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Hydraulic support plays a key role in ground control of longwall mining. The smart prediction methods of support load are
important for achieving intelligent mining. In this paper, the hydraulic support load data is decomposed into trend term, cycle
term, and residual term, and it is found that the data has clear trend and period features, which can be called time series data.
Based on the autoregression theory and weighted moving average method, the time series model is built to analyze the load data
and predict its evolution trend, and the prediction accuracy of the sliding window model, ARIMA (Autoregressive Integrated
Moving Average) model, and SARIMA (Seasonal Autoregressive Integrated Moving Average) model to the hydraulic support
load under different parameters are evaluated, respectively. The results of single-point and multipoint prediction test with
various sliding window values indicate that the sliding window method has no advantage in predicting the trend of the support
load. The ARIMA model shows a better short-term trend prediction than the sliding window model. To some extent, increasing
the length of the autoregressive term can improve the long-term prediction accuracy of the model, but it also increases the
sensitivity of the model to support load fluctuation, and it is still difficult to predict the load trend in one support cycle. The
SARIMA model has better prediction results than the sliding window model and the ARIMA model, which reveals the load
evolution trend accurately during the whole support cycle. However, there are many external factors affecting the support load,
such as overburden properties, hydraulic support moving speed, and worker’s operation. The smarter model of SARIMA
considering these factors should be developed to be more suitable in predicting the hydraulic support load.

1. Introduction

With the rapid development of the Internet of Things, Cloud
Computing, Big Data, Artificial Intelligence, and coal mine,
integrating these emerging technologies will greatly change
the traditional way of coal extraction [1–3]. Nowadays, the
longwall mining face, integrating human-machine-
environmental intelligent perception technique, big data
analysis and decision-making method, and smart coopera-
tion control technology for mining equipment, will improve
the safety of underground workers significantly and reduce
the number of underground operators and labor intensity.
The hydraulic support is the main equipment of longwall
mining face, and it plays an important role to ensure the

safety of the working space. Therefore, the analysis, predic-
tion, and prewarning of the hydraulic support load are the
basis of achieving smart mining in the longwall face.

The evolution laws of mining-induced stress caused by
coal seam excavation is directly related to the safety of
workers and equipment in the working face, which has
always been the hot spot and difficulty in the research of coal
mine. Although many scholars have deeply analyzed the frac-
ture structure of overburden strata of working face, the
mechanism of load transfer, and the law of energy evolution,
it is still difficult to carry out accurate quantitative calculation
and predict the load change of hydraulic support in advance
[4–12]. Some scholars had tried to use a data analysis method
to analyze hydraulic support load [4], but the characteristics
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and the suitable analysis method for the load of hydraulic sup-
port is not clear. Due to the practical needs of engineering, it is
necessary to predict the load of hydraulic support at least one
cycle in advance, while many data analysis methods do not
meet the requirements. With the increase of coal mining
depth, the hydraulic support load prediction technology
becomes more and more important, but there is no effective
method to predict hydraulic support load in advance.

In the past, many scholars had studied the relationship
between hydraulic support and surrounding rock using theo-
retical modeling. Qian and colleagues [5, 6] put forward the
theory of “voussoir beam” and “key stratum,” which formed
the foundational mechanics models for ground pressure and
strata control in the longwall face. Song and Jiang [7] proposed
the transfer-beam structure model and studied the relation-
ship between hydraulic support and surrounding rock based
on the given deformation and limit-deformation conditions.
Wang and Pang [8, 9] studied the process of roof stratum
breakdown instability and dynamic evolution of hydraulic
support load, putting forward the “stiffness-strength-stability
coupling model” between hydraulic support and surrounding
rock, which provides an approach for dynamic analysis and
prediction of hydraulic support load on longwall mining face.
Many other scholars [10–19] analyzes the fracture instability
process of the overburden on working face in various mining
conditions, proposes a method for calculating the suitable
working resistance of the hydraulic support, and reveals the
relationship between surrounding rock fracture instability
and hydraulic support load.

