rocks has a key role in many geological processes, such as in geothermal reservoirs and crustal deformation.
Permeability is known to be dependent on porosity and flow path aperture, but direct quantification of pore structures is more
difficult than direct estimation of permeability. The gas breakthrough method can be used to determine the radius of transport
pores by using the gas pressure at which gas breaks through a water-saturated sample (ΔPbreak). In this study, we applied the gas
breakthrough method under confining pressure to damaged granite, in order to evaluate the relationship between permeability
and pore characteristics (i.e., porosity and transport flow path aperture) at pressures up to 30MPa. The transport flow path
aperture, permeability, and porosity of thermally cracked granite decrease with increasing confining pressure. We quantified the
relationship between permeability and pore characteristics, which provides a better estimation of permeability by taking into
account the fraction of hydraulically connected cracks.

1. Introduction

Fluid flow in rocks has a key role in various geological
processes, including crustal deformation [1, 2] and fluid-
induced seismicity [3, 4]. Laboratory experiments on rock
samples have yielded a wide range of permeabilities (10–12 to
10–23 m2), controlled by lithology, porosity, and pore geome-
try (Gueguen and Palciauskas, 1994). Under differential stress,
brittle deformation can rapidly change permeability and affect
fluid flow processes due to dilatancy related to microcrack
nucleation and growth [5, 6]. In contrast, an increase in hydro-
static pressure reduces permeability through the progressive
closure of pores within a rock [7, 8]. Permeability is known
to be sensitive to crack porosity and aperture, and a relation-
ship between pore structure and permeability has been
proposed based on the poroelastic medium theory [9–11].

The critical pore throat radius of a rock can be experi-
mentally determined with the gas breakthrough method
[12–15]. In this method, the gas pressure injected into one
end of a water-saturated sample is increased. When the pres-

sure overcomes the resistance due to the surface tension of
water, the pore throat radius r is obtained from the gas
breakthrough pressure (ΔΔPbreak) by the following equation
of capillarity:

ΔPbreak = 2γ cos θ/r, ð1Þ

where γ is the surface tension of the gas–water interface and
θ is the contact angle. This method has been applied to vari-
ous materials including vesicular volcanic rocks, sandstones,
and mudstones in order to determine sealing integrity or to
evaluate the permeability-pore structure relationship but
has not been applied to crystalline rocks for evaluating the
effect of thermal cracking. In this study, the gas breakthrough
method under confining pressure was used to determine the
relationship between permeability, porosity, and flow path
aperture under hydrostatic conditions in thermally cracked
Aji granite.
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2. Sample Description

For our experiments, we used samples of fine-grained granite
from Aji, Japan. The average grain size of this granite is
0.3mm, and it comprises 30 vol.% quartz, 37 vol.% plagio-
clase, 24 vol.% K-feldspar, and 8 vol.% biotite [16]. The sam-
ples have a bulk density of 2.66 g/cm3 and an apparent initial
porosity of 0.62% [17]. Based on elastic wave velocity mea-
surements, textures within the Aji granite are near isotropic
[18]. In our experiments, each sample was cut into a cylinder
with a diameter of 20mmand length of 20mm (uncertainty of
less than ±0.05mm).

The Aji granite samples were heat-treated at room
pressure up to 400°C, 600°C, and 800°C at a heating rate of
5°C/min. The samples were kept in an oven at each tempera-
ture for 2 h, after which the oven was turned off and the sam-
ples left to slowly cool overnight. As such, cracks were
generated by thermal stressing due to the different thermal
expansions of adjacent grains and from the α- to β-quartz
transition at temperatures of >550°C [19]. Back-scattered
electron images show that intergranular cracks form above
550°C; intragranular cracks were also observed (Figure 1).

3. Experimental Apparatus and Methods

For this study, permeability, flow path aperture, and porosity
measurements were conducted under hydrostatic pressure at
room temperature using an intravessel deformation and fluid
flow apparatus (Figure 2) at HiroshimaUniversity, Hiroshima,
Japan [20]. The cylindrical samples were enclosed in polyole-
fin tubes to prevent interaction with the confining oil. Exper-
imental methods for determination of (i) permeability and
porosity and (ii) transport flow path aperture (gas break-
through method) are presented in the following sections.

