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The present study compares flow paths in reservoirs with natural fractures, solved with Complex Analysis Methods (CAM), to
those solved with Embedded Discrete Fracture Models (EDFM). One aim is to define scaling rules for the strength (flux) of the
discrete natural fractures used in CAM models, which was previously theoretically defined based on the expected flow
distortion. A major hurdle for quantitative benchmarks of CAM with EDFM results is that each of the two methods accounts
for natural fractures with different assumptions and input parameters. For example, EDFM scales the permeability of the natural
fractures based on a cubic equation, while CAM uses a flux strength. The results from CAM and EDFM are used to scale the
flux strength of the natural fractures and improve the equivalent permeability contrast estimation for CAM. The permeability
contrast for CAM is calculated from the ratio of the enhanced velocity inside natural fractures to the unperturbed matrix fluid
velocity. A significant advantage of flow and pressure models based on CAM is the high resolution without complex gridding.
Particle tracking results are presented for fractures with different hydraulic conductivity ranging from highly permeable to
impervious.

1. Introduction

The flow of fluids in naturally fractured reservoirs is highly
influenced by the permeability, porosity, density, orientation,
and several other features of discrete natural fractures. When
such natural fractures have an enhanced permeability, they
become highly conductive. The highly conductive natural
fractures may alter the flow path of fluids by altering the local
state of pressure and flow rates in the reservoir. The perme-
ability contrast of natural fractures with the matrix also
changes the shape of the drained rock volume by providing
preferential flow paths to the trapped oil and gas fluids fur-
ther away from a well [1, 2]. Natural fractures may also be
reactivated during hydraulic fracturing, as predicted by frac-
ture propagation models [3, 4] and microseismic events [5],

thereby distorting the flow path. Unlike hydraulic fractures,
natural fracture networks do not directly drain the reservoir
as there is no pressure sink [6]. Nonetheless, prior studies
have also shown that natural fractures may enhance pressure
communication and flow interference between adjoining
wells [1, 5].

In the present study, we compare the results of CAMwith
EDFM for natural fractures oriented at different directions
with respect to the principal direction of fluid flow. The
three-term CAM algorithm [7] developed to trace the parti-
cle path deflection by natural fractures oriented at any angle
with respect to the far-field flow is used. The outline of this
paper is as follows. Section 2 provides a brief review of flow
modeling tools for fractured porous media. Section 3 pre-
sents a background on the flux strength variable used in
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CAM, which relates to the hydraulic conductivity of natural
fractures (Section 3.1). Section 3 also shows the scaling of
the strength variable by comparing the pressure contour
plots for natural fractures with different flux strengths, using
CAM (Section 3.2), with EDFM results (Section 3.3). Section
4 shows CAM results (pressure contours and particle path
solutions) for flow in naturally fractured reservoirs with
arbitrary single fractures (Section 4.1). The CAM code can
equally well account for impervious fractures that do not
attract but impede fluid flow (Section 4.2). Section 5 high-
lights the fast computation time of CAM models (Section
5.1) and presents the results from a first attempt to compare
CAM and EDFM models for flow across a reservoir section
with multiple randomly oriented fractures (Section 5.2). A
discussion follows in Section 6, and conclusions are given
in Section 7.

2. Review of Flow Models for Naturally
Fractured Reservoirs

Accurate simulation of fluid flow in naturally fractured
porous media is a major challenge in subsurface reservoir
engineering. The dimensions of the natural fractures are sev-
eral orders of magnitude smaller than the dimensions of the
reservoir, which adds to the complexity of accurately repre-
senting the natural fractures. We briefly summarize some of
the approaches for modeling natural fractures below.

2.1. Prior Approaches

2.1.1. Dual ContinuumModels.Naturally fractured reservoirs
were first modeled using a dual continuum approach formu-
lation [8, 9]. In a dual-porosity model, natural fractures are
represented by homogeneous and isotropic matrix blocks
separated by orthogonal uniform natural fractures. The
dual-porosity model assumes that the flow of fluid stored in
a noncommunicating matrix occurs through the fractures.
The dual-porosity model was later modified [10, 11] to
account for other complex behavior seen in naturally frac-
tured reservoirs. Dual-porosity models are still used today
to model naturally fractured reservoirs. The merits are its rel-
ative simplicity and computational efficiency as compared to
other discrete fracture and fracture network models.

However, the dual-porosity model is not accurate for
cases where the fracture geometry is complex and asymmet-
ric, as is the case for hydraulically and naturally fractured
unconventional reservoirs [12]. Modifications such as multi-
ple interacting continua [13], time-dependent shape factors
[14], and explicit parameterization of time-dependent
transfer functions [15, 16] have been proposed to tackle the
shortcomings of the multiporosity model. Despite these
modifications, multiporosity models cannot explicitly
account for the density and orientations of the natural frac-
tures, which leads to unrealistic results. The shape factor
and transfer function may not fully capture the complex flow
behavior due to detailed pressure and fluid saturation gradi-
ents in naturally fractured reservoirs [17]. Multicontinuum
models do not make any explicit geometric distinction
among matrix, fractures, and fracture intersection. Implicit

representation of fractures and matrix in such models needs
the flow to be represented by upscaled quantities [12].

In contrast to multiporosity/multicontinuummodels, the
explicit numerical modeling of fractures in discrete fracture
models is computationally intensive but conceptually simpler
than the implicit (multicontinuum) models. The discrete
representation of fractures can be broadly categorized into
four principal groups, (1) Discrete Fracture Network (DFN),
(2) Discrete Fracture-Matrix (DFM) model, (3) EDFM, and
(4) other gridded solution methods [12]. They are briefly
reviewed below.

2.1.2. DFN. In a DFN model, the matrix is assumed to be
impermeable, and the flow is expected to occur only through
the discrete fracture networks. DFN models consider fluid
flow and transport processes in a fractured rock through a
system of connected natural fractures. The DFN method is
useful for studying fluid flow and mass transport in the frac-
tured rocks for which an equivalent continuum model is
difficult to establish or not applicable. It can also be used to
derive the equivalent continuum flow and transport proper-
ties in the fractured rock for subsequent use in faster,
upscaled (but implicit) reservoir models [18, 19]. In a DFN
model, the storage and flow of fluids occur only through
the fracture networks, which is suitable for modeling low-
permeability and low-porosity fractured media. For a low-
porosity/low-permeability system with many dominant
natural fractures, the continuum approximation may not be
entirely valid as the flow through the matrix is assumed to
be negligible compared to the fractures. The DFN models
may also be used to perform large-scale simulations where
the fractured reservoir properties need to be approximated
through upscaling and homogenization into equivalent
permeability tensors [20].

2.1.3. DFM. In a DFM model, the fractures are modeled as
lower-dimensional interfaces embedded in the rock matrix.
The DFM model reduces the loss of accuracy due to upscal-
ing by introducing realistic geometrical complexities. In a
DFM model, the fluid resides in both porous matrix and
explicit fractures, but the smaller fractures are integrated into
the matrix with appropriate upscaling. The DFM model is
suitable for reservoirs with several natural fractures where
only a few dominant fractures contribute to fluid storage
and flow. The upscaling of matrix permeability to account
for nondominant fractures reduces the complexity and
computational cost during meshing without foregoing the
accuracy. The selection of nondominant fractures integrated
into the matrix is usually based on the dimensions of the
fractures [21].