With the continuous advancement of the working face,
the hydraulic support load experiences increasing resistance,
fluctuate resistance, and resistance relief in one cycle, and the
peak load and load curve of each cycle are also affected by the
dynamic fracture of the roof. The load curve, which can be
called time series data, has an obvious trend and period.
The existing hydraulic support load analysis methods just
count the interval pressure and capture the initiation and
peak support load, sometimes the resistance forces at the
end of the support cycle are also monitored. Based on these
data, the roof fracture step and the pressure in surrounding
rock can be estimated roughly. However, it does not fully
mine the information of the hydraulic support load data,
and it cannot reflect the correlation of support load at differ-
ent times. Therefore, a smarter analysis method needs to be
developed for the advance prediction and early warning of
the instability of surrounding rock.

At present, the analysis and prediction methods of time
series data include two categories, which are listed as follow-
ing [20–22]:

(1) time series models based on statistics

(2) time series modeling using intelligent algorithms
such as machine learning and deep learning (RNN,
LSTM) analysis

It should be noted that intelligent algorithms such as
machine learning and deep learning generally perform
poorly on small sample data [23]. At the initial stage of cut-
ting in longwall mining, only a few load samples can be

obtained from hydraulic support. Therefore, this paper uses
a time series model based on statistics to analyze and predict
the load data of hydraulic support under the condition of
small samples.

At present, the prediction methods for time series model
based on statistics include the sliding window prediction
method, exponential smoothing method, and autoregressive
prediction method, which are widely applied in predict of
economic development, climate change, energy demand,
and other fields [24–26]. The sliding window method is sim-
ilar to the single exponential smoothing method, while the
double exponential smoothing method and the triple expo-
nential smoothing method are similar to the ARIMAmethod
and the SARIMA method. In this paper, based on the feature
decomposition of the support load data, the sliding window
method, ARIMA method, and SARIMA method are applied
to create the time series model of the hydraulic support load,
respectively. By comparing the prediction results of varies
models with responding parameters, and the adaptability of
different models to the prediction of hydraulic support load,
it obtains a more reasonable analysis and prediction method
for hydraulic support load.

2. General Methodology

2.1. Engineering Background.With the rapid development of
intelligent perception and network transmission technology,
hydraulic support load monitoring technology and equip-
ment have been mature [27]; the electrohydraulic control
system can implement real-time monitoring of the entire
hydraulic support load and upload, which provides data
source for support load analysis and prediction.

The No. 121304 ultralength longwall mining face, in
Kouzidong Coal mine, China, mines the 13-1 coal seam.
The thickness of the coal seam is 2.2~6.66m, the maximum
inclination length of the cutting face is 350m, and the strike
length is about 1000m. The ZZ13000/27/60D, which is a
four-column shield hydraulic support, are applied in the cut-
ting face, and the ultimate bearing pressure of the column is
33MPa. The KJ216 system is introduced to monitor the pres-
sure in the front column. The data of hydraulic support (No.
90) during two working days at the middle of cutting face is
extracted for analysis. During the monitoring period, the cut-
ting face advanced in a total of 10 cycles. The preprocessed
data of the hydraulic support load is shown in Figure 1.
The average cycle period has 37 data points. The load value
is from zero to 35.4MPa, and it has great fluctuation during
initial working and support advancing.

The load of the hydraulic support experiences resistance
increasing, fluctuation resistance, and pressure relief in one
operating cycle, and the period of cycle and the support load
value are various. As a whole, the sample data presents a reg-
ular trend with the characteristics of time series.

2.2. Feature Decomposition of Support Load and
Predictability Analysis. Considering the period trend of
hydraulic support load, the load data are decomposed based
on statistics and data mining methods [28]. The trend term,
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cycle term, and residual term are extracted from the sample
data, respectively, as shown in Figure 2.