3.1. Permeability and Porosity Measurements. Permeability
was measured with the flow method using water as a pore
fluid, in which a constant upstream pore pressure was main-
tained (Pp = 0:5 – 3:0MPa). The steady-state fluid flowdriven
by the pore pressure gradient across the sample was moni-
tored using a syringe pump every 10 s. Permeability (k) was
determined from the measured flow rate as follows:

k = μ

A
L

P1 − P2
�Q, ð2Þ

where μ is the viscosity of the pore fluid, P1 is the upstream
pore pressure, P2 is the downstream pore pressure (atmo-
spheric pressure), A and L are the cross-sectional area and
length of the sample, respectively, and �Q is the mean flow
rate measured through the volume change of the syringe
pump. The error of the fluid volume measurement is
<16.63 ×10–9 L in each time step.

We determined the porosity of granite thermally cracked
at 400°C, 600°C, and 800°Cwith a gas porosimeter using nitro-
gen gas as a pore fluid [20]. The samples were first set in a pyc-
nometer, and the grain volume was measured at atmospheric
pressure using the gas expansionmethod based on Boyle’s law
(Table 1). We then placed the sample in the pressure vessel

and measured the pore volume under confining pressure
(Pc = 5 – 30MPa) using a gas porosimeter attached to the
apparatus. The porosity error is ca. ±0.01%.

3.2. Transport Flow Path Aperture Measurements (Gas
Breakthrough Method). The gas breakthrough method is
used to determine the pore throat radius (e.g., [15]). When
gas is injected at the bottom of the water-saturated sample,
the gas pressure pushes the gas–water interface whereas the
surface tension acts as a resistance to the gas pressure. The
pressure difference between the gas–water interface and air
is correlated to flow path aperture w (minor radius) by the
following equation for capillarity and assuming that the flow
path cross-section is an ellipse:

w = γI cos θ
πaΔP

, ð3Þ

where I is the circumference of the ellipse and can be
expressed as follows:

I = 4a
ðπ/2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2 cos2ψ

q
dψ, ð4Þ

where γ (N/m) is the surface tension, θ is the contact angle
between the rock and water, ΔP (Pa) is the differential pres-
sure at the gas–water interface, a is the long-axis length of
the ellipse (major radius), and A (= w/a) is the aspect ratio
of the flow path cross-section. Gas flows through the sample
when the gas pressure overcomes the surface tension at the
position of the smallest aperture in the most preferential flow
path. The characteristic flow path aperture can be determined
from the pressure difference at which the first gas flow occurs
(breakthrough pressureΔPbreak). During the experiments, the
sampleswerefirst saturatedwithwater (during the permeabil-
ity measurement phase), as shown in Figure 2(b), and then,
nitrogen gas was injected from the bottom of the samples at
a constant flow rate of 2.5mL/min using a syringe pump.
The upstream part of the sample was connected to a water
tank. When the first bubble appeared in the water tank, we
recorded the gas pressure asΔPbreak (Figure 2(c)). The contact
angle θ between the rock and water was assumed to be 52°,
which has beenmeasured in thewater–air system forWesterly
granite [21]. We used a nitrogen–water interfacial tension of
0.075–0.072N/m [22], depending on the measured room
temperature (10–25°C). The error on the flow path aperture
is 0.000072–0.26μm for our samples with apertures of 0.13–
8.0%, based on the uncertainty of the gas pressure measure-
ment by the syringe pump.

4. Experimental Results

The experimental results for transport flow path aperture,
permeability, and porosity are listed in Table 2. Figure 3(a)
shows the variation of ΔPbreak with confining pressure, where
ΔPbreak tends to increase systematically with confining pres-
sure. Figure 3(b) shows the flow path aperture calculated
from ΔPbreak as a function of confining pressure. The flow
path aperture decreases with increasing confining pressure
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for all samples, although the flow path apertures are consid-
erably smaller for the sample treated at 400°C. This suggests
that thermal damage due to the α- to β-quartz transition
results in significant crack opening.

