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This paper introduces a flow simulation-based reservoir modeling study of a two-well pad with long production history and
identical completion parameters in the Midland Basin. The study includes building geologic model, history matching, well
performance prediction, and finding optimum lateral well spacing in terms of oil volume and economic metrics. The reservoir
model was constructed based on a geologic model, integrating well logs, and core data near the target area. Next, a sensitivity
analysis was performed on the reservoir simulation model to better understand influential parameters on simulation results. The
following history matching was conducted with the satisfactory quality, less than 10% of global error, and after the model
calibration ranges of history matching parameters have substantially reduced. The population-based history matching algorithm
provides the ensemble of the history-matched model, and the top 50 history-matched models were selected to predict the range
of Estimate Ultimate Recovery (EUR), showing that P50 of oil EUR is within the acceptable range of the deterministic EUR
estimates. With the best history-matched model, we investigated lateral well spacing sensitivity of the pad in terms of the
maximum recovery volume and economic benefit. The results show that, given the current completion design, the well spacing
tighter than the current practice in the area is less effective regarding the oil volume recovery. However, economic metrics
suggest that the additional monetary value can be realized with 150% of current development assumption. The presented
workflow provides a systematic approach to find the optimum lateral well spacing in terms of volume and economic metrics
per one section given economic assumptions, and the workflow can be readily repeated to evaluate spacing optimization in
other acreage.

1. Introduction

The Permian Basin is one of the largest hydrocarbon-
producing basins in the United States and the World. In
2017, the basin accounted for 20% of the total crude oil
production and about 9% of the total dry natural gas produc-
tion in the United States [1]. The estimation by EIA [2] sug-
gests that the remaining proven reserves in the Permian
Basin to exceed 5 billion barrels of oil and 19.1 trillion cubic
feet of natural gas. Our study area, the Midland Basin, is a
part of the Permian Basin along with the Delaware Basin
and the Central Basin Platform. USGS estimated undiscov-

ered, continuous, hydrocarbon resources of the Wolfcamp
formation in the Midland Basin alone to be approximately
20 billion barrels of oil and 16 trillion cubic feet of natural
gas [3]. As the interest in development of the area grows,
more than 3,000 horizontal wells have been drilled and
hydraulically fractured in the Midland Basin Wolfcamp for-
mation [3]. Due to a large number of newly drilled wells
and overwhelming volume of data, data-driven, empirical,
and simplified physics-based methods are frequently utilized
for analyzing well performance and evaluating the field
development plan. Such methods include decline curve
analysis and rate transient analysis that are timely effective
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and cost less manpower. However, to address challenging
questions in the unconventional reservoir, aforementioned
methods might not be sufficient. For example, to find the
optimum well spacing is a fundamental question to effec-
tively and economically develop the unconventional field.
However, the well spacing problem is associated with stimu-
lated multiwell, interference, and communication between
them where the physics should not be missed to accurately
address the problem. Therefore, the physic-based reservoir
modeling study is essential in order to better understand
and capture complex dynamics in the unconventional reser-
voir and characterize hydraulic fractures [4].

There have been studies to investigate the optimum well
spacing in the development of tight shale reservoirs in the
Permian Basin, utilizing the physic-based reservoir simula-
tion work. Cullick and Carrillo [5] studied well spacing for
vertical wells fractured from Spraberry to Atoka to develop
stack tight oil pay in the Midland Basin. Pettegrew and Qiu
[6] utilized data analytics and reservoir simulations to deter-
mine the relationship between EUR and well spacing for the
Wolfcamp formation in the Delaware Basin. Liang and Du
[7] investigated a wide range of fracture design and well spac-
ing scenarios using reservoir simulations and validate their
regression on EUR with field test results from the Permian
Basin. Zhu and Forrest [8] conducted a simulation-based
cluster and well spacing optimization study for the Lower
Spraberry shale in the Midland Basin, emphasizing the
importance of accurately determining hydraulic fracture
half-length. Ajisafe and Solovyeva [9] investigated the impact
of well spacing (660 ft and 1,320 ft) on the production perfor-
mance of parent and child wells in the Permian Basin by
looking at the recovery volume. Pankaj [10] illustrated single
or multiwell pad optimization workflow which includes
hydraulic fracture calibration and simulations of wide range
of sensitivity cases to draw insights in well spacing and
completion design for the Wolfcamp formation in the
Permian Basin. Bansal and Han [11] performed the
simulation-based reservoir characterization to understand
optimal well spacing in the Wolfcamp formation, Delaware
Basin. They calibrated a multiwell reservoir model and
investigated oil recovery degradation with different configu-
ration of wells.