It is found from Figure 2 that the trend term presents
obvious oscillating and slight trend. The cycle term presents
obvious periodicity, and a total of 10 cycles are extracted.
The data of each period experiences obvious rising, fluctua-
tion, and falling, which correspond to the process of increas-
ing resistance, fluctuation resistance, and pressure relief of
hydraulic supports. The extracted 10 cycles correspond to
the cutting face advanced a total of 10 cycles. It means that
the extracted cycles are well matching with the support cycle
operation process. The residual term floats up and down
around zero, which is in line with the characteristics of white
noise, but the value of the residual term is quite large, indicat-
ing that the random fluctuation of the data is obvious. Over-
all, the hydraulic support load has strong time series
characteristics, and the time series model can be used for pre-
diction and analysis.

3. Analysis and Prediction of Support Load
Based on Sliding Window

The sliding window method uses the average or weighted
average value of historical monitoring data to predict the
value at the current moment or any moment in the future.
The equation can be expressed as following [29],

~yt =
1
k
〠
k−1

n=0
yt−n,

~yt = 〠
k

n=1
ωnyt−n,

ð1Þ

where ~yt is the predicted value of the next moment, k is slid-
ing window range, ωn is weight of the nth monitoring value
within the sliding window, and yt−n is actual monitoring
value of the t-nth value in the sliding window.

Based on the monitoring sample data, the initial 400 data
are used as training data, and the last 60 data are used as ver-
ification data. The Python software is used to build a support
load prediction model based on sliding window method.
With different values of the sliding window, single-point pre-
diction andmultipoint prediction value based on average and
weighted average value are calculated. Among them, single-
point prediction just predicts the value at the next moment
based on historical sliding window data, while multipoint
prediction refers to predicting the value at multiple consecu-
tive times in the future based on historical sliding window
data. The comparison results are shown in Figure 3.

From Figure 3, it is found that the single-point prediction
results based on the average and weighted average sliding
window prediction method is in line with the verification
data, and the prediction curve tends to be smooth with the
value of the sliding window increasing, which means the pre-
diction value at the peak or change-point becomes inaccu-
rate. The prediction result using the weighted average
method is more accurate than the average method, while
the prediction result has a lag comparing with the monitoring
data, and the lag accumulates with the sliding window value
increasing. In Figure 3(b), the weights value of the sliding
window with a value of 5 are [0.7, 0.1, 0.1, 0.05, 0.05]; [0.5,
0.2, 0.1, 0.1, 0.05], respectively. The weights value of the slid-
ing window with a value of 10 are [0.7, 0.05, 0.05, 0.0325,
0.025, 0.025, 0.025,0.0125, 0.0125, 0.0125]; [0.5, 0.1, 0.1, 0.1,
0.05, 0.05, 0.025,0.025, 0.025, 0.025], respectively. With the
same sliding window values, the greater weight of neighbor-
ing monitoring data, the more accurate prediction result,
which means the single-point prediction result is determined
by the neighboring monitoring values. Different sliding win-
dow values are used to predict 37 points of the sample data
(one operating cycle of the hydraulic support), as shown in
Figure 3(c), the results are shown at the right part of the
curve. When the sliding window value is 5, it is accurate for
predicting in short-term. With the predicting period extend-
ing, the accuracy reduces significantly, so as the other sliding
window values.
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Figure 1: Monitoring data of hydraulic support load.
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4. Analysis and Prediction of Support Load
Based on Autoregressive Model

4.1. Stationarity Analysis of Hydraulic Support Load Data.
The autoregressive prediction method can establish the cor-
relation between the historical monitoring data and the cur-
rent and future data by decomposing the historical
monitoring data into the trend term, seasonal term, noise
term, etc., and then, based on historical data, it can calculate
the future data using the autoregressive method. In general,
the hydraulic support load just has the data character of
monitoring pressure of the column, and the column pressure
presents a cyclic change as the hydraulic support moves and
the roof fractures. It is more suitable to use the autoregressive
model for single variable predictive analysis.