Figure 4 shows that the permeability decreased with
increasing confining pressure. During hydrostatic loading,
the permeability decreased by an order of magnitude for all
samples. The samples heated at 400°C, 600°C, and 800°C
show a reduction in permeability with increasing effective
pressure, ranging from 1:61 × 10–18, 8:50 × 10–17, and 2:72
× 10–16 m2 at 5MPa to 1:70 × 10–19, 5:16 × 10–18, and 1:24
× 10–17 m2 at 30MPa, respectively. Porosity measurements
also showed a systematic change with applied confining pres-
sure (Figure 5). Porosity shows a large variation at 5MPa
(1.4%–2.6%) that decreases with confining pressure (1.0%–
1.5% at 30MPa).

5. Discussion

5.1. Analysis Based on Percolation Theory. Percolation theory
predicts a power law relationship between porosity and
permeability in the form of the following equation (e.g., [9]):

k = C ϕ − ϕcrð Þe, ð5Þ

whereC (m2) is a constant term that determines themagnitude
of the permeability, e is a critical exponent, andϕcr is the poros-
ity at the percolation threshold,which is theminimumporosity
at which fluid flow occurs across the sample (k = 0 for ϕ < ϕcr
and k > 0 for ϕ ≥ ϕcr). ϕcr and e are important parameters in
percolation theory and depend on the geometry of the pore
structure assumed in the model. For our samples, the relation-
ship between porosity ϕ and permeability k can be approxi-
mated by the equation k = 1:76 × 10−11ðϕ − 0:00855Þ2:77,
based on percolation theory (Figure 6). Figure 7 shows a plot
of permeability versus porosity, including published data for
sandstone, hot-pressed materials, and granite [23–27]. The
obtained data are distributed within the previously reported
regression lines for sandstone and granite.

For a medium in which permeation occurs through inter-
connected and randomly distributed thin cracks, the follow-

ing model has been used [28, 29]:

k ≃
16αξ2 1 − ξ2

� �
ϕc2

9 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
+ ξ2 log 2 − ξ2 + 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p� �
/ξ2

� �h i2 ,

ð6Þ

where c is the crack radius and ξ is the aspect ratio (=w/c),
which is assumed to be constant at ξ = 0:001. The constant
α is dimensionless and depends on the tortuosity of the crack
network τ and shape factor b as follows [30, 31]: α = 1/ðb2τ2Þ.
Tortuosity τ was calculated by inserting the measured values
of k andw2 ð= ξ2c2Þ into Eq. (6), to evaluate the relevance of τ
to k. Tortuosity decreased with decreasing permeability,
ranging from 17 to 3 (Figure 8). Pore connectivity is related
to the reciprocal of the tortuosity squared [32]. Thus, the tor-
tuosity reduction corresponds to increasing crack network
connectivity. Our results indicate that the connectivity
increases with decreasing porosity due to the closure of
cracks. Details of the calculation are given in the next section.

5.2. Relationships between Permeability, Porosity, and Flow
Path Aperture. Several models have been used to predict the
permeability of rocks from microstructural parameters [11,
32, 33]. By assuming that the cracks are thin disks of variable
length, the permeability during brittle deformation can be
estimated using crack parameters as follows:

k∝ ϕw2, ð7Þ

where ϕ is the crack porosity, calculated as follows:

ϕ = 2π c
2w

l3
, ð8Þ

where 2c is the crack length, w is the crack aperture, and l is
the crack spacing [32]. Equation (7) indicates that the perme-
ability is sensitive to the crack aperture. To examine the
applicability of Eq. (7) to our results, we investigated the rela-
tionship between permeability k and ϕw2 (Figure 9).
Although Eq. (7) indicates that k and ϕw2 have a linear

JEOL COMP 15.0 kV ×40 100 𝜇mWD11 mm

(a)

JEOL COMP 15.0 kV ×40 100 𝜇mWD11 mm

(b)