2.1.4. EDFM. EDFM uses nonconforming grids with respect
to fracture-matrix connections (introduced by [22]) and is
an extension of the classical DFM model. EDFM uses a
hybrid approach, where the dual-porosity model is used for
the smaller and medium fractures, and DFN is used to model
the larger fractures [22]. Flows within the matrix and the
fractures are proportionated by the pressure difference
between them and are discretized separately [23]. EDFM
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allows for complex fractures to be implemented in conven-
tionally structured matrix grids without the need for local
grid refinement (LGR) in the vicinity of the fractures
[19]. Other models, such as projection-based EDFM
(pEDFM), have also been proposed to improve the tradi-
tional EDFM [24, 25].

2.1.5. Other Gridded Methods. Other methods such as the
extended finite-element method or XFEM [26, 27] and con-
forming mesh using triangles and Voronoi grids [28, 29]
can also be used to discretize naturally fractured reservoirs.
These advanced discretization techniques capture the discon-
tinuity of pressures across the fracture surface while preserv-
ing acceptable resolution of the near-fracture dynamics [26].

All of the concurrent numerical methods (multiconti-
nuum, DFN, DFM, EDFM, and XFEM) use discretization
or meshing as a pivotal step to simulate the flow of fluids
through the naturally fractured reservoirs. The discretization
may require refinements of the gridding to account for the
heterogeneities, interaction of the fracture/matrix system,
and flow within the fractures/matrix [30]. Multicontinuum
models are discretized by using finite difference where several
values for physical parameters are assigned to each medium.
For discrete fracture models, finite-element methods are
primarily utilized to model the discrete fractures. However,
a significant drawback of such advanced discretization
schemes is the computational complexity and difficulty in
accurately representing the prototype with a finite number
of grid blocks [12, 26, 31].

Efficient meshing/gridding is the biggest bottleneck to
reduce the computation time of discrete numerical methods
due to the inherent geometric complexity of fracture net-
works [12]. In addition, some models, such as EDFM, are
only valid for high-permeability fractures and cannot model
impervious or low-permeability fractures (for example, due
to cementation or clay decay in fracture zones) [25].
Recently, analytically solvable models using Green’s function
for gas flow in complex fracture networks have been pre-
sented by Marder et al. [32], which was also numerically
tested with Barnett shale reservoir properties by Eftekhari
et al. [33]. The existing numerical and analytical models are
powerful tools with several strengths and weaknesses.

2.2. New Approach with Semianalytical CAM Models. In this
study, we present an alternative method (CAM), with a low
computational load that can accurately model and visualize
the flow in various kinds of naturally fractured reservoirs.
Traditionally, CAM uses potential and stream functions to
describe the physical transport of particles in basic flow fields
[34]. The basic flows can be combined or superposed with
each other to describe complex flows that occur in ground-
water and oil reservoirs. Increasingly complex flows can be
combined such that solutions satisfy the Cauchy-Riemann
differential equation. The functions (complex potentials)
which satisfy the Cauchy-Riemann differential equation
define the two-dimensional flow of incompressible and
irrotational fluids. The basic algorithms for potential theory
have been extensively described in our earlier publications
[4, 34, 35] and fluid-mechanics literature [35–38]. Models

based on CAM have been previously used to model fluid flow
in hydraulically fractured reservoirs [39–41]. This paper
applies various complex potentials based on areal doublets
to model the flow of fluids in natural fractures [7, 17].

A significant strength of models based on CAM is the
ability to solve for the flow equations without any gridding.
Discrete fracture models rely on the application of unstruc-
tured grids, which increases the computational complexity
and makes the real-field applications challenging [25].
CAM algorithms do not require extensive gridding or mesh-
ing, which enables the modeling of heterogeneous reservoirs
with numerous discrete fractures. Consequently, CAM algo-
rithms are computationally efficient and offer high resolu-
tion, which is especially beneficial for modeling flow in
unconventional oil and gas reservoirs that involve many
hydraulic and natural fractures. CAM models of flow in res-
ervoirs involving multiple wells, hydraulic fractures acting as
pressure sinks, and impermeable fractures and faults have
been validated as producing accurate results [42, 43]. CAM
particle paths closely matched with those obtained by inde-
pendent methods (e.g., Eclipse) [42, 43].

CAM models applied to naturally fractured reservoirs
have been presented elsewhere [1, 2, 17, 41], but no bench-
marks of results against other methods have been presented
yet. The present study is aimed at filling (at least a part of)
that gap. A previous study has already pointed out that
hydraulic fractures (connected to a wellbore) act as pressure
sinks and behave differently from natural fractures [6],
assuming the natural fractures of concern are not connected
to a wellbore or a hydraulic fracture. Connected natural frac-
tures behave like an extension of the hydraulic fracture
network.

The key algorithm used to model natural fractures in
CAMwas first derived by superposing areal doublet solutions
[17], which are accurate for flow through fractures aligned
with a far-field flow and can model multiple fractures with
different flux strengths. The natural fracture element [17]
was recently augmented [7] to accommodate the particle
paths for fractures oriented at a large angle to the far-field
flow. As the algorithms based on CAM are multivalued in
certain branch-cut locations [44], the augmented solution
[7] also needed to circumvent the branch cuts to avoid
discontinuity in pressure (potential function) plots. The
solution was augmented by gradually superposing two areal
doublets with transformed coordinates, based on the angle
with the far-field flow. The rotated fracture element results
in the correct particle paths, even when the fractures occur
perpendicular to the principal flow direction. For the inter-
mediate cases, when the angles between the direction of flow
and the areal doublet range between 0° and 90°, the particle
paths are solved by the superposition of the original element
and the rotated element [7]. The key algorithms used in this
study are summarized in Section 3 and Appendix A.

3. Scaling of CAM Fracture Strength to
Permeability with EDFM

This study presents a comparison and scaling rules for
models based on complex analysis methods (CAM) with
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EDFM models. For CAM-based algorithms, the flow inten-
sity is scaled by the strength variable. The units of the
strength depend on the complex potential of the flow ele-
ment. For example, the strength of a vertical well has units
of m2/s, the strength of a hydraulic fracture has units of
m3/s, and the strength of an areal doublet/natural fracture
element has units of m4/s. The strength variable can be pos-
itive (e.g., injectors) or negative (e.g., producers). This section
discusses the scaling of the strength variable, which is a key
input parameter for models based on CAM.

The permeability of a reservoir is one of the most impor-
tant variables that determine the productivity and deliver-
ability a well. Fundamentally, the permeability of a porous
medium is the proportionality constant in Darcy’s law,
which defines the relationship between the pressure gradient
and the fluid flux (flow rate per unit area). Reservoir perme-
ability is an intrinsic property of the porous medium.
Although for any particular rock type a higher permeability
generally correlates with higher porosity [45], these parame-
ters affect the time of flight (TOF) of migrating fluids in
opposite directions [42]. The time of flight decreases when
the permeability increases and slows down when the perme-
ability decreases. For permeability, the opposite occurs: flow
speeds up when the porosity decreases (thus shortens TOF),
and flow slows down when the porosity increases (thus
lengthens TOF).

Permeability for a reservoir can be estimated from well
logs, using empirical models such as the Carman-Kozeny
equation [45]. Advanced logging tools such as nuclear mag-
netic resonance (NMR) are also used to calculate the forma-
tion permeability applying the Timur-Coates model [46] and
the Schlumberger-Doll-Research model [47], especially in
reservoirs where the Carman-Kozeny model does not work
well. Where production data and limited reservoir character-
istics are available, history matching can estimate the reser-
voir permeability [40]. For a naturally fractured reservoir,
permeability can be broadly divided into matrix and fracture
permeability, which are both measured in Darcy. Unconven-
tional reservoirs are characterized by heterogeneous geology
where each feature, including the fracture and matrix perme-
ability, is significantly different from one region to another.
As the characterization of each of the fractures is difficult,
flow is simulated by using the upscaled permeability for
single and multicontinuum models. For discrete models,
the permeability for each individual fracture is assigned
based on applicable statistical distributions [48].