The unit root test, self-correlation, and partial self-
correlation analysis methods are used to verify the station-

arity of the hydraulic support load data, and the original data,
first-order difference data, and seasonal difference data are
compared and analyzed to build the time series data
modeling.

The autoregressive model requires that historical and
current data have a strong self-correlation (self-correlation
coefficient should not be less than 0.5), and the model can
be described as follows [30],

yt = μ + 〠
p

k=1
γkyt−k + ϵt , ð2Þ

where yt is the current value, μ is the constant term, p is
the order, γk is the self-correlation coefficient, ϵt is the
error term, and yt−k is the historical monitoring values at
time t − k before time t.
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Figure 2: Feature decomposition of sample data of hydraulic support load.
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The correlation between the monitoring value at the cur-
rent time and the history monitoring value can be calculated
using a self-correlation function [31],

γk =
Cov yt , yt−kð Þ
Var ytð Þ , ð3Þ

where γk is the correlation coefficient between the monitor-
ing value at time k and the current monitoring value, yt is
the current value, and yt−k is the historical monitoring values
at time t − k before time t.

Autoregressive models require time series data to be sta-
tionary, which means the mean value and variance do not
change with time. The unit root test (ADF) is used to test
the stationarity of the sample data of the hydraulic support
load. The calculation results are shown in Table 1.

From Table 1, it is found that the P value of the prepro-
cessed hydraulic support load sample data tends to 0, and
the T value is significantly less than the confidence intervals
values with the 99%, 95%, and 90%, which indicates that
the data is steady. The autocorrelation function (ACF) and
partial autocorrelation function (PACF) are used to analyze
the stationarity and self-correlation of the data, as shown in
Figure 4, the shaded area covers the confidence interval.

From Figure 4, it is found that both the self-correlation
coefficient and partial self-correlation coefficient of the
hydraulic support load sample data decline slowly and tend
to be flat (fluctuating around zero value) eventually. The
self-correlation coefficient presents periodic cyclic fluctua-
tions within the confidence interval (shaded area in
Figure 4(a)), while there are many obvious lag points (points
outside the shaded area in Figure 4(a)). The partial self-
correlation coefficient also shows up and down during the
confidence interval (shaded area in Figure 4(b)), but the peri-
odicity is not obvious. From Figure 1, we know that the
hydraulic support load in cyclic operation is affected by roof
fracture behavior, cutting face advance speed, the operating
state of hydraulic support, and the habits of the operators.
The support load change trend in each cycle still shows a
large difference, so did the length of each cycle. Therefore,
the periodicity of support load is similar to the “seasonal”
of the traditional time series model, while the length of the
“season” and the change rule of sample value in the seasonal
cycle are various. In this paper, the ARIMA model (not con-
sidering the influence of the cycle period) and the SARIMA
model (considering the influence of the cycle period) are used
to analyze and predict the load sample data of the hydraulic
support.

Although the hydraulic support load monitoring samples
have passed the stationary test from Figure 4, there are still
many lag points in the ACF and PACF. The first order differ-
ence of sample data is introduced to reduce the number of lag
points, so that the autocorrelation coefficient and partial
autocorrelation coefficient converge to the confidence inter-
val quickly. According to the seasonality of the sample data
and the cycle periodicity data extracted in Figure 2(b), 37
monitoring values are chosen in the cycle period, and the

data is subjected to “seasonal” difference to obtain stationary
time series data of hydraulic support load samples.

The unit root test method is used to perform stationarity
test on the preprocessed data. The calculation results are
shown in Table 2. The self-correlation coefficients and partial
self-correlation coefficients after data processing are shown
in Figure 5.

The unit root test results show that with the first-order
difference or the seasonal difference of the sample data, the
T test results are significantly less than the results of original
data and the test value of the confidence interval; the P value
is also closer to zero than the original data, which indicates
that the sample data become more steady with the first-
order difference or seasonal difference.