Inter. crack

Intra. crack

JEOL COMP 15.0 kV ×40 100 𝜇mWD11 mm

(c)

Figure 1: Back-scattered electron images of Aji granite heat-treated at (a) 400°C, (b) 600°C, and (c) 800°C. Inter. crack: intergranular crack;
Intra. crack: intragranular crack.
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relationship, the log–log plot of our data shows that the data
are well approximated by k = 8:64 × 10−9ðϕw2Þ0:615 and not
distributed on a line with a slope of one. This suggests that

k is not a simple linear function of ϕw2. Nishiyama and
Yokoyama [14] also showed that k of many granular media
is correlated with a power function of ϕr2cr (k = 8:5ðϕr2crÞ1:3)
(Figure 10), where rcr (= w) is the critical pore radius. The
nonlinear relationship between k and ϕw2 suggests that
another factor needs to be considered in the permeability
evolution at elevated hydrostatic pressure.

Gueguen and Dienes [32] showed that permeability k can
be expressed as follows:

k = 2
15 f ϕw

2, ð9Þ

Table 1: Sample description.

Treated temperature Initial porosity Density
°C % g/cm3

400 2.86 2.64

600 3.38 2.60

800 4.51 2.57

Vent

Sample

Pressure gauge

Pressure gauge

Water tank

Pressure
gauge

P

Vent

Syringe pump
(water)

Syringe pump
(N2 gas)

Confining
pressure

P

P

(a)

Water tank
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spacers

Open

Open

Close

Water injection

2w
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Gas syringe pump

Water syringe pump

Close

(b)

Water tank
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Close
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First 
bubble

Expelled water

Gas flow
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Figure 2: (a) Experimental design of the gas breakthrough method using the intravessel deformation fluid flow apparatus. Simplified
illustrations of the (b) permeability measurement phase and (c) gas breakthrough experiment.
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Table 2: Summary of experimental results.