3.1. CAM Strength Scaling of Natural Fractures. From
Darcy’s law, time-dependent flow rate, V f , across a natural
fracture of length L, due to the time-dependent pressure
gradient ΔPf ðtÞ is defined as follows [17]:

V f tð Þ = −
kf
μ

ΔPf tð Þ
L

,  m ⋅ s−1
� �

, ð1Þ

where kf /μ is the ratio of fracture permeability to fluid vis-
cosity. Similarly, the time-dependent flow rate, Vm, across
a section of the matrix with the same length due to the

time-dependent pressure gradient ΔPmðtÞ is defined as
follows [17]:

Vm tð Þ = −
km
μ

ΔPm tð Þ
L

,  m ⋅ s−1
� �

: ð2Þ

Assuming that the pressure gradient across the natu-
ral fracture and adjoining matrix is equal (i.e., ΔPmðtÞ =
ΔPf ðtÞ), from equations (1) and (2), the permeability ratio
kf : km = Rk can be calculated as follows [17]:

V f

Vm
=

kf
km

= Rk: ð3Þ

According to equation (3), the fluid velocity can be
used to scale the fracture permeability based on the known
matrix permeability, and vice versa. When both fracture
and matrix permeability are unknown, the permeability
contrast Rk of the matrix and the natural fracture can be
calculated from the ratio of the respective fluid velocities.

In our previous study, the permeability ratio Rk was
linked to the primary input parameters of CAM [6], which
are modified here to account for the superposition of V f

being the result of Vm and the superposed flux. Our prior
study [6] computed the fracture strength (υf ) as υf = RkVm

HfWf Lf , where Vm is the far-field velocity in the matrix,
and Hf , Wf , and Lf are the height, width, and length of
the natural fracture element, respectively. However, the
velocity in the fracture, V f , is due to a preexisting Vm plus
an additional velocity component V flux, superposed due to
the fracture flux:

V f =Vm +V flux: ð4Þ

Substituting now the modified fracture strength
υf′ =V fluxHfWf Lf into equation (4) and using Rk yields the
following:

Rk − 1ð Þ = υf′
VmHfWf Lf

: ð5Þ

The strength of the natural fracture and the far-field
velocity in the matrix are denoted by υf′ and Vm, respec-
tively. Thus, if the defined permeability contrast is known,
the strength of the natural fracture element to be used for
a discrete natural fracture in CAM can be calculated as
follows:

υf′ = Rk − 1ð ÞVmHfWf Lf : ð6Þ

In the following section, the permeability contrasts for
CAM fractures are calculated from equation (3) by taking
the ratio of the maximum velocity due to the natural fracture
and the original far-field velocity. However, as seen later
in Section 3.3, the permeability contrast (Rk) calculated
from equation (3) underestimates the permeability contrast
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calculated from the traditional models, and a correction
factor is required. A correction factor, ξ, is introduced in
Section 3.3 (see equation (7)) to scale a required permeabil-
ity contrast (kf /km) with a corresponding natural fracture

strength (υf′) for CAM, using the pressure contours gener-
ated from EDFM to calibrate the correction factor empiri-
cally. In what follows, we simply use υf , in lieu of υf′, by
dropping the apostrophe.

3.2. Determination of Permeability Contrast with Matrix and
Fracture Using CAM. In this section, a reservoir space is con-
sidered with an arbitrary, uniform far-field flow velocity of
1:117 × 10−7 m/s (3.5m/year) from left to right. Figure 1
shows the pressure (Pa) field for the reservoir due to the
far-field flow, where the pressure contours are perpendicular
to the flow direction of the fluid. The reservoir is assumed to
have permeability and porosity of 10mD and 10%, respec-
tively. The porosity scales the far-field flow rate up to a net
effective velocity of 1:117 × 10−6 m/s. In the remainder of this
study, the effective strength and the effective velocity are
reported, accounting for the porosity of the reservoir.

Next, consider a reservoir model (Figure 2) with a solitary
natural fracture located centrally in the flow space. The reser-
voir and fluid properties for the naturally fractured reservoir
are summarized in Table 1.

Figures 2(a) and 2(b) show the pressure contours and the
velocity field for the naturally fractured reservoir using the
conditions of Table 1. The pressure contours (Figure 2(a))
are only mildly perturbed (compared to Figure 1), mainly
near the natural fracture tips. Figure 2(b) shows that the
velocity increases locally inside the natural fracture and
slightly around the tips of the natural fracture. A small sec-
tion of the natural fracture, marked by the square box in
Figure 2(b), is maximized to closely examine the velocity in
and near the fracture. The maximized portion (Figure 2(c))
shows that the maximum velocity at the center of the natural
fracture is almost six times the original effective far-field
velocity. Figure 2(c) also indicates that the increase in veloc-
ity outside of the natural fracture is negligible. The perme-
ability contrast (Rk) between the matrix and the fracture is
calculated to be 5.97 (equation (3)).

The localized velocity changes across a natural fracture
are further highlighted in Figure 2(d), where the implied per-
meability contrast across the y -axis at x = 4:5 is plotted. The
cross-section (Figure 2(d)) shows that the natural fracture
increases the velocity only within the natural fracture itself,
with a negligible impact on the matrix velocity. The presence
of a single natural fracture will have a negligible impact on
the average or upscaled equivalent permeability of the reser-
voir. However, if the natural fracture density is high due to
the presence of numerous natural fractures, the upscaled
permeability for a reservoir may significantly increase (see
upscaling in [6, 48]).

This fluid velocity increase inside the natural fractures
(Figure 2(d)) is the primary reason for preferential flow paths
and flow channeling due to fracture networks [49–52]. Mul-
tiple tracer transport studies on core samples of different
length scales have shown that flow inside a fractured reser-

voir is highly heterogeneous [52–55]. Natural fractures may
also result in fracture/well communication; thus, they need
to be adequately accounted for while designing the infill wells
and hydraulic fractures [1, 2]. The presence of natural
fractures may alter the flow paths shifting the drained rock
volume due to the local increase in fluid velocity (as shown
in Figure 2(d)). For completeness, we refer to an earlier study,
where the flow inside natural fractures was studied with a
higher resolution than used in Figure 2(d). Although CAM
is gridless, the plotting procedure is grid based and may
falsely suggest a triangular-shaped flow profile in a narrow
fracture if the solution grid chosen is overly coarse (for
improved computational speed). When solved with suffi-
ciently tight grid spacing, CAM-based velocity profiles inside
natural fractures will be U-shaped [6].

Figure 3 varies the effective natural fracture strength to
show the effect on pressure contours, using multipliers of
10, 20, and 30, as summarized in Table 2. Figure 3 shows
that the increase in the effective strength of natural fractures
is reflected in the enhanced curvature of the pressure con-
tours near the fracture tips. For each of the sensitivity cases,
the velocity profiles (not shown) resemble Figure 2(c). The
maximum velocity occurs inside the natural fractures, and
the velocity elsewhere in the reservoir is unaffected.
Table 2 (second row) includes the maximum velocity con-
trast for each of the cases in Figure 3. Figures 3(b) and 3(c)
have significantly higher effective natural fracture strengths
compared to the base case of Figure 2, which results in the
branch cuts around the fracture tips becoming more pro-
nounced [44]. The increasing impact of branch cuts when
the effective fracture strength increases is further illustrated
in Appendix B.