The objective of this study is to perform the flow
simulation-based reservoir modeling of a two-well pad asset
with long production history and identical completion in
the Midland Basin. Specifically, the objective includes the fol-
lowing goals: (1) understand fracture properties and reser-
voir depletion of the asset, (2) predict future production of
each well, and (3) find the optimum well spacing in the area
based on the recovery volume and economic metrics by using
history matching results. The area is selected because the
operator has a good geologic control from well log and core
data and retains sufficient production history data, more than
two years, to be analyzed. The paper first introduces history
data of two-well pad and detailed reservoir model calibration
methodology and results. Given the history matching results,
the production forecast and lateral spacing sensitivity study
are presented. This paper provides a workflow for a system-
atic approach from model calibration to EUR estimation
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and quantifying the optimum lateral spacing in terms of vol-
ume and economic metrics per one section. Compared to
previous studies, the current study specifically targets a
two-well pad in the Wolfcamp formation in the Midland
Basin, integrating broad ranges of data including well
responses and geologic properties from well logs. This study
suggests that the optimum well spacing not only for the
recovery volume but also for economic metrics, based on res-
ervoir simulation results and real economic parameters,
which is practical and helpful for the unconventional field
development and decision-making.

2. Methodology

A county-scale geologic model was constructed using well log
and core data around the target area. The reservoir model
was sliced in an area slightly larger than one section as a part
of the geologic model, and its properties were upscaled
within the CMG platform. In order to calibrate the reservoir
model by history matching, we first defined history matching
parameters to calibrate and their uncertainty ranges, mainly
associated with hydraulic fractures, permeability enhanced
zone, and reservoir properties. Before the history matching,
we performed a sensitivity analysis to better understand
“heavy hitters,” influential parameters to simulation results,
in this particular history matching problem. The following
model calibration that minimizes errors between simulation
results and history data using a population-based algorithm
was conducted targeting less than 10% of the global error,
substantially reducing ranges of history matching parame-
ters. The top 50 models capable of reproducing history data
with satisfactory quality, less than 10% global error, were
selected for the production forecasting of the wells by simu-
lating oil and gas production with constant bottom-hole
pressure (BHP) constraint for the total of 35 years. Lastly,
the lateral well spacing sensitivity was investigated with the
best history-matched model to find the maximum oil volume
recovery and profitability by varying lateral spacing of the
history-matched two-well pad.

3. History Matching of Two-Well Pad

3.1. History Data. The wells in the pad have history data
more than two years. The provided history data includes
water cut, gas oil ratio (GOR), fluid production rates, and
bottom-hole pressure (BHP) as illustrated in Figure 1. Since
measured BHP from the downhole is originally unavailable,
we back-calculated the BHP from the production data, well-
head pressure, PVT data, and wellbore properties using the
Hagedorn and Brown correlation [12, 13]. In general, the
wells show similar production trend in the fluid production
and BHP. Figures 1(c) and 1(d) show water cut for both wells
that stay relatively flat within ranges of 0.6-0.7 for the entire
history. However, GOR increases over time, implying that as
the reservoir depletes below the bubble point pressure, more
gas is liberated from the reservoir. The bottom of the first two
left columns of the figure shows water, gas, and oil rates and
calculated BHP.
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Fi1GuUREk 1: History data for well A and well B: (a) production rates and bottom-hole pressure for well A, (b) production rates and bottom-hole
pressure for well B, (c) water cut and gas oil ratio for well A, and (d) water cut and gas oil ratio for well B.

The comparison in production rates and BHP between
two wells shows that well A has been producing more fluids
than well B (Figure 2). This is possibly resulted from deple-
tion effects from a neighboring well in the adjacent section
causing well B performing slightly lower. The detailed infor-
mation of the wells including the highest initial production in
oil and gas, stimulated lateral length (SLL), injected proppant
and fluid, and the number of stages is summarized in Table 1.
The wells have been put on production (POP) concurrently
with same targeting, stimulated lateral length, and comple-
tion design.

