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Tight oil is an important unconventional resource, and sand production is an inevitable challenge during the field development. In
this paper, based on data from the Daqing oilfield in Songliao Basin, the sand production of the tight sandstone oil reservoir is
studied from the perspective of seepage and in situ stress distribution. Based on the combination of the formation fluid seepage
law and the stress distribution around the well, a sand production prediction model is proposed to quantitatively estimate the
sand production rate. The sand production prediction model is built based on the derivation of the sand production rate, which
is well validated against the field data in the Daqing field with a relative error of 4.38%.The following conclusions are drawn: (1)
after the critical pressure difference is exceeded, the sand production rate is smaller with a higher flowing bottom-hole pressure;
(2) a smaller sand production radius makes the formation more unstable and causes a more severe sand production; and (3)
various sand production rates exhibit due to different permeabilities. A larger permeability results in a higher sand production
rate. The findings of this study can help for sand production prediction in the tight sandstone oil reservoir.

1. Introduction

Tight oil and gas is a popular energy source in the oil indus-
try, which supports the oil and gas revolution [1]. According
to statistics, the total reserves of global tight oil reservoirs are
about 9294 × 108 t, and the technically recoverable reserves
are about 460 × 108 t, among which more than 60% of the
tight oil resources are mainly concentrated in 6 countries
including Russia, the United States, China, Libya, Argentina,
and Australia [2]. The technically recoverable amount of
tight oil in the United States is about 81:2 × 108 t, more than
six times that of China. Although there are abundant
resources in tight oil reservoirs, the recovery rate is generally
low. In the Bakken formation in North America, for example,
as one of the earliest tight reservoirs in the world, the average
recovery from natural depletion in the Bakken formation is

only 5% to 10%. In 2016, the annual production of tight oil
in the United States reached 2:12 × 108 t, accounting for
52.6% of the total crude oil production in the United States.
In the same year, the external oil dependence percentage in
the United States dropped to about 33%.

The development of tight oil reservoirs in China started
relatively late [3]. So far, a number of tight oil reserves have
been discovered in Ordos, Songliao, Junggar, and Bohai
bay, but they are basically in the early technical stage [4].
The supporting technologies for tight reservoir development
in the United States cannot be directly applied to tight reser-
voir development in China due to the following reasons:
most tight reservoirs in the United States are marine deposits,
with high pressure, high gas-oil ratio, high oil mobility, and
brittle reservoir rocks. Most of the tight reservoirs in China
are continental deposits with insufficient formation energy,
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low gas-oil ratio, crude oil of high viscosity, and high content
of rock-plastic minerals, which negatively affect the fractur-
ing of reservoirs. In contrast, China’s tight reservoirs have a
more complex geology, worse reservoir physical conditions,
and more severe technical challenges. At present, China has
not formed a mature development theory, experience, and
equipment for the economic development of tight reservoirs,
and the key technologies of tight reservoir development are
still in the preparation stage before the breakthrough. China’s
tight oil reservoirs are still in their infancy due to the small
scale, low production per well, and high development costs.
In summary, the economic deviation of China’s tight oil
development poses a greater challenge to economic develop-
ment [5].

Sand production is the inevitable problem in the develop-
ment of tight oil fields. The prediction of sand production is
now a popular research topic in both academia and industry.
Generally, the sand production happens when the formation
stress exceeds the rock strength, which is dominated by the
cementation of cements, adhesion of fluids, and friction
between particles[6]. The formation stress includes the struc-
tural stress, overburden stress, flow force, and production
pressure difference [7]. The mechanical mechanisms of sand
production include three failure types (Figure 1): (1) shear
failure. The rock will exhibit the status of elastic deformation
or plastic deformation while the effective stress of rock
exceeds its compressive strength; (2) tensile failure. The flow
channel for sand production will be generated if the stress
exceeds the tensile strength; this is, the sand production will
happen if the stress at the borehole is higher than the tensile
strength; (3) bond failure. This mechanism is more signifi-
cant in the weak cementation formation. The bond strength
dominates the erosion of bare surfaces. The sand will be pro-
duced if the drag force caused by fluid flow is higher than the
bond force [8]. Thus, a sand production prediction model is
essential for sand control and well management [9].

The sand production is closely related with the petrophy-
sical and fluid properties [10]. Many papers reported the
sand production under the stress theory, classical sand pro-
duction factors, sand production experiment, and effects of
wetted fluid concentration on sand arch. Based on these stud-
ies, the main controlling factors for sand production are geol-
ogy, well completion, and oil/gas production [11, 12]. The
geological factors include structural stress, interparticle
bonding, and fluid properties [13]. Completion factors
include borehole size, well deviation, and perforation. Pro-
duction factors include production pressure difference, fluid
flow in the formation, water injection, formation damage,
and other factors. Transport of oil in the fractured tight res-
ervoirs can be thought of as an advective-diffusive-reactive
flow process [14]. Other factors include oil viscosity and rock
wettability. Under the pressure decline, the viscosity of
degased oil increases, and the wettability changes from
water-wet to oil-wet. These will transform the capillary pres-
sure from driving force to resistant force, which leads to the
increase of dragging force of fluid and promotes the sand
production[15]. However, previous studies are focused more
on the qualitative methodology with considering very few
factors. The sand production mechanism can only be deeply

understood by finding a clear relationship between rock
properties, fluid flow, and sand production rate [16].