From Figure 5, it is found that the lag of the self-
correlation coefficient and partial self-correlation coefficient
is significantly improved (the points outside the shaded area
in Figure 5). In Figures 5(c) and 5(d), the partial autocorrela-
tion coefficients at lags = 37 and lags = 74 increase signifi-
cantly, and the partial autocorrelation coefficients at
lags = 37 are greater than the value at lags = 74, reflecting
the periodicity of the data. It also indicates that the cyclical
change characteristics of recent data have a greater influence
on current and future data.

4.2. Support Load Prediction Based on ARIMA Model. Con-
sidering the variety of the hydraulic support load cycle
period, the “seasonal” factor was suspended in the first
model. Autoregressive moving average modeling analysis
(ARIMA) is firstly applied for the hydraulic support load
sample data with first-order difference. From Figures 5(a)
and 5(b), it is found that the partial self-correlation of
the data appears “censoring” with 5 of lags, and the self-
correlation appears “tailing,” so the autoregressive value
of the model is determined as p = 5. Similarly, the self-
correlation of the model also appears “censored” when
lags = 5, and the partial self-correlation shows “tailing,”
the moving average term of the model is initially deter-
mined to be 5.

According to the determined model autoregressive terms
and moving average terms, the grid search method is used to
create 16 models in total under the condition that the value
range of the autoregressive term is 3 ≤ p ≤ 6, the value range
of the moving average term is 3 ≤ q ≤ 6, and the value of the
differential term is d = 1. Akaike Information Criterion
(AIC) and Bayes Information Criterion (BIC) are used to
optimize the model parameters [32]. The calculation results
of AIC and BIC for these models are shown in Figure 6.

It can be seen that, when p = 4 and q = 3, the AIC value is
the smallest (2456.925), and when p = 3 and q = 3, the BIC
value is the smallest (2488.379), and when p = 4 and q = 3,
the BIC value is slightly larger than the result when p = 3

Table 1: Test result of stationarity of load data of hydraulic support.

Test result (T) P
Confidence interval value

99% 95% 90%

-6.5411 9.34e-9 -3.4447 -2.8678 -2.5701
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and q = 3. Therefore, according to the traditional time series
model parameter optimization method, the optimal parame-
ter of the model is determined to be p = 4, q = 3, and d = 1.
The residuals of the model, as shown in Figure 7, basically
conform to the characteristics of white noise, which means
the high reliability of the model.

Based on the above results, the training data set is used
for data modeling of the hydraulic support load, and the
model is used to predict the hydraulic support test samples
(the next operating cycle data). The result is shown in
Figure 8.

From Figure 8, it is found that the prediction result of the
training sample has the similar trend and peak value with the
sample data, but the prediction result of the validation data
just presents the similar trend and sample value in a very
short stage, and then it shows a similar horizontal straight
line trend (similar to the sliding window method). Therefore,
the model can and can only predict the development trend of
the data well in short term, which has a slight advantage com-
paring with the sliding window prediction method.

The parameters of the model are p = 4, q = 3, and d = 1,
that means, the previous four data before the current time
are used to predict the future trend, and the previous three
data before the current time are used to judge the error of
the sample, the trend term of the reference sample can pre-
dict the short-term development trend of the support load,
but the small number of reference samples is just suitable to
predict the development trend in short term, while cannot
predict the long-term development trend of the support load
well. In order to make full use of historical data, the historical
sample data of one operating cycle is used for data modeling
and analysis, and the model parameters are modified to p =
40, q = 40, and d = 1. The results are shown in Figure 9.

From Figure 9, it is found that with the number of the
historical reference data increasing, the model becomes more
sensitive to data fluctuations, the predicted value change sig-
nificantly with slight sample data fluctuating. However, the
prediction result is more accurate. Although the model’s
residual value still fluctuates around zero, the fluctuation
range enlarges significantly. It may be because the q value
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Figure 4: Self-correlation and partial self-correlation diagrams of support load monitoring samples.