3.2. Reservoir Simulation Domain Description. The reservoir
simulation work in this study was performed in the CMG
platform using CMG IMEX, a black-oil simulator. The key
features of CMG IMEX for unconventional reservoirs
include local grid refinement (LGR), modeling biwing
hydraulic fractures and complex hydraulic fracture network,
and comprehensive horizontal well management [14]. A
number of existing body of well spacing studies in hydrauli-
cally fractured unconventional reservoirs [5, 6, 15] have
utilized CMG IMEX. The current study utilizes LGR and

biwing hydraulic fractures to represent the part of the reser-
voir stimulation.

Figure 3 illustrates the reservoir simulation model used
for history matching. The reservoir is initially undersatu-
rated. The initial reservoir pressure ranges 5,100-5,400 psi
depending on true vertical depth (TVD), and the bubble
pressure is 3,500 psi. The size of the 3D reservoir simulation
domain is 2,200 ft in the i-direction, 7,250 ft in the j-direc-
tion, and 820 ft in the k-direction which consists of approxi-
mately 146,000 grid cells. Each well has 30 stages. However,
we only have 35 main hydraulic fractures in the model
to represent 30 stages primarily due to the size of the grid
cell created in the model. Instead, we introduced a perme-
ability enhanced zone to represent a part of the reservoir
stimulation.

As previous field observations [16-18] and numerical
studies [19-21] showed, multistage hydraulic fractures might
not propagate uniformly, yet planar and biwing fractures are
assumed in the model. The hydraulic fractures described in
the reservoir model implies hydraulically induced and also
propped fractures which indeed contribute fluid production
of stimulated wells. Local grid refinement (LGR) was utilized
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FIGURE 2: Production data comparison: (a) bottom-hole pressure, (b) cumulative oil production, (c) cumulative gas production, and

(d) cumulative water production.

TaBLE 1: The summary of production and completion information on well A and well B.

Well POP IP30 [BOPD] IP30 [MCFD] SLL [ft] Proppant [Ib/ft] Stages Fluid [bbl/ft]
Well A 01/26/16 799 1,128 5,089 1,640 30 40.8
Well B 01/25/16 673 1,044 5,086 1,746 30 43.3

to describe the main hydraulic fractures [22], and we
assigned high permeability around fractures to describe per-
meability enhanced zone due to the reservoir stimulation [11,
23]. The detailed configuration of the model around the frac-
tures is presented in Figure 3. The red part represents the
main fractures with LGR, the yellow part is permeability
enhanced zone, and the blue part shows matrix where there
is no permeability change due to the stimulation. Therefore,
there are three different zones that contribute to fluid pro-
duction in the reservoir simulation model.

Continuing with the reservoir model description,
Figure 4 shows permeability in the i-direction, porosity,

and water saturation in the j-k section. The model covers
from the upper Wolfcamp (upper WC) all the way down to
the lower Wolfcamp (lower WC), and our target is the mid-
dle Wolfcamp (middle WC). It should be noted that the
model honors heterogeneity and variations in properties ver-
tically as well as horizontally.

Figure 5 illustrates the variation in properties as function
of TVD. Middle WC shows relatively high permeability espe-
cially in the upper part of the middle WC. When it comes to
saturation, upper WC shows a high oil saturation, whereas
the lower WC is more water-saturated. Well A and well B
landed mainly in the lower middle WC highlighted in the
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TaBLE 2: The average values for properties in different formations.
. Permeability i (1e-3 md) Porosity Water saturation
Formation
Avg. Avg. Avg.
Upper WC 22 0.05 0.21
Upper middle WC 38.5 0.06 0.43
Lower middle WC 8.2 0.05 0.40
Lower WC 1.5 0.04 0.63

TaBLE 3: History matching parameters. The superscript "’ indicates fractures for well A and well B that can have different values, and

(2

indicates each permeability enhanced zone that can have different values.