Few studies have been performed on sand production
prediction for the tight sandstone oil reservoir [17]. In the
industry, the sand production factors of the tight sandstone
oil reservoir are still not clear, and factors resulting in the
sand production risk are also in need to be explored [18].
Around the tight oil production wells after large-scale frac-
turing, rocks are cracked and destroyed under artificial action
formation rock structure, so formation stress should be the
main cause of sand production, and crude oil mainly flows
into the bottom of the well through the fracture after fractur-
ing. With the focus on these limitations, this study provides a
sand production prediction model to dynamically assist the
sand control.

Previous studies have mostly described the sand produc-
tion mechanism qualitatively. In this paper, a quantitative
calculation model for sand production of tight oil reservoir
is obtained by combining the seepage law of tight oil with
the analysis of well stress. The sand production prediction
model in this study is firstly constructed by bridging the
rock mechanical theory and fluid flow [19]. This model is
secondly validated against the field data from the Daqing
oilfield in Songliao Basin. The sand production mechanisms
are thirdly discussed based on the model, which provides
theoretical basis for the tight sandstone oil reservoir devel-
opment [20–22].

Firstly, the seepage model of the tight sandstone oil reser-
voir is established to obtain the sand production within the
sand production radius; then, the stress around the well is
analyzed to calculate the sand production radius, and finally,
the two are used to obtain the sand production from the tight
sandstone oil reservoir.

2. Model Establishment

Due to the extremely low permeability of tight reservoirs,
large-scale fracturing is generally required for production.
The seepage of oil and gas in fractures follows Darcy’s law,
and the permeability of fractures is far greater than that of
the formation matrix. Therefore, oil flow can be considered
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Figure 1: General sketch of the sand production problem.
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only through fractures during production, ignoring the
formation bedrock oil production. The reservoir is assumed
as a circular finite oil reservoir as shown in Figure 2. The
reservoir thickness, the boundary radius, and the well radius
are expressed as h, re, and rw.

The main assumptions are as follows:

(1) Only the flow of oil and solid phases is considered

(2) Isothermal condition

(3) Effects of well completions on sand production are
omitted

Under the plastic deformation, the relationship between
the volume change and the shear velocity is as follows
[23, 24]:
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The expansion coefficient ∧ is related with radial
stress; the flow-pattern coefficient γ equals to 1 in the
radial flow case and 2 in the spherical flow case. By
solving equation (2), the solid velocity can be obtained
as follows:

v = C
rn
,

n = γ+∧θα
1−∧θα

:

ð3Þ

The oil and sand production rates can be calculated as
equations (4) and (5), respectively:

qf = 2πrhw rð Þ, ð4Þ

qs = 2πrhv rð Þ: ð5Þ
For the sand production formation, the velocity differ-

ence between oil and solids can be calculated as follows:
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The integration procedure is as equations (8)–(10):
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The sand production rate can thus be obtained as
follows:

qs rwð Þ =
qf ln re/rwð Þ − 2πhβK pe − pwð Þ/μ
h i

1 − nð Þ
rc1−n/rw1−n − 1ð Þ : ð11Þ

The stress distribution around the well is studied by
taking a microelement of the rock around the well, and
the stress can be classified as radial stress (σr), tangential
stress (σθ), axial stress (σz), and shear stress (Figure 3,
σθr , σθz , and σrz).

The principal stress around the wellbore can be expressed
by matrix eigenvalues [25, 26]:

σr − σ σrθ σzr

σθr σθ − σ σθz
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Figure 2: Circular finite oil reservoir model.
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The principle stress can be got as follows:
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where

b = − σr + σθ + σzð Þ, ð14Þ
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A = b2 − 3c, B = bc − 9d, ð17Þ

θ = arccos 2Ab − 3B
2A

ffiffiffiffi
A

p
� �

: ð18Þ

The reservoir pressure is a function of flowing bottom-

hole pressure (FBHP) within the boundary of sand produc-
tion, which can be expressed as follows:

pc = pw + p0
ln re/rwð Þ ln rc

rw
ð19Þ

especially when the radius equals to rc

σ1 pw, rcð Þ − βbpp pw, rcð Þ = 2Ytan φ

2 + π

4
� 	

+ σ3 pw, rcð Þ − βbpp pw, rcð Þ
h i

tan2 φ

2 + π

4
� 	

:

ð20Þ

The maximum and minimum stress σ1 and σ3 can be
obtained based on stress matrix:

σ1 pw, rcð Þ =max σ1′ , σ2′ , σ3′
n o

, ð21Þ

σ3 pw, rcð Þ =min σ1′ , σ2′ , σ3′
n o

: ð22Þ

Calculate the value of σ1′ , σ2′ and σ3′ at a certain radius,
then the values of σ1 and σ3 are determined, and σ1 and σ3
are substituted into Equation (20). When Equation (20) is

Table 1: Petrophysical parameters of the Daqing oilfield.