Treated temperature Pc ΔPbreak w Pp k Porosity
°C MPa MPa μm MPa m2 %

400

5 0.850-0.885 0.103-0.107 0.5 1:22 × 10−18-1:61 × 10−18 1.38

7.5 1.21-1.59 0.0573-0.0754 0.75 8:06 × 10−19-9:48 × 10−19 1.32

10 1 6:86 × 10−19 1.24

15 1.5 4:21 × 10−19 1.13

20 2 2:85 × 10−19 1.07

25 2.5 2:19 × 10−19 1.02

30 3 1:70 × 10−19 0.990

600

5 0.039-0.048 1.87-2.30 0.5 8:11 × 10−17-8:50 × 10−17 1.83

7.5 0.056-0.062 1.45-1.60 0.75 4:47 × 10−17-5:33 × 10−17 1.66

10 0.074-0.078 1.15-1.21 1 3:11 × 10−17-3:26 × 10−17 1.50

15 0.113-0.124 0.723-0.794 1.5 1:69 × 10−17-1:82 × 10−17 1.33

20 0.154-0.188 0.476-0.581 2 9:64 × 10−18-9:96 × 10−18 1.22

25 0.238-0.275 0.326-0.376 2.5 6:86 × 10−18-7:20 × 10−18 1.17

30 0.351-0.362 0.247-0.255 3 5:16 × 10−18-5:34 × 10−18 1.11

800

5 0.5 2:50 × 10−16-2:72 × 10−16 2.66

7.5 0.027-0.028 3.18-3.30 0.75 1:39 × 10−16-1:43 × 10−16 2.44

10 0.041 2.18 1 9:96 × 10−17-1:00 × 10−16 2.21

15 0.063-0.065 1.38-1.42 1.5 4:80 × 10−17-5:02 × 10−17 1.91

20 0.081-0.096 0.936-1.08 2 2:72 × 10−17-2:79 × 10−17 1.72

25 0.126-0.140 0.642-0.713 2.5 1:89 × 10−17-1:95 × 10−17 1.58

30 0.181-0.192 0.468-0.496 3 1:24 × 10−17-1:26 × 10−17 1.50

Pc = confining pressure; Pp = pore pressure from the permeability measurement; k = permeability; ΔPbreak = gas breakthrough pressure; w = flow path aperture.
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Figure 3: (a) Evolution of ΔPbreak and (b) flow path aperture as a function of confining pressure. The light blue triangle, blue square, and dark
blue circle represent experiments conducted using samples that were thermally damaged at 400°C, 600°C, and 800°C, respectively.
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where f is the fraction of cracks that contribute to the flow,
which is zero when the probability of crack intersection is
below the percolation threshold [34]. Note that f differs from
the crack network connectivity described in the previous sec-
tion. If k decreases, the network connectivity invariably
decreases, but f can increase if ϕw2 decreases more than k.
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Figure 7: Comparison of our experimental data on permeability-
porosity relationship with those for various rock types, including
sandstone, hot-pressed calcite, and granite, published in previous
experimental studies.
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f is the ratio of interconnected cracks to the total cracks and
can be expressed as follows:

f = 1 − 4Q3 + 3Q4, ð10Þ

where Q is the probability that a path from one site passing
through an adjacent site will be interrupted (Gueguen and
Palciauskas, 1994). This suggests that the connectivity factor
f represents flow paths that belong to the infinite cluster and
propagate in various directions. However, we determined the

𝜙w2 (m2)

k = 8.64 × 10–9 (𝜙w2)0.615
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Figure 9: Plot of k versus ϕw2. The fitted straight line is based on a constant coefficient for ϕw2 and the relationship between k and ϕw2

described in the main text. The dashed line has a slope of one on a log–log plot.
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permeability from the flow rate in the axial direction of the
sample (Figure 11). Therefore, the permeability obtained in
this study needs to be expressed by a connectivity factor that
is different from f .

In this study, F is defined as a new factor that represents
the fraction of cracks that contribute to flow in the axial
direction of the sample. We can modify Eq. (9) using F
instead of f as follows:

k = 2
15 Fϕw

2: ð11Þ

F was calculated by inserting the measured values of k
and ϕw2 into Eq. (11), in order to evaluate the relevance of
F to k. A plot of F versus k shows that F increases with
decreasing k (Figure 12). The relationship between F and k
is approximated by the following equation:

F = 9:31 × 10−13k−0:614: ð12Þ

This indicates that although the connectivity in the flow
path network is significantly reduced with decreasing
permeability, the fraction of cracks that contribute to flow
in the axial direction of the sample increases; consequently,
fluid flow is mostly dominated by a specific path in a rela-
tively impermeable medium (Figure 13). The existence of
preferential flow paths has been proposed based on numer-
ical simulations of two-dimensional heterogeneous systems,
which have been used as an analog for pore geometry in
porous rocks [35, 36]. Our experimental results for ther-
mally cracked granite suggest that permeability is depen-
dent not only on porosity and flow path aperture but also
on the fraction of cracks that contribute to flow.

We investigated the relationship between permeability
and pore characteristics by taking into account the fraction
of hydraulically connected cracks that contribute to flow in
the axial direction under confining pressure. The variable F
appears to be required for the case where fluid flow occurs
in a specific direction in the subsurface (e.g., the production
of geothermal energy by fluid flow in the direction between
the inlet and outlet wells).

6. Conclusions

We have presented experimental data for the permeability,
porosity, and flow path aperture of thermally cracked granite
under hydrostatic conditions. Using the gas breakthrough
method, we measured the crack aperture of samples
subjected to elevated pressure. In all experiments, the confin-
ing pressure increased as permeability decreased, due to the
closure of cracks. Based on the relationships between perme-
ability, porosity, and flow path aperture, permeability is
inferred to be controlled mainly by variations in the crack
aperture as follows: k = 8:64 × 10−9ðϕw2Þ0:615. A comparison
of the obtained equation with the permeability model [32]
indicates that fluid flow is more concentrated on a specific

path with decreasing permeability. To obtain a more detailed
permeability model, quantitative analysis of the effects of
geometric factors, such as the crack network and aperture,
at hydrostatic pressures is required.
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