Category History matching parameters Low Base High
Height_up (# of grid) 2 5 8
Height_down (# of grid) 0 0 2
. Half length (ft) 100 200 300
Hydraulic fractures L)
Permeability*”’ (md) 1 10 50
Compaction table 1 5 11
Water saturation™ 0.6 0.7 0.8
Permeability multiplier® 10° 10! 10%°
Permeability enhanced zone readt 1),’ PR
Compaction table 1 5 11
. . KvKh (permeability anisotropy) 0.05 0.1 0.2
Reservoir properties s .
Rock compressibility (1/psi) le-6 2e-6 3e-6

magenta dashed line in Figure 5. The minimum, maximum,
and the average values of permeability, porosity, and water
saturation in each formation are summarized in Table 2.

3.3. History Matching Methodology and Parameters. The
model calibration process involves adjusting history match-
ing parameters such that the reservoir simulation results
can closely reproduce field measurements. By minimizing
errors between responses from the reservoir simulation and
production history data, uncertainties associated with the
parameters of the model are expected to reduce, and we build
more confidence in our calibrated models. History matching
in this study was performed using the CMG CMOST module
[24] with its intrinsic evolutionary algorithm for optimiza-
tion, Design Exploration Controlled Evolution. CMG IMEX
was utilized as a forward simulator, and the simulation is
constrained by the oil rate. This is because the oil production
rate is the most accurate among the measurements, and we
do not want the oil production to be compromised when it
comes to economic metric calculation. The global objective
function to minimize is a weighted sum of errors in cumula-
tive gas and water productions and BHP of the wells. The
total number of simulation runs is set to 1,000, and the com-
putation time for one simulation takes less than 10 minutes
with 4 CPUs per job.

Table 3 summarizes the parameters to calibrate during
the history matching process. Other parameters that are not
listed but critical in the multiphase reservoir simulations
such as relative permeability and PVT data are referred from
previous internal studies and lab measurements. The history
matching parameters can be categorized into three groups:

hydraulic fracture related parameters, permeability enhanced
zone related parameters, and reservoir properties. The per-
meability enhanced zone is subdivided into five regions based
on variation in the wellbore geometry (Figure 6(a)).

The fracture-related parameters are mainly associated
with fracture geometry and its properties such as permeabil-
ity, water saturation, and compaction table. We adjust the
initial water saturation of the hydraulic fracture to demon-
strate high water production in early time due to stimulated
water. A compaction table is a way to describe changes in
permeability and porosity. It is frequently used in unconven-
tional reservoir simulations because it allows us to emulate
degradation and reduction in fracture permeability and
porosity due to reservoir depletion, simply with the function
of pressure. Figures 6(b) and 6(c) show a series of permeabil-
ity and porosity multiplier (CTYPE). The porosity multiplier
table is generated using

pPoroyy 1 = 1+ Cpor(p _pref)’ (1)

where ¢,
pressure, and p is the pressure which is a variable. The
permeability multipliers are determined by the modified

equation from Espinoza [25].

is the rock compressibility, p,.; is the reference

1/(poromi - 1) " (2)
1/(poro;, ) — poroyy ’

_ m
permyr = pOroy r X (

where poro,; is the initial porosity, and m is an adjustable
parameter that depends on the rock type. The multiplier
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tables are predefined using equations (1) and (2). During
the history matching, the predefined tables are assigned
to the stimulated reservoir volume to the mimic compac-
tion behavior.

The reservoir stimulation was represented with main
hydraulic fractures and permeability enhanced zone in the
simulation model, and each permeability enhanced zone
can have different multiplier values and compaction table
number. A permeability multiplier is assigned to the zones
rather than the permeability value itself to preserve heteroge-
neity in the stimulated area near the wells. Reservoir proper-
ties in the history matching parameters include permeability
anisotropy in the formation and rock compressibility.

3.4. Sensitivity Analysis and History Matching Results. Prior
to history matching, we performed a sensitivity analysis.
The purpose of the sensitivity analysis is to find heavy hitters.
A heavy hitter is a parameter that is more influential than
other parameters to simulation results to identify influential
parameters for this history matching problem that poten-
tially helps to understand a driving mechanism of the oil
production and efficient history matching, reducing less

influential parameters. Each objective function presented in
Figure 7, errors in cumulative water and gas production
and BHP, is defined as aggregated misfits of each data point
of two wells. The error between the simulation result and
the history data for a well is defined in equation (3) as

; 2

VD (v - 7))
Q= scale; ’ (3)
where subscripts j and ¢ indicate well and time index, respec-
tively, NT(j) is the total number of measured data points, Y3,
is the simulation result, Y7, is the measured results, and scale;
is the normalization scale to avoid the scale effect when dif-
ferent data types are integrated [24].