3.3. Scaling Natural Fracture Strength to Permeability Using
Embedded Discrete Fracture Model (EDFM). In this section,
EDFM is used to scale the natural fracture strength to the
units of permeability (mD). A simple fracture model based
on the inputs in Table 3 (and Figure 4) is used to generate
the pressure contours for both the CAM and EDFM models.
The results are visually inspected and iterated to generate
closely matching pressure contours. Based on the comparison
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Figure 1: Pressure contour (Pa) for a reservoir with far-field flow
with a net effective velocity of 35m/year from left to right. Initial
reservoir pressure is zero. Scale of pressure change is relative to
the right-end boundary of frame viewed.
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between the results from the two models, the strength for
CAM is determined and scaled to generate the same pressure
contours using EDFM for various permeability contrasts.

EDFM is a special form of a discrete fracture model
(DFM) model (see Section 2.1), introduced [22] to reduce

the high computational cost associated with traditional
DFM methods. EDFM defines fractures explicitly, as major
fluid pathways, and benefits from independent definitions
of the fracture and matrix grid. Thus, EDFM does not require
a conforming mesh for the discrete fractures, which reduces
the gridding complexity. Several authors have recently pre-
sented EDFM as a promising alternative to DFN and other
upscaled single/multicontinuum models [25, 52, 53].

Figure 4 considers a single-phase flow in a 9 × 9m2

homogeneous domain where the matrix contains 225 × 225
grid cells, and one fracture occurs at the center of the domain.
The natural fracture has a length and an aperture of 5m and
0.04m, respectively, and contains 50 grid cells with an
average size of 0.1m2. The flux for each (matrix-matrix and
fracture-fracture) grid interface is defined by using the two-
point-flux approximation (TPFA). The fracture cells are
introduced into discrete systems through nonneighboring
connections (NNC). The flow simulations are performed
using MATLAB Reservoir Simulation Toolbox (MRST), a
full-physics reservoir simulator, with EDFM or the hierarchi-
cal fracture model (HFM) [30]. The governing equations,
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Figure 2: (a) Pressure contours (in Pa) for a reservoir with far-field flow and a single natural fracture. The effective far-field flow velocity is
1:12 × 10−6 m/s from left to right, and effective fracture strength is 1:12 × 10−6 m4/s. (b) Velocity magnitude for the reservoir in (a). The
maximum velocity of 6:7 × 10−6 m/s is observed at the center of the fracture. (c) The portion of the natural fracture zoomed in (marked by a
square in (b)) to examine the velocity around the natural fracture. The effect of the natural fracture on velocity changes is limited to areas
extremely close to the natural fracture. (d) The corresponding permeability contrast (Rk) along the y-axis at x = 4:5, calculated using equation (3).

Table 1: Attributes for a model reservoir simulated with CAM.

Natural fracture attributes Symbol Value

Natural fracture width (m) W 0.04

Natural fracture length (m) L 5

Natural fracture height (m) H 1

Natural fracture angle to far-field flow α 0

Porosity n 0.1

Effective far-field flow rate (m/s) Vx 1:117 × 10−6

Effective natural fracture strength (m4/s) υf 1:117 × 10−6

Matrix permeability (mD) k 10

Viscosity (cP) μ 1
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formulations, and modeling techniques using EDFM in
MRST are discussed in the literature [56–59].

The flow in Figure 4 is driven by the Dirichlet boundary
conditions of 107 Pa and 0Pa at the right and left faces of the
flow domain, respectively. The matrix permeability is 0.01D,
and the fluid viscosity is 1 cP. The fracture permeability is set
to the values of 0.5D, 1D, and 1.5D representing the perme-
ability contrast (Rk) of 50, 100, and 150, respectively. Table 3
summarizes the reservoir attributes, and Figure 4 shows the
pressure contours for the flow domain for all the three cases.

The pressure contours from EDFM (Figure 4) show curv-
ing similar to the results from CAM (Figure 3). Several more
pressure contour plots were generated using CAM, in addi-
tion to the results in Figure 3, to compare the results in
Figure 4. Figures 5(a), 5(b), and 5(c) show the pressure
contours from CAM for V f /Vm values of 20, 40, and 60,
respectively (shown in Figures 5(d), 5(e), and 5(f)).

The CAM pressure contours in Figures 5(a), 5(b), and
5(c) show a better match with the pressure contours in
Figure 4 (generated from EDFM). However, the permeability
contrast for CAM (Figures 5(d), 5(e), and 5(f)), calculated
from equation (3), which uses strength as the proxy for
permeability, would be lower than the actual permeability
contrast used in the EDFM model (Figure 4) by a factor of
approximately 2.5. For instance, the Rk for the model gener-
ated from EDFM (Figure 4(a)) is 50, whereas the Rk for
CAM is 20 (Figure 5(d)). Hence, an empirical correction
factor ξ is introduced to scale the Rk calculated as the ratio
of fracture and matrix permeability and to calculate the
strength of the fractures υf , by using the modification of
equation (6) as follows:

υf =
Rk − 1ð Þ
ξ

VmHfWf Lf , ð7Þ

where Rk is the permeability contrast calculated from the
ratio of fracture and matrix permeability in Darcy.

Equation (7) facilitates flow modeling in naturally frac-
tured porous media with CAM when the permeability con-
trast between the matrix and the fracture is known. The
natural fracture strength, which is analogous to permeability,
can be scaled using equation (7).

4. Application of the Augmented Solution

An augmented CAM solution for the areal doublet was
proposed to more accurately account for the refraction of
particle paths across fractures not aligned with the far-field
flow [7]. The augmented CAM solution was obtained by
superposing two different complex potentials. The first
complex potential which is superposed is the original areal
doublet proposed by van Harmelen and Weijermars [17].
The second complex potential superposed to obtain the aug-
mented solution is obtained by rotating the vertices of the
first areal doublet [7]. The contribution of the two elements
is tuned by the Sine function. Figures 6(a) and 6(b) show
the particle paths (blue) and the time-of-flight contours
(TOFCs, red) obtained from the original solution [17] and
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Figure 3: Pressure contours (in Pa) for a naturally fractured reservoir and a single natural fracture with a strength of (a) 1:12 × 10−5,
(b) 2:23 × 10−5, and (c) 3:35 × 10−5 m4/s. The effective far-field velocity is 1:12 × 10−6 m/s from left to right.

Table 2: Inputs for the sensitivity of natural fracture strength.

Quantity Figure 3(a) Figure 3(b) Figure 3(c)

υf (m
4/s) 1:12 × 10−5 2:23 × 10−5 3:35 × 10−5

V f /Vm 50.7 100 150

Table 3: Natural fracture attributes for the simplified synthetic
model (EDFM and CAM).

Natural fracture attributes Symbol Value

Natural fracture width (m) W 0.04

Natural fracture length (m) L 5

Natural fracture height (m) H 1

Natural fracture angle to
far-field flow

α 0°

Boundary conditions (Pa) Left: 107; right: 0

Fracture permeability (D) (a) 0.5; (b) 1; (c) 1.5

Matrix permeability (D) k 0.01

Viscosity (cP) μ 1
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the augmented solution [7], respectively. For both cases, the
far-field flow with an effective velocity of 3:12 × 10−8 m/s
flows from bottom to top. An areal doublet element with an
effective strength of 3:12 × 10−6 m4/s is assumed to be present
at the center of the flow domain. The natural fracture is
assumed to be 10m long and 1m wide. The fluid particles
at the bottom of the flow domain are tracked for 30 years
by using the Eulerian particle tracking method. The areal
doublet from the original solution (Figure 6(a)) accelerates
most of the fluid towards the left opening of the channel,

even when the far-field flow is flowing from a different direc-
tion. However, Figure 6(b) shows that for the augmented
solution, the fluid velocity is increased, but the refraction of
the particle paths stays symmetrical to the far-field flow as
expected.