Average reservoir
pressure/MPa

Reservoir boundary
radius/m

Well radius/m Permeability/10-3 μm2 Depth/m Thickness/m Viscosity/mPa·s

28.66 186.47 0.1015 2.3 2540-2536 53.5 19.5
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Figure 4: Relationship between flowing bottom-hole pressure and sand production rate.
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equal, the radius is determined to be the sand producing
radius rc, so the sand quantity can be calculated according
to Equation (11).

3. Results and Discussions

In order to validate the accuracy of the proposed model, the
Daqing oilfield in Songliao Basin is selected. The parameters
of this tight sandstone oil reservoir are shown in Table 1.
Based on these parameters, the critical FBHP of sand produc-
tion is calculated and validated against real date.

Field measurement reports the critical FBHP which is
24.21MPa, and the critical pressure difference is 4.45MPa.
This model provides an estimation of 25.27MPa for the
FBHP, which has a relative error of 4.38% compared with
field data. This validation indicates the proposed model is
both practical and accurate.

3.1. Effects of Flowing Bottom-Hole Pressure on Sand
Production. The sand production rate is related with FBHP.
Figure 4 shows the sand production rate under FBHP of
18MPa, 19MPa, 22MPa, and 25MPa. The solid line is the

sand production rate from the model, and the dotted points
are the sand production rate from field measurement. With
the time being, the FHP becomes smaller, and the sand pro-
duction is easier. Specially, the sand production rate is the
highest under the FBHP of 18MPa. As the well completion
factor is not considered in this model, thus the estimated crit-
ical BHP is higher than the real data. There are two types of
sands during the sand production: (1) the free sands in the
pores and (2) the detached sands from rock matrix. The sand
production curve thus has an inflection point. With the time
being, the relative difference between the model result and
real data is smaller, which further shows the practical appli-
cation of this model.

3.2. Effects of Sand Production Radius on the Sand Production
Rate. The FBHP is significantly affected by sand production
radius. With a larger sand production radius, the critical
pressure difference will be higher. A larger sand production
radius results in a lower sand production rate under a certain
FBHP. Figure 5 shows the sand production rate under the
FBHP of 18MPa and sand production radii of 0.20m,
0.22m, 0.24m, and 0.25m. Overall, the possibility of sand
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Figure 5: Relationship between the sand production rate and time under difference sand production radii (18MPa).
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production is larger with the increase of producing time.
While a location is closer to the borehole, the moment of
force on a particle is larger, which further results in a higher
sand production rate. This is because the oil production rate
near the borehole is high, and the rock failure is severe, which
is caused by a quick change of oil saturation and pore pres-
sure. Compared with the near-wellbore region, the possibility
of sand production in the region far away from the borehole
is much lower.

3.3. Effects of Permeability on the Sand Production Rate. The
sand production rate is also significantly affected by the per-
meability. Figure 6 indicates the sand production rate under
the FBHP of 18MPa and different formation permeabilites
(2.3mD, 3.0mD, 4.0mD, and 5.0mD). We can see that the
sand production rate is higher with a larger permeability.
This is because the oil rate is higher under a larger permeabil-
ity, which leads to a rapid change of pore pressure and oil
saturation.

4. Summary and Conclusions

Although the fluid seepage and stress distribution around the
well have been considered in the development of tight sand-
stone reservoirs, the problems encountered in actual reser-
voir development are more complicated. For example, the
non-Darcy seepage of the formation fluid, the multimedia
seepage, and the complicated stress distribution around the
well, this model does not consider the above problems, there
are still deficiencies, and the calculation results still have
errors compared with the actual situation.

The sand production prediction model is built based on
the derivation of the sand production rate, which is well val-
idated against the field data in the Daqing field with a relative
error of 4.38%. The main conclusions of this paper are as
follows:

(1) The sand production rate of the tight sandstone oil
reservoir is closely related with FBHP. While the crit-
ical pressure difference is exceeded, a higher FBHP
leads to a lower sand production rate

(2) The critical FBHP is significantly affected by sand
production radius. Under a certain FBHP, the sand
production is more severe with a smaller sand pro-
duction radius and a closer distance to borehole

(3) Different tight sandstone oil reservoir permeabilities
result in various sand production rates. A higher
permeability induced a more rapid change of pore
pressure and oil saturation, which further increases
the possibility of sand production

Nomenclature

Roman Symbols

qf : oil production rate, m3/d
K : permeability, 10-3μm2

h: thickness, m

p: pressure, MPa
μ: viscosity, mPa s
∧: expansion coefficient
γ: flow-pattern coefficient
v: solid velocity, m/s
r: radial distance, m
C: integration constant, m
n: expansion index
w: oil velocity
ðdp/drÞ: pressure gradient
β: coefficient
re: boundary radius, m
rw: well radius, m
rc: sand production radius, m
pe: reservoir pressure, MPa
pw: FBHP, MPa.
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