The error in the sensitivity analysis is evaluated varying
only one parameter at a time, holding the other parameters
constant. The color in Figure 7 indicates the relationship
between a parameter and an objective function. For example,
the positive relationship between the parameter and the
objective function is indicated with a blue bar to the right
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FIGURE 7: Tornado charts for sensitivity analysis results: (a) cumulative gas production error, (b) cumulative water production error,
(c) bottom-hole pressure error, and (d) the global error which is the weighted sum of the three errors.

and the red bar to the left, whereas the negative relationship
is represented by the red bar to the right and the blue bar to
the left. According to the tornado chart of the global error
(Figure 7(d)), the heavy hitters in this particular history
matching problem are the saturations along fractures, frac-
ture permeability, fracture geometry, and permeability multi-
plier near the wells. This implies that the driving factors for
the production in unconventional reservoirs is primarily
associated with reservoir stimulation.

Figure 8 shows errors in the y-axis and number of simu-
lations in the x-axis. We can see that as the history matching
proceeds, the algorithm provides better simulation models
with less error. The global error in Figure 8(d) is the weighted
sum of the errors in cumulative water and gas production
and BHP. We took the global error less than 10% as a satis-
factory quality of history matching in the sense that the
global error is aggregated errors at each point of different
production data types of the wells. We found that all of the
top 50 models in terms of the global error are below the

10% threshold. The top 50 models in each error are not
necessarily identical. This is possibly because objective func-
tions are conflicting with each other. For example, Well_B_
Frac_Sw, the water saturation of the fracture for well B, has
a positive relationship in errors in cumulative gas and water
production while the saturation shows a negative relation-
ship with the BHP error. However, the errors at least show
a consistent trend. Most of top 50 populations are concen-
trated in 800"-1,000™ simulation runs. The top 50 models
which are the top 5% of the total population are going to be
utilized to assess range of calibrated history matching
parameter ranges and production forecasting. The model
highlighted with the magenta dot shows the least global error
and is referred as the best model hereafter to investigate the
reservoir depletion and lateral well spacing sensitivity.

As errors in the objective functions are reduced, the sim-
ulation results get closer to the history data. Figure 9 shows
the two-year history matching results in time series. Rela-
tively, a good agreement is achieved in cumulative gas and
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FI1GURE 8: History matching results in terms of errors: (a) cumulative gas production, (b) cumulative water production, (c) bottom-hole

pressure, and (d) the global error.

water production for both wells which are 1.5% and 6%,
respectively. However, we still see a relatively large error in
BHP which is 17%, and yet it at least captures the decreasing
trends. It is worth noting that the gas and water production
are from measurements, whereas BHP is what we back-
calculated using production rates, PVT data, and well config-
uration which comes with uncertainty. Therefore, having
measured BHP data from gauges in downhole would be
greatly helpful to reduce such uncertainty.

Figure 10 shows distributions of uncertain parameters
before and after the model calibration. Compared to the
initial distribution, the parameters generally show sharper
distributions after history matching implying that uncer-
tainty associated with the parameters have reduced [26, 27].
It was found that the ranges of the calibrate parameters
are 200-250ft for the fracture half length, 100-140ft for
the fracture height, and 0.7-0.75 for the fracture water
saturation. Fracture permeability for well A (10-30 md)
shows higher value than well B (5-15 md). This is attrib-
uted to the production data of the wells (Figure 1) that

well A outperformed well B, which is possibly caused
by the depletion effect of the adjacent offset well, yet
not accounted in the reservoir modeling. In other words,
in order to reproduce the history data that well A pro-
duced more fluid than well B, well A has to have a
higher fracture permeability as a consequence. High water
saturation along the fractures is also calibrated to demon-
strate a high water cut in early time because of stimula-
tion water.