In the remainder of this section, the augmented solution
[7] is used to generate pressure contours for flow channels
(i.e., the natural fractures) with different fracture apertures
and permeability contrast. Section 4.1 presents the pressure
contours for highly conductive fractures with different
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Figure 4: Pressure contours (in Pa) generated from EDFM. The flow is driven by the Dirichlet boundary conditions of 107 Pa and 0 Pa at the
right and left faces, respectively. The matrix permeability is 10mD, and the permeability contrasts (kf /km) are (a) 50, (b) 100, and (c) 150.
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Figure 5: (a, b, and c) Pressure contours (in Pa) generated from CAM. The far-field flow moves from left to right with an effective velocity of
1:12 × 10−6 m/s. (d, e, and f) The respective ratio of fracture velocity (V f ) to matrix velocity (Vm) for fractures in (a), (b), and (c). The velocity
contrast V f /Vm is (a) 20, (b) 40, and (c) 60. The effective strength of the fractures for each case is (a) 1:12 × 10−5, (b) 2:23 × 10−5, and
(c) 3:35 × 10−5 m4/s, calculated from equation (7), where ξ = 2:5.
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aperture sizes. Section 4.2 presents the pressure contours for
natural fractures with reduced permeability relative to the
ambient matrix rock in the reservoir.

4.1. Pressure Contour Sensitivity to Fracture Aperture. Accu-
rate representation of natural fracture dimensions and prop-
erties is essential to generate precise continuum and discrete
fracture models [21, 60]. The fracture aperture or width is one
such parameter that governs the fracture porosity and perme-
ability and are constrained by fracture surface topography,
shear displacement, and confining stress [61, 62]. The distri-
bution of open fracture apertures in the subsurface is highly
variable, which depends on fracture type, host lithology,
degree of mineral fill/dissolution, and the in situ stress regime
[63, 64]. Apertures are usually estimated by using different
probability distribution functions, such as log-normal,
power-law distribution function, and uniform distribution,
due to the lack of available subsurface data [63–65]. In this sec-
tion, we investigate the effect of fracture width and orientation
on pressure contour patterns using a single natural fracture.

Figure 7 shows the pressure contours generated with the
augmented CAM model for natural fractures with different
apertures oriented at various angles. The fracture aperture
for Case A (Figure 7(a)A, C, E) and Case B (Figure 7(b)B,
D, F) is 0.04m and 1m, respectively. Other fracture attributes
used for the CAM simulations of Figure 7 are summarized
in Table 4.

The pressure contour patterns for both Cases A and B are
distorted near the fracture tips (Figures 7(a)A, C, E and
7(b)B, D, F). The pressure contours for the fractures, which
are not parallel to the direction of fluid flow (Figures 7(a)C,
E and 7(b)D, F), show pressure jumps due to the integral
effects of locally non-single-valued functions, which create
branch cuts [44]. The branch cuts may have a significant
effect on the pressure contours, especially towards the
fracture tips, as shown by Figure 8 in Appendix B, where
the fracture strength was increased further as compared to
Figure 7(a).

Figure 9 shows the particle paths for Cases A and B cor-
responding to the model conditions of Figures 7(a) and 7(b).
The particle paths represent the progressive movement of
fluid over 30 years. The particle paths (blue) and the time-
of-flight contours (TOFCs, red, spaced at 3 years) show that
the fluid moves further in fractures with smaller apertures,
which are otherwise identical to each other. Thus, a smaller
aperture may promote flow channeling. However, if we were
to use a scaling of the fracture strength according to equation
(7) and keep Rk constant but adjust the flux strength υf in
proportion to the fracture width Wf , then both Cases A
and B would have the same time of flight (TOF). Henceforth,
it can be misleading to simply state that a smaller fracture
aperture promotes flow channeling. Flow channeling is fore-
most an effect due to the permeability contrast between the
matrix and the fracture, as expressed in Rk. A larger Rk will
promote fracture channeling and lead to a shorter TOFC.
When Rk < 1, the fracture becomes progressively impervious,
leading to a longer TOFC for fluid traveling via the fracture.
Also, when Rk = 1, the fracture may physically exist, but its
presence will not affect the flow paths.

4.2. Pressure Contours for Impervious Fractures.Natural frac-
tures may either be highly conductive or poorly conductive
relative to the matrix, depending on the mineralization of
the pore structure in the fracture zone [66]. For example,
even cemented or blocked fractures can still be critical to
the fracture network and may promote preferential flow
channeling [67]. The degree of cementation in natural frac-
tures depends on the burial conditions; original fracture
aperture; and the geochemical environment, reactivity, and
composition of the fracture wall rocks [68]. Most natural
fractures in shale formations such as the Barnett are observed
to be filled with calcite or quartz cement [68]. The cemented
natural fractures also interact with hydraulic fractures to
impede and divert the fracture propagation path [69, 70].

In this section, we use CAM to generate the pressure con-
tours for cemented or blocking fractures, where we revisit the
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Figure 6: Particle path (blue) and TOFC (red) for (a) the original areal doublet solution [17] and (b) the augmented areal doublet solution [7].
Models in (a) and (b) both have a fracture strength of 3:12 × 10−6 m4/s. Despite the high incidence angle, the particle paths for the augmented
solution in (b) stay mostly aligned with the far-field flow, even inside the fracture zone (except near the fracture tips).
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natural fracture in Case A (Figure 7(a)) with a small fracture
aperture of 0.04m. All the reservoir and flow properties are
kept constant, except for the strength of the natural fracture.
The effective strength of the natural fracture is set to −9:6 ×
10−7 m4/s. The negative sign opposes the far-field flow to
mimic the action of a blocking/cemented fracture. Figure 10
shows the pressure contours (Figures 10(a), 10(b), and 10(c))
and the particle paths (Figures 10(c), 10(d), and 10(e)) for a

simple blocking—but still permeable—fracture. The pres-
sure contours for such a permeable, blocking fracture
(Figures 10(a), 10(b), and 10(c)) show the opposite behavior
to the highly conductive fracture (Figure 7(a)A, B, C). In both
cases, the pressure contours are distorted near the fracture
tips. The particle paths (blue) and the TOFCs (red) in
Figures 10(c), 10(d), and 10(e) are generated by tracking a
limited number of fluid particles originally, at the bottom
of the plot, for 30 years. Each TOFC shows the movement
of the far-field flow after three years, for a total flow time
of 30 years. The particle paths show that the blocking frac-
ture (but still slightly pervious) slows down the fluid parti-
cles in its path. The TOFCs around the natural fracture are
pulled back by approximately 2.5m in each case. Figure 11
in Appendix B shows the effect of increasing the flow resis-
tance by further reducing the strength of the fracture by a
factor of 2.

5. Comparison of CAM and EDFM Results

In the approach below, we attempt a first benchmark of
CAM-based solutions for flow in naturally fractured porous
media with EDFM. There are several differences in the model
design parameters of CAM and EDFM that may impede a
direct comparison of model results, as explained here. For
example, for modeling purposes, a fractured porous medium
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Figure 7: Pressure contours (in Pa) for fracture properties listed in Table 4. Case A (a): fracture width is 0.04m. Case B (b): fracture width
increased to 1m. The far-field flow with a net effective velocity of 3:12 × 10−7 m/s flows from bottom to top. The effective strength of the
natural fracture is 2:38 × 10−6 m4/s. The natural fracture is oriented at angles of (A and B) 0°, (C and D) 45°, and (E and F) 90°, with
respect to far-field flow direction.

Table 4: Fracture and reservoir attributes for fractures oriented at
different angles.