Table 2: Results of stationarity test after sample data processing.

Item Test result (T) P
Confidence interval value

99% 95% 90%

Original data -6.5411 9.34e-9 -3.4447 -2.8678 -2.5701

First-order difference -11.0571 4.9e-20 -3.4470 -2.8689 -2.5707

Seasonal differences -10.8716 1.3e-19 -3.4488 -2.8696 -2.5711
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increases resulting in an increasing of the model’s cumulative
error value. To further optimize the model parameters,
reducing the q value to 3, the residual value and the predic-
tion result are shown in Figure 10.

From Figure 10(a), we can know that reducing the q value
can greatly weaken the fluctuation of the model’s residual
value, as well as the fluctuation of the model’s predicted
value. The prediction results have been significantly

100 20 30 40
Lags

50 60 70 80

1.0

0.8

0.6

0.4A
C

F

0.2

0.0

–0.2

(a) Self-correlation diagram of the monitored sample with first-order difference

100 20 30 40
Lags

50 60 70 80

1.0

0.8

0.6

0.4PA
C

F

0.2

0.0

–0.2

(b) Partial self-correlation diagram of monitoring samples with first-order difference

100 20 30 40
Lags

50 60 70 80

1.0
0.8
0.6
0.4

A
C

F

0.2
0.0

–0.2
–0.4

(c) Self-correlation diagram of monitoring samples with seasonal differences

100 20 30 40
Lags

50 60 70 80

1.0
0.8
0.6
0.4

PA
C

F

0.2
0.0

–0.2
–0.4

(d) Partial self-correlation diagram of monitoring samples with seasonal differences
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improved. The predicted value is basically consistent with the
trend of the sample verification data set, while there has slight
difference at the peak value. The reason is that there are many
external interfering factors for the hydraulic support during
the operation cycle, the fluctuation range of the residual value
is -30~ 25MPa, which leads to the deviation of the predicted
value and the actual value. The prediction results can be
improved with an appropriately larger p value, while the
exact results still do not cover the entire hydraulic support
cycle. The long-term prediction results are still no reference
value.

4.3. Hydraulic Support Load Prediction Based on SARIMA
Model. Through the feature decomposition of the hydraulic
support load data (Figure 2), it is found that the sample data
has some cycle change characteristics, while the cycle period
and the load value are various. Considering the periodicity,
the Seasonal Autoregressive Integrated Moving Average

(SARIMA) is applied to analyze and predict the load of the
hydraulic support, and the seasonal difference processed data
is used for modeling and analysis. The self-correlation and
partial self-correlation analysis results are shown in
Figures 5(c) and 5(d). It can be seen that the partial self-
correlation of the sample data appears “censored” at lags =
6, while the self-correlation presents “tailing.” The order of
the nonseasonal autoregressive component of the model
can be primarily determined to be p = 6; and at lags = 37,
lags = 74, the partial self-correlation is significantly
enhanced, so the seasonal component order (P) of the auto-
regressive model is 2. The self-correlation of the model also
appears “censored” at lags = 6, and the partial self-
correlation appears “tailed,” so the model’s nonseasonal
moving average value is determined to 6 primarily, the self-
correlation of the model enhances significantly at lags = 37,
so the order of the seasonal component in the moving aver-
age model is determined to 1 primarily.
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(a) Residual value after adjusting model parameters
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Figure 9: The residual value and prediction result of the model with the adjusted parameters.
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Based on the primarily determined model parameters,
the grid search method is used to create 630 models in
total under the condition that the range of nonseasonal
autoregressive terms is 3 ≤ p ≤ 8, the range of nonseasonal
moving average terms is 2 ≤ q ≤ 8, and the nonseasonal
difference term is d = 1, the range of seasonal autoregres-
sive terms is 0 ≤ P ≤ 4, the range of seasonal moving aver-
age terms is 0 ≤Q ≤ 2, the seasonal difference term is
D = 1, and the period length is s = 37. Akaike Information
Criteria (AIC) and Bayesian Information Criteria (BIC)
are also used to optimize the model parameters. When
p = 8, d = 1, q = 3, P = 4, D = 1, and Q = 2, the model
has the smallest AIC value (1285.72), when p = 8, d = 1,
q = 3, P = 4, D = 1, and Q = 0, the model has the smallest
BIC value (1341.07), and when p = 8, d = 1, q = 3, P = 4,
D = 1, and Q = 2, the BIC value (1345.62) is just slightly
larger than the parameter with p = 8, d = 1, q = 3, P = 4,
D = 1, and Q = 0. The optimal parameters of the model
can be determined as p = 8, d = 1, q = 3, P = 4, D = 1,
and Q = 2. The residuals of the model basically conform
to the characteristics of white noise, which means the