As shown in the sensitivity analysis (Figure 7), parame-
ters associated with hydraulic fractures and permeability
enhanced zone have huge impact on the productions in
unconventional reservoirs. The presented study only utilizes
production history data and reservoir simulation to calibrate
the hydraulic fracture parameters. However, integrating
recently advanced measurements and techniques such as
distributed acoustic sensor (DAS), distributed temperature
sensor (DTS) [17, 28, 29], and seismic wave information
[30-32] would definitely help better understand geometry
and properties of hydraulic fractures.
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FIGURE 9: Two-year history matching simulation results: (a) cumulative gas production of well A, (b) cumulative water production of well A,
(c) BHP of well A, (d) cumulative gas production of well B, (e) cumulative water production of well B, and (f) cumulative water production of

well B.

We pick the best model to see how pressure has changed
in the calibrated reservoir model with time. Figure 11 shows
the depletion of the reservoir in the best model from 1 month
to 12 months after the production with a 4-month interval. It
is observed that the majority of pressure depletion occurred
in the first 4 months, and there is no significant difference
after 4 months. Also, from the pressure depletion in early
time, we can see the stimulated reservoir volume. The cali-
brated permeability enhanced zone has similar length to the
main hydraulic fractures, possibly implying that the reservoir
stimulation created a complex fracture network rather than
planar fractures.

Figure 12 shows pressure profiles of the simulation model
along the arrows in Figure 11(a), pointing i and k-directions.
Figure 12(a) shows the pressure profile in the i-direction with
the x-axis being the distance in the i-coordinate, y-axis being
the pressure drop (initial pressure—pressure at certain time),
and red and cyan stars indicating locations of well A and well
B, respectively. As previously observed in Figure 11, the pres-
sure profiles in Figure 12(a) confirm that the reservoir is
quickly depleted in the first 4 months, and the difference in
the pressure drop diminishes afterward. The shapes of the

pressure profile reveal that pressure depletion in the reservoir
is dominated by hydraulic fractures and permeability
enhanced zones. It is also observed that even before the first
4 months of production, concavities in the figure from the
wells are connected, which implies that well interference
occurs with the given reservoir stimulation and well configu-
ration. Figure 12(b) shows the pressure profile in the k
-direction at different times with a red star indicating the
location of perforation. It is shown that the pressure front
propagates 300 ft upward and 100 ft downward, and the local
minimum reservoir pressure in the profiles reaches 40% of
the initial reservoir pressure after 1 year of production. It is
important to understand how the reservoir has been depleted
especially when it comes to placing child wells. This is
because depending on the degree of the reservoir depletion
for the child well, the child well might experience a significant
production degradation [33].

4. Production Forecasting

After history matching, top 50 well-matched models were
selected for the production forecasting. The objective of the
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production forecasting is to evaluate EUR of two wells by
simulating future production of the wells. During forecast-
ing, the wells are constrained by fixed BHP for the total of
35 years. One of the advantages of taking such approach is
that performance prediction comes with a range rather
than one deterministic value, and this allows us to employ
probabilistic analysis. Figure 13 shows a cumulative oil
and gas production prediction of the two wells. In the fig-
ure, all of the models closely reproduce the history data
within the history matching period. After the history, the
top 50 models start to spread out widely, forming a range
of predicted production, and the prediction by the best
model is within the range.

Postprocessed forecasting results are illustrated with
a histogram and cumulative distribution function in
Figure 14 and summarized in Table 4. EUR for well A is
distributed between 586-639Mbbl while well B has a range
of 570-641Mbbl. However, in terms of P50, well A
(610MBO) shows a higher value than well B (605MBO).
This is consistent with the previous production history
which is possibly attributed to calibrated higher fracture
permeability for well A. In reality, there might be some
depletion effect from the offset well causing well B per-
forming slightly lower, yet it is not accounted in the reser-
voir model.