Fracture/reservoir attributes Symbol Value

Natural fracture width (m) W
CaseA = 0:04
Case B = 1

Natural fracture length (m) L 10

Natural fracture height (m) H 1

Natural fracture angle to far-field flow α 90°

Porosity n 0.1

Effective far-field flow rate (m/s) Vx 3:12 × 10−7

Effective natural fracture strength (m4/s) υf 2:38 × 10−6

Matrix permeability (mD) k 10

Viscosity (cP) μ 1
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may be represented by a primary permeability due to con-
nected pores and a secondary permeability due to the fracture
conduits [70]. In numerical models, the secondary perme-
ability is commonly an open fracture with a pseudoperme-
ability assigned, which is a value based on the fracture
aperture using a cubic equation. Such open fractures are

likely to have an assigned permeability, being several orders
of magnitude larger than the primary permeability, which
will have a major impact on the upscaled equivalent (or effec-
tive) permeability of a representative elementary volume [6].
In CAM, fractures are assigned a strength that scales the per-
meability contrast with the matrix. Despite these significant
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Figure 8: Pressure contours (in Pa) for fractures with the same properties as Case A (Figure 7(a)) but with doubled effective fracture strength
of 4:76 × 10−6 m4/s.
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Figure 9: Particle paths (blue) and time-of-flight contours, spaced at 3 years (red) for cases shown in Figure 7.
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differences, we present a first attempt to benchmark the
results from CAM as compared to EDFM (Section 5.1),
followed by a demonstration of runtime results for CAM
using different time steps (Section 5.2).

5.1. Model Description and Results. The model design and
particle paths from the EDFM reference solutions of Shah

et al. [56] were used as a starting point for comparison with
CAM results (Figures 12(a) and 12(b)). The EDFM repre-
sentation originated from a dual continuum model based
on a square of unit dimensions transected by fractures
with unstated apertures, and geometry as portrayed in
Figure 12(a). The fracture-matrix permeability ratio Rk = kf /
km which is constant for all fractures is 104. Figure 12(b) shows
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Figure 11: Pressure contours (in Pa) for cemented fractures with the same properties as Figure 11 but with effective fracture strength reduced
by a factor of 2 to a value of −1:90 × 10−6 m4/s.
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Figure 10: (a, b, and c) Pressure contours (in Pa) for cemented fractures with the same properties as Case A (Figure 7(a), Table 4) except for
effective fracture strength, which has a value of −9:6 × 10−7 m4/s. The natural fractures are oriented at an angle of (a) 0°, (b) 45°, and (c) 90°,
with respect to the far-field flow. (c, d, and e) Particle paths and TOFCs for the corresponding cases in (a), (b), and (c).
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the flow paths generated from EDFM based on the boundary
conditions in [56]. The boundary conditions in the bench-
mark of Figure 12(b) are a combination of two Neumann’s
conditions (namely no-flow boundaries, such that the direc-
tional derivative vanishes) and two Dirichlet’s conditions
(with directional derivatives normal to the left and right
boundary being due to uniform pressures). Essentially, no-
flow boundaries are imposed at the upper and lower bound-
aries of the 2D flow area studied, and constant, uniform
pressures are maintained at the left and right boundaries.

In our CAMmodel, a no-flow upper boundary and lower
boundary can be simulated by a fracture channel, but this
would require Schwarz-Christoffel’s and Schottky-Kleine’s
prime function boundary mapping as was used in our models
of bounded reservoirs [71]. However, CAM is most user-
friendly when applied to unbound flow domains, which is
why we assume a uniform flux entering the flow space of
the unit square from the left boundary (akin to a uniform
pressure) (Figure 12(b)). The fracture lengths and orienta-
tions are extracted from Figure 12(a). The width of the
fractures is not given [56] and is assumed to be 0.2mm
(0.0002m). Although the available field data for the width
(or aperture) of a natural fracture are limited from subsurface
observations, values of 0.01 to 10mm are reported in the
literature [64]. The permeability ratios are determined by
scaling the fracture flow strengths following the procedure
outlined in equation (7). Other fracture and flow attributes
are summarized in Table 5.

The results for the particle paths and pressure contours
generated by the CAM fracture model are given in
Figures 13(a) and 13(b), respectively. The particle paths from
CAM (Figure 13(a)) show acceptable, visual similarity to
those generated with EDFM (Figure 12(b)). It should be
emphasized that Shah et al. [56] evidently introduced new
particle seeds for flow tracking behind certain fractures,
which explains the increased density of streamlines in the
right-hand half of the simulation area of Figure 12(b).
Although we could introduce new particle seeds in CAM in
any location, we have not done so in Figure 13(a). Any fur-

ther differences between the flow paths of Figures 12(b) and
13(a) may be attributed to different boundary conditions at
the top and bottom of the flow space. Additionally, some
assumed variables such as fracture aperture may account
for the local difference in the assigned permeability contrast
(from equation (7)). Figure 13(b) shows the pressure con-
tours (in Pa) generated from the CAM code.

Also, trying to match permeability ratio scaling with
numbers from the numerical, dual-porosity model (EDFM)
may be misleading because the permeability ratio (Rk) stated
as 104 in Shah et al. [56] may in fact be somewhat of a mixed
input number. The permeability of the matrix is based on
estimations conforming to Darcy’s law, but the permeability
in the (nonporous) open fractures is based on a cubic equa-
tion (fracture width3) to obtain the right dimensions for the
flux calculation in the open fracture. Therefore, our CAM
model is fundamentally different from EDFM because we
scale the permeability of the fracture based on an extension

(a) (b)

Figure 12: Benchmark model, with (a) fracture geometry. Permeability ratios are Rk = 104. (b) Flow paths generated with EDFM and uniform
pressure at the left-hand boundary is normalized with the right-hand boundary held at zero pressure. After [56].

Table 5: CAM model inputs.

Fracture/reservoir attributes Symbol Value

Natural fracture width (m) W 0.0002

Natural fracture length (m) L Given below∗

Natural fracture height (m) H 1

Natural fracture angle to
far-field flow

α 0°

Porosity n 0.1

Effective far-field flow rate (m/s) Vx 1:25 × 10−7

Effective natural fracture strength (m4/s) υf
Scaled from

equation (7)∗∗

Matrix permeability (mD) k 10

Viscosity (cP) μ 1
∗Fracture lengths = ð15, 26, 30, 33, 35, 51, 64, 69 – 71, 76Þm. ∗∗Effective
natural fracture strength = ð3:8, 8:9, 1:9, 8:7, 3:3, 8:1, 9:6, 4:2, 6:5, 4:4, 3:8, 9:0,
5:1Þ × 10−5 m4/s.
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of the Darcy flow assumption, rather than using a cubic law
(as for the open space fractures in EDFM).