model is available. The data of the last operating cycle
is used as a sample test set, and the prediction results
based on the optimal parameters are shown in Figure 11.

From Figure 11, it is found that this model is also very
sensitive to the fluctuation of the sample data. The predicted
value fluctuates greatly with the sample data fluctuating. The
residuals of the model also fluctuate around zero, but the
fluctuation range is larger than that of the ARIMA model.
It is inferred that the wider fluctuation range of the residual
value leads to the more sensitive model to the fluctuation of
the sample data. The model predicts that the load of the
hydraulic support will decrease rapidly and increase rapidly
in the short term, and it also predicts the load change trend
in the next hydraulic support working cycle very well. The
predicted trend is very close to the field trend; the predicted
value is slightly lower than the monitoring value. The pre-
dicted peak value is close to the monitoring value, with a sig-
nificant lag. There are many factors affecting the load of
hydraulic supports, so the residual range of the data samples
is wide, resulting the fluctuation of the data. Despite the low
prediction precision of this model, it predicts the
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(a) The residual value with q = 3
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Figure 10: The model’s residual value and prediction result with q = 3.
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development trend of the hydraulic support in the next entire
cycle. The prediction accuracy is affected by the roof proper-
ties, support working condition, and other external factors,
which has certain randomness, so we do not take more atten-
tion on adjusting parameter to optimize the prediction result.

5. Discussion

The variance of the hydraulic support load reflects the roof
fracturing process. However, the hydraulic support load is
determined by multiple factors, such as roof fracture, support
working condition, working face advancing speed, and the
operator’s capabilities. As a result, the cycle length of the
hydraulic support load varies with the condition changing,
as well as the peak load, which is not good for predicting
the hydraulic support load.

The sliding window prediction method has a good short-
term prediction effect on the support load, but the value of
the sliding window should not be too large. The weighted
mean method is significantly better than the mean method.
Due to the heavy dependence of the sliding window predic-
tion method on the recent monitoring data, it is not possible

to judge the trend of the data in advance, so it is difficult to
predict the medium-term and long-term law of the hydraulic
support load changes. Only predicting the short-term load of
hydraulic supports (less than one cycle of support cycle oper-
ation) has great limitations in practical engineering
applications.

By comparing the prediction results based on different
model parameters in Table 3, as shown in Figure 12, it is
found that both the ARIMA model and the SARIMA model
can predict the load trend. However, the ARIMA model is
only suitable for predicting the trend in a short period. The
ARIMA model using the parameters of three groups just
obtain good result at the first half of the hydraulic support
cycle, while fails at the remaining period (unloading process),
and the peak load of the hydraulic support cannot be calcu-
lated. The SARIMA model with the suitable parameters can
obtain the support load development trend in one working
cycle, and the predicted peak load is close to the field moni-
toring data. It indicates that the SARIMAmodel is more suit-
able for predicting the support load development trend. It
should be noted that the results of the SARIMA model has
a lag comparing with the monitoring time series data. More
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Figure 11: The residual value and prediction result of the SARIMA model.
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external factors need to be considered in the SARIMA model
in future study.