We also investigated how reservoir is going to be depleted
especially in the near future which mainly concerns with
child wells. Better understanding of reservoir depletion helps
us to seek potential benefits of the asset, and it is ultimately
advantageous for development planning. Figure 15(a) shows
the difference in reservoir pressure in the 3D reservoir model,
and a part of the model is removed to reveal pressure change
inside. We can see that the depletion is significant primarily
in the stimulated region of the reservoir. Figure 15(b) shows
the pressure difference in the i-k cross-section (j = 237). The
bottom layers of the reservoir barely experience pressure
change because of the low permeability of the formation
while upper layers show a pressure drop. The magenta star
in Figure 15(b) illustrates a hypothetical future well. The area
is already depleted, around 1,400 psi pressure difference.
However, additional simulation modeling work should be
required to investigate whether placing a new well at this
location will be adversely affected because of pressure deple-
tion from the parent wells. Another observation is that
production is not solely attributed to the stimulated area
but also part of the reservoir that is not stimulated at all. This
means that efficiently stimulating reservoir is absolutely
critical but having the “good rock” in the first place is also
important in the hydrocarbon recovery even in tight
shale reservoirs.
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5. Lateral Spacing Sensitivity

Given the best model, we conducted the sensitivity study for
lateral well spacing to find the maximum volume recovery
and economic benefits in the target area. The only variable
in the sensitivity study is well spacing, and other parameters
such as fracture geometry and properties which can have an
impact on the results are all fixed. The well constraint is fixed
BHP for the total of 35 years, the same as the previous pro-
duction forecasting, to see the impact of lateral well spacing
on EUR. The emphasis should be put on how the simulation
model is shaped and how the produced volume and net pres-
ent value (NPV) are examined per one section for this spac-
ing sensitivity study. As shown in Figure 16, we set the
boundary of the reservoir to vary as the well spacing changes.

For example, in the case of 660 ft spacing case (Figure 16(a)),
the gap between the wells and the boundary of the reservoir
model in the i-direction is the half of the well spacing,
330 ft, in both sides that the total length of the entire subsec-
tion is 1,320 ft. Similarly, in the case of 1,320 ft well spacing,
660 ft gap places in both sides of the reservoir model that
the length of the entire subsection is a double of the well
spacing, 2,640 ft (Figure 16(b)).

To examine the produced oil volume and NPV per one
section, the volume and accordingly calculated NPV from
the two-well pad model are simply weighted. Figure 16(c)
shows weights with respect to well spacing in a simulation
model. The weight of a 660 ft well spacing in a model yields
to 4 and that of 1,320 ft well spacing is 2. This is because four
660ft well spacing models can be fit in one section
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FiGure 13: Cumulative oil and gas production forecasting of top 50 history-matched models: (a) cumulative oil production for well A,
(b) cumulative gas production for well A, (c) cumulative oil production for well B, and (d) cumulative gas production for well B.

(5,260 ft x 5,260 ft) and so can two of the 1,320 ft well spacing
models. The concept of the weight in the study is fairly sim-
ilar with well per section (WPS) [8, 34] except that our case is
based on two-well pad. Therefore, the weight for this study is
simply the half of the WPS in the previous study.

For the lateral spacing sensitivity study, several key
assumptions are made.

(i) A two-well pad model forms a symmetry when it
extends to one section that no-flow boundary condi-
tion is imposed between two-well pad models. This
allows us to only simulate a part of one section to
evaluate the entire section

(ii) Change in well spacing might result in different frac-
ture geometries and conductivities because of the
stress shadow effect and connection with natural

fractures [9, 19]. However, we assume that fracture
geometry and conductivity are the same as the
history-matched model which is originally 660 ft
well spacing

(iii) All of the wells in the section are assumed to be com-
pleted and start producing at the same time for the
NPV calculation. This justifies the simple multipli-
cation yet might not be always the case of a field
development in reality

NPV calculation is based on actual capital expenditure
(CAPEX), lease operating expenses (LOE), working interest
(WI), and net revenue interest (NRI) of the asset. Economic
assumptions for the calculation include flat 120 bbl/MMscf
of NGL yield, flat commodity price, and 10% of the discount
rate (Table 5).
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TaBLE 4: P10, P50, and P90 of the production forecast for the wells
and comparison with DCA prediction.