5.2. CAM Runtimes. The steady-state pressure, velocity, and
streamline contours can be computed instantaneously in
CAM. However, the particle paths in CAM are generated
from Eulerian particle tracking, which may be computation-
ally intensive. The generalized Eulerian particle tracking
algorithm is given by equation (8) [34]:

zn+1 t1ð Þ ≈ zn t0ð Þ +V zn t0ð Þð ÞΔt, ð8Þ

where zn is the initial position of a particle at time t0 with
the velocity of VðznÞ . The particle paths are generated by
first choosing an initial position z0 at time t0 = 0 and cal-
culating the initial instantaneous velocity. By choosing an
appropriate timestep, Δt, the position zjðt jÞ of the tracer
at time t j is:

zj t j
� �

≈ zj−1 t j−1
� �

+V zj−1 t j−1
� �� �

Δt: ð9Þ

The runtimes (tcpu) for an Eulerian particle tracking
scheme depend on the time step chosen for the simulation
(Δt), the number of natural fractures present (Nf ), the
number of flow particles tracked (np), and the duration
of simulated flow (tTotal) as summarized in equation (10).

tcpu = f Δt,Nf , np, tTotal
� �

: ð10Þ

The velocity (v) is assumed to be constant for Δt,
which is a valid assumption for slow-moving fluids. The
smaller time steps increase the accuracy of this discrete
time approximation. When Δt is not small enough, the
particles will overshoot the actual path to an adjoining
path, closer or further from the original path [6]. The Δt
must be selected by a trial and error approach, where a
time step of unit time (e.g., 1 day) is initially chosen and
then is reduced if particle paths are not smooth. The Δt

needs to be reduced for stronger fractures to generate
smooth particle paths. The next variable that affects the
runtime of Eulerian particle tracking is the number of
natural fractures (Nf ) simulated. When the number of
natural fractures increases, the velocity of the additional
natural fracture needs to be superimposed, leading to a
longer runtime. Next, the number of particles tracked also
increases the runtime of the Eulerian particle tracking. The
time-of-flight contours (TOFCs), which can be used to cal-
culate the drained rock volume (DRV), are computed by
connecting all the particle positions after a certain time
period since the onset of flow. A densely seeded number
of particles may be required, depending on the distance
and strength of the individual natural fractures, to gener-
ate smooth TOFCs. Finally, the total run time depends
on the duration of the flow simulation (tTotal), which
determines the number of timesteps needed to complete
the simulation.

All the variables involved in Eulerian particle tracking
need to be carefully selected on a case-to-case basis to opti-
mize the speed and accuracy of the simulation. We investi-
gated various Δt for the model in Figure 13(a) to calculate
the runtimes (tcpu), which is presented in Table 6 (MATLAB
2018b code on a Quad-core 3.4GHz Intel i5-4670K).

6. Discussion

The current study provides an improved scaling rule (equa-
tion (7)) to model the natural fracture strength in CAM
models when the permeability contrast is known. This study
also includes a comparison of CAM model results with
EDFM to complement our earlier validation [43]. Modern
model efforts have exclusively employed finite-element
methods due to certain perceived limitations of closed-form
solutions. We claim that this narrow focus is unwarranted.
The development of appropriately tailored closed-form
solutions based on complex analysis methods (CAM) offers
a number of unique strengths. These strengths include
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Figure 13: a) Particle paths for the model in Figure 12 using CAM based on the inputs from Table 5. (b) Pressure contours (in Pa) for the
model in (a) from CAM.
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(1) highly compact formulation, (2) infinite resolution, and
(3) ultrafast computation time (see Section 5.2). The infi-
nite resolution is due to the lack of any gridding. Minor
drift or dispersion may occur when the time-of-flight
option is used, due to finite time-stepping increments.
However, small timesteps will make any drift negligible.
For the instantaneous pressure field and streamline solu-
tions using the integral method, such effects do not occur.

Some key differences in model design and associated
input parameters of CAM and EDFM have come to the fore-
ground in our study, which merits an in-depth discussion in
Section 6.1. A brief discussion about the fundamental
assumption of irrotational flow, which should not be equated
to a requirement of inviscid fluid flow, is given in Section 6.2.
The potential merits of merging gridless solutions for flow
and fracture propagation, when studying fractured porous
media, are highlighted in Section 6.3.

6.1. Key Differences in Model Design and Parameters of CAM
and EDFM. This article made a first attempt to compare
CAM models for naturally fractured reservoirs with the
results of EDFM. Several fundamental differences in model
method design, which also reflect on input parameters, make
a straightforward quantitative benchmark challenging. What
we have offered in the present study is a qualitative compar-
ison. The critical issues we run into when comparing CAM
and EDFM are as follows.

(1) Natural fractures in CAM models are scaled in a
fundamentally different way from those in EDFM

(2) EDFM is based on a dual continuum model assump-
tion, which assumes that the fractures are open
spaces with a pseudopermeability assigned with a
value based on the fracture aperture using a cubic
equation. Such open fractures are likely to have
assigned permeability, being several orders of magni-
tude larger than the primary permeability

(3) CAM models scale the permeability of the fracture
based on an extension of the Darcy flow assumption
using a flux strength. The flux strength controls the
amount of fluid that travels via the natural fractures,
which can be varied also with the fracture aperture,
but in CAM is not governed by a cubic law as in the
EDFM model approach

(4) EDFM models commonly impose the Dirichlet
boundary conditions with constant pressure, which

in CAM is challenging to maintain, because the
method works with a certain velocity and flux inputs
with pressure being a consequence rather than a
primary input parameter

(5) When natural fractures occur sufficiently remote
from the Dirichlet boundaries, such as in Figures 10
(EDFM) and Figure 13 (CAM), then the constant
pressure and constant flux at the boundaries are nearly
equivalent boundary conditions. Nonetheless, some
differences exist, which only diminish when the flow
distortions due to natural fracture systems are placed
very remotely from the Dirichlet boundaries

The above observations explain why a quantitative
benchmark of CAM models with natural fractures with
independent discrete element-based methods (EDFM),
involving differences in fundamental model assumptions
(cubic law for fractures, finite boundaries, and others), will
remain challenging. The present study is a first attempt to
identify those challenges, such that future studies can refer
to those differences and possibly come up with mitigating
solutions.

6.2. Inviscid versus Viscous Flow. Fundamental arguments
about why the application of potential theory should not be
restricted to inviscid fluids have been highlighted by
Weijermars [34]. The potential theory is also valid for viscous
fluids (in addition to inviscid fluids) when the boundary-
layer effects are minimal [34]. The analytical description of
boundary-layer effects during the flow of fluids has been
highlighted by Wang [72]. CAM models have been used to
study the flow of terrestrial lava flows [34], with arguments
given for relaxation of the inviscid constraint. However,
many more arguments for potential theory not being limited
strictly to inviscid flows were given by Joseph et al. [73]: “It is
never necessary and typically not useful to put the viscosity of
fluids in potential (irrotational) flow to zero.” This is cited to
demonstrate the applicability of the potential theory to
describe viscous flow, which is also supported by many
detailed studies cited in [73].

6.3. Merging Gridless Solutions for Flow and Fracture
Propagation. Recent efforts have shown that fracture propa-
gation in elastic and poroelastic media can be modeled with-
out resorting to finite difference or finite-element methods
[74–76]. The development of the so-called time-stepped lin-
ear superposition method (TLSM) was motivated by the
same gains underpinning CAM solutions for fluid flow:

Table 6: Computational time (tcpu) for several test cases.

Timestep
Δt dayð Þð Þ

Number of fractures
Nf

� � Number of particles tracked
np
� � Duration of simulation

tTotal yearsð Þð Þ
Total run time

tcpu sð Þ� �

1 13 601 30 42.6

0.5 13 601 30 81.2

0.05 13 601 30 710

0.02 13 601 30 1820.6
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skipping of tedious gridding to achieve faster computation
times, while preserving infinite resolution. TLSM allows the
determination of nonplanar fracture propagation paths for
multiple hydraulic fractures growing from the perforations
during fracture treatment [74–76]. The proprietary, gridless,
fracture propagation simulator (TLSM) can be coupled with
the gridless simulator for fluid flow in fractured porous
media (CAM). The fundamental theory and key algorithms
for both types of simulators have been published in leading
applied mathematics journals [17, 77–79].