The hydraulic support load is often affected by external
factors. To identify the prediction accuracy of these models,
it should be taken more attention in geological condition,
recovery method, and so on, which need a new study to pres-
ent it. In this paper, we mainly focus on comparing the
advantage of the three models. As we know, the roof fractur-
ing is a dynamic continuous process. In the condition of good
support effect on roof and normal advancing speed of mining
face, the SARIMA model can obtain a good prediction result
of the hydraulic support load. In addition, the SARIMA
model is more sensitive to the fluctuation of the monitoring
data, and it will amplify the abnormal value slightly, as shown
in Figure 11, the maximum and minimum values of the pre-
dicted result are significantly higher or smaller than the mon-
itoring value. It indicates the SARIMAmodel can capture the
abnormal monitoring value more effectively.

The time series model based on statistical analysis is more
suitable to perform data model and prediction on small sam-
ple data. If the monitored values that are less affected by the
external factors are used as training samples, the load of the
hydraulic support in the subsequent cycle can be better pre-
dicted. The predicted results can also be used as the basis
for judging whether the hydraulic support is affected by
external factors in the next operating cycle. If it is affected,
the value will deviate obviously; otherwise, the prediction
and monitoring results are basic identical.

Obviously, the time series models based on statistical the-
ory have limitations to predict the hydraulic support load. It

is difficult for these models to predict large-scale pressure
accidents and rock burst accidents of cutting face occurring
instantaneous. Therefore, the mechanical model, numerical
simulation results of the roof fracture on cutting face should
be coupled in the time series model in future study, so that it
improves the prediction accuracy.

6. Conclusions

(1) By decomposing the load data of the hydraulic sup-
port into trend term, cycle term, and residual term,
the periodicity load in the hydraulic support cycle
can be seen obviously. The trend term of the load
data presents a certain rule, but the residual value is
quite large, which means that the hydraulic support
load fluctuates greatly with the various external fac-
tors, and it increases the difficulty to predict support
load

(2) The sliding window prediction method is good at
predicting the next single-point. However, it fails to
predict the development trend of load data. With
the value of the sliding window increasing, the pre-
diction results of the peak point or the abrupt point
become inaccurate. The value of the sliding window
should be in a reasonable range. The weighted aver-
age method is significantly better than the average
method

(3) Increasing the value of the autoregressive term of the
ARIMA model can properly improve the long-term

Table 3: Parameters for the four models.

Item p q d P D Q s

Model 1 4 3 1 — — — —

Model 2 40 40 1 — — — —

Model 3 40 3 1 — — — —

Model 4 8 3 1 4 1 2 37
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Figure 12: Comparison of prediction results of models and corresponding parameters.
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prediction result, while it also increases the sensitivity
of the model to data, and the model still fails to pre-
dict the load trend in the next support cycle. There-
fore, this model is not suitable to predict the load
trend in a long-term mining process

(4) The prediction data generated by the SARIMAmodel
has the similar trend with the field monitoring data,
which means this model is the better approach to
predict the load trend in a hydraulic support cycle.
The load data has the strong periodicity rather than
tendency. However, the predicted value is slightly
lower than the monitoring data, and it exists time
lag effect

Data Availability

The No. 121304 ultralength longwall mining face, in Kouzi-
dong Coal mine, China, mines the 13-1 coal seam. The thick-
ness of the coal seam is 2.2~6.66m, the maximum inclination
length of the cutting face is 350m, and the strike length is
about 1000m. The ZZ13000/27/60D, which is four-column
shield hydraulic support, are applied in the cutting face,
and the ultimate bearing pressure of the column is 33MPa.
The KJ216 system is introduced to monitor the pressure in
the front column. The data of hydraulic support (No. 90)
during two working days at the middle of cutting face is
extracted for analysis. During the monitoring period, the cut-
ting face advanced in total of 10 cycles.
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