Well A Well B
QOil (Mbbl) Gas (Bscf) Oil (Mbbl) Gas (Bscf)
P10 628 1.38 629 1.21
P50 610 1.34 605 1.16
P90 598 1.30 580 1.13
DCA prediction 459 1.55 415 1.15

Figure 17 shows the well spacing sensitivity on oil EUR
and NPV10 per two-well pad and per section with a magenta
star indicating the current well spacing practice. It is shown
that oil recovery and NPV increase with a larger well spacing
in well pad. This is because wells with larger spacing drain
more reservoir volume, experiencing less interference with
each other. Therefore, the well pad with larger well spacing
leads to better economic metrics. However, when it comes
to oil EUR per section, tighter spacing provides a higher oil
recovery while there is no increase in the EUR with the spac-
ing tighter than the current practice. Given the current com-
pletion design, this deduces two points: (1) development of
the section with well spacing larger than the current practice
leaves unexploited oil behind, and (2) the well spacing tighter

than the current practice is not optimum. Therefore, it is rec-
ommended to maintain or widen the distance between wells
to maximize recovery in the section, given the current com-
pletion design. Such a trend is also observed in previous stud-
ies [8, 35-37] that EUR augments as WPS increases and after
a threshold, EUR no longer increases. As discussed in Zhu,
Forrest [8] and Pankaj, and Shukla [38], the threshold is
believed to highly depend on the uncovered region between
stimulated wells mainly concerning with fracture half length.
Moreover, initial rock quality, which also contributes to the
production, should impact the threshold.

Using NPV as economic metrics, the reservoir model
suggests a more conservative approach for a sectional devel-
opment scenario. It suggests that the well spacing needs to be
increased between 40-50% from the current practice. In this
case, additional 15-20% monetary value is expected to be
realized. This is because tighter spacing requires more wells
to be drilled and completed which adds cost to develop the
entire section. Given economic assumptions, smaller WPS
is still economically beneficial than the current practice
because to spend less expenditure is as important as to earn
more revenue from the commodity. This tells us that the
volume-wise optimum well spacing is not necessarily identi-
cal to the economic-wise optimum well spacing in one
section development.
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TaBLE 5: Economic assumptions for the NPV10 calculation.

CAPEX/1-mile well LOE Pricing (flat) WI/NRI
Parsley 17 Qil: $50/bbl
$6.75MM HZ LOE Gas: $3/mscf  96.1%/72.3%

NGL: $20/bbl

While some of the factors in the NPV calculation like
CAPEX, LOE, W1, and NRI do not change much in life of a
well, the commodity price can be relatively volatile. There-

fore, the economic-wise optimum well spacing can change.
For example, Figure 18 shows NPV10 per section at different
commodity prices. The higher commodity price drives the
economically optimum well spacing tighter while larger spac-
ing is economically favorable in low commodity price envi-
ronment. However, even though the commodity price is
extremely high, the optimum well spacing for the one section
in the area will not be tighter than the current practice. As
discussed in Figure 17, spacing tighter than the current prac-
tice do not take benefit in the oil recovery volume anymore
with the given completion design.
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6. Conclusion

Finding the optimum well spacing is a key factor for the suc-
cessful unconventional field development. However, to
investigate the optimum well spacing is not straightforward
because of complex dynamics in unconventional reservoirs,
including hydraulic fracture property and geometry and well
interference. In order to adequately account for such com-
plexity, we performed the flow simulation-based reservoir
modeling to find the optimum well spacing in the Midland
Basin in terms of oil volume and economic metrics.

We first history-matched the two-well pad with less than
10% of global error which is the sum of errors in cumulative

gas and water production and BHP. The calibrated fracture
geometry, half length, and height were found to be within
reasonable ranges based on the offset response and analytical
solution. Production forecast results based on the top 50
history-matched models showed that P50 of oil EUR for
the wells was within an acceptable range compared to deter-
ministic EUR estimates. With the history-matched model,
lateral well spacing sensitivity was investigated. It was found
that the well spacing tighter than the current development
practice can potentially yield suboptimal areal recovery. Fur-
thermore, the economic evaluation has provided an indica-
tion that the additional monetary value can be realized
when the well spacing is widened, up to 150% of the current
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field assumption. Even though this study targets a specific
field site, the presented workflow and method to investigate
reservoir depletion, stimulation characterization, and well
spacing optimization for multiwell pad should be readily
applicable to other acreage positions.
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