7. Conclusions

In this study, we presented a correction factor for scaling
the permeability contrast of discrete natural fracture ele-
ments in CAM models, when the permeability contrast
for a naturally fractured reservoir is known. Previously,
the ratio of the maximum fluid velocity in natural fractures
relative to the unperturbed far-field velocity was under-
stood to be a proxy for permeability contrast in CAM
models. A comparison with a numerical model showed that
the ratio of fluid velocity underestimated the actual perme-
ability contrast by a factor 2.5 and needs a correction
factor. The particle paths generated from CAM were
compared with similar results from EDFM. In addition to
scaling issues, this study investigated the effect of fracture
aperture and permeability changes on pressure contour
plots. The following conclusions can be drawn from our
study:

(a) CAM can be used to model the flow of fluids in frac-
tured porous media. The natural fractures locally
increase fluid velocity or decrease it according to
the perviousness of the natural fractures. For a con-
ductive fracture, the flow outside of the matrix
remains largely unaffected (Figure 2(b)), although
particle tracking shows that considerable distortion
occurs locally (Figures 6(b) and 9). The impervious
fracture (Figure 10) also distorts the pressure con-
tours and changes the path of fluid flow in the vicin-
ity of the fracture. The TOFCs in the wake of the
cemented fractures are pulled back due to the fluid
particles being slowed down

(b) CAM models allow high-resolution visualization of
particle paths, pressure, and velocity fields without
complex gridding and meshing. The presence of nat-
ural fractures in a reservoir promotes preferential
flow channeling (Figure 13). This can help in faster
transport of fluid from the matrix to the wellbore.
However, it can also increase fracture and well inter-
ference due to pressure communication between the
closely spaced wells and hydraulic fractures

(c) The permeability contrast calculated from the ratio of
matrix and fracture permeability needs a correction
factor of 2.5 to calculate the strength variable for CAM

(d) The particle paths generated from CAM were
compared to the results from EDFM. Despite of dif-

ferences in boundary conditions and other assump-
tions, the results from both models showed a visual
match. Quantitative benchmarks of the CAM model
of naturally fractured reservoirs with EDFM or other
discrete volume methods will remain challenging
because of the fundamental differences in the design
assumptions (explained in Section 6.1)

Appendix

A. Natural Fracture Algorithms for CAM

The complex potential for a generalized areal doublet/dipole
element is [7] as follows:

Ω z, tð Þ = −υ tð Þ ⋅ e−iγ ⋅ eiθ ⋅ eiβ
2π ⋅ h ⋅ n ⋅ L ⋅Weiβ

z − za2ð Þ ⋅ log −e−iγ z − za2ð Þ� ��

− z − za1ð Þ ⋅ log −e−iγ z − za1ð Þ� �
+ z − zb1ð Þ log

� −e−iγ z − zb1ð Þ� �
− z − zb2ð Þ log −e−iγ z − zb2ð Þ� ��

, 
� m2 · s−1
� �

,
ðA1Þ

where υðtÞ (m4·s) is the strength of the natural fracture; L,
W, and h (m) are the length, width, and height of the nat-
ural fracture, respectively; n is porosity; and γ is the tilt
angle of the areal dipole/doublet element. The corner
points of the natural fracture domain are given by za1,
za2, zb1, and zb2. θ and β are the orientation of point dipo-
le/doublet element and tilt angle of the line dipole/doublet
element, respectively. The tilt angle of the areal dipole/-
doublet element is taken as negative (as opposed to posi-
tive for θ and β) in order to maintain consistency with
earlier work [17].

The natural fracture element is a special case of the gen-
eralized areal doublet/dipole element [17], where the orienta-
tion of the point dipole/doublet (θ) is π/2. Substitution of
appropriate angles in equation (A1) yields:

Ω z, tð Þ = −i · υ tð Þ · e−iγ
2π · h · n · L ·W

z − za2ð Þ · log −e−iγ z − za2ð Þ� ��

− z − za1ð Þ · log −e−iγ z − za1ð Þ� �
+ z − zb1ð Þ log

� −e−iγ z − zb1ð Þ� �
− z − zb2ð Þ log −e−iγ z − zb2ð Þ� ��

, 
� m2 · s−1
� �

:

ðA2Þ

The algorithm in equation (A2) is accurate for fractures
aligned with a far-field flow and works well for fractures ori-
ented moderately obliquely with respect to the far-field flow,
but it becomes increasingly inaccurate when the fractures are
perpendicular to or at a large angle to the far-field flow [7].
An augmented solution was proposed where the corner point
coordinates were modified, and the resulting modified areal
doublet element was superposed with the original element
and the far-field flow. The contribution of each superposed
element was scaled based on their angle with the far-field
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flow. Further details are presented in [7]. The augmented
algorithm is as follows:

Ω zð Þ =Ωf zð Þ + 〠
2

n=1
−1ð Þn+1 sin γn ⋅Ωn zð Þ: ðA3Þ

Ωf ðzÞ is the complex potential for the far-field flow given
by [7]:

Ωf zð Þ = u∞ tð Þz: ðA4Þ

ΩnðzÞ is the complex potential for the areal doublet/
dipole element given by [7]:

Ωn zð Þ = −υ tð Þ
2πhn ⋅ Ln ⋅Wn

⋅ e−i γ−θnð Þ ⋅ z + za2nð Þ log�

� −e−iγ z − za2nð Þ� �
− z + za1nð Þ log −e−iγ z − za1nð Þ� �

+ z + zb1nð Þ log −e−iγ z − zb1nð Þ� �
− z + zb2nð Þ log

� −e−iγ z − zb2nð Þ� ��
:

ðA5Þ

The vertices za1n, za2n, zb1n, and zb2n are the vertices for
the areal doublet/dipole element given by

za1n = zc − eiγ ⋅ 0:5Ln + 0:5Wn ⋅ e
iβ

� �
,

za2n = zc − eiγ ⋅ 0:5Ln − 0:5Wn ⋅ e
iβ

� �
,

zb1n = zc − eiγ ⋅ −0:5Ln + 0:5Wn ⋅ e
iβ

� �
,

zb2n = zc − eiγ ⋅ −0:5Ln − 0:5Wn ⋅ e
iβ

� �
:

ðA6Þ

The inputs needed to calculate the vertices given in equa-
tion (A6) are as follows [7]:

θ1 = π/2ð Þ,
θ2 = −θ1,

γ2 = γ1 − π/2ð Þ,
L2 =W1,

W2 = L1:

ðA7Þ

B. The Effect of Increased Fracture Strength on
Branch Cuts

One crucial aspect of CAM models is the occurrence of
mathematical branch cuts when multivalued solutions
appear along certain integral lines [7, 44]. Prior studies have
discussed possible solutions to side-step such branch-cut
effects [7, 44]. When the fracture strength superposed on a
far-field flow is increased, the appearance of pressure jumps
across branch cuts signals that the flow becomes physically
unrealistic. For instance, Figure 8 shows the pressure con-
tours for fractures, where the effective fracture strength is

doubled to 4:76 × 10−6 m4/s (as compared to 2:38 × 10−6 m4

/s in Figure 7(a), main text). The branch-cut effect is nearly
negligible for the case where the fracture is parallel to the
direction of fluid flow (Figure 8(a)). However, the branch
cuts cause a discontinuity in pressure contours even when
the fractures are slanted (Figures 8(b) and 8(c)). CAM is an
analytical model where the fracture strength may be set to
physically unrealistic values.

Figure 11 shows the pressure contours for a blocking
fracture with a reduced effective fracture strength
(−1:92 × 10−6 m4/s). The pressure contours of Figure 11
show the same pattern as for the blocking fracture in
Figure 9 (main text), but the effect of the branch cut is more
apparent when the strength decreases, as shown in Figure 11.
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