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Fluid discrimination plays an important role in reservoir exploration and development. At present, the fluid factors used for fluid
discrimination are estimated by linear AVA inversion methods based on the linear approximations of the Zoeppritz equations.
However, the Zoeppritz equations show that the relationship between prestack AVA reflection coefficients and reservoir
parameters is highly nonlinear. Therefore, inversion methods based on linear approximations will seriously influence the
nonuniqueness and uncertainty of inversion results. In this paper, a nonlinear inversion based on the quadratic approximation
is carried out to reduce the nonuniqueness and uncertainty of fluid factor. Firstly, in order to directly invert the fluid factor, a
novel quadratic approximation in terms of the fluid factor (ρf ), shear modulus, and density on both sides of the reflection
interface is derived based on poroelasticity theory. Then, a nonlinear inversion objective function is constructed using the novel
quadratic approximation in a Bayesian framework, and the Gauss-Newton method is adopted to minimize this objective
function. The synthetic data example shows that the new method can obtain reasonable fluid factor inversion results even in low
SNR (signal-to-noise ratio) case. Finally, the proposed method is also applied to field data which shows that it can effectively
discriminate reservoir fluids.

1. Introduction

Fluid discrimination is an important step in reservoir
exploration and development. In order to characterize the
reservoir fluid information by geophysical data, various fluid
factors have been proposed and applied to fluid discrimina-
tion. Smith and Gidlow [1] first defined the concept of fluid
factor as the combination of P- and S-wave velocities. Good-
way et al. [2] suggested that Lamé petrophysical parameters
(λρ, Lamé modulus×density and μρ, shearmodulus ×
density) were significantly better than the P- and S-wave
velocities in fluid detection and lithology identification.
Based on poroelasticity theory [3, 4], Russell et al. [5, 6]
defined the Russell fluid factor. Russell fluid factor is derived
based on the Biot–Gassmann theory and has become the
most commonly used and classic fluid factor. Castagna

et al. [7] and Li and Castagna [8] studied the application of
AVO intercept and gradient in AVO classification and
realized reservoir hydrocarbon discrimination based on the
AVO classification research results. Based on a physical
modeling study, Wandler et al. [9] demonstrated that the
AVO intercept and gradient can be used as traditional
hydrocarbon indicators. Feng et al. [10] suggested that the
fluid factor ρf (density × Russell fluid factor) had a better
performance in fluid discrimination. Yin and Zhang [11]
defined the effective pore-fluid bulk modulus to raise the sen-
sitivity of fluid discrimination. Their researches show that the
introduction of effective pore-fluid bulk modulus will lead to
an increase in the number of target parameters that need to
be inverted, which will seriously affect the stability of nonlin-
ear inversion algorithms. Zong and Yin [12] suggested that
Young’s impedance (YI) and Poisson ratio impedance (PI)

Hindawi
Geofluids
Volume 2020, Article ID 8860119, 15 pages
https://doi.org/10.1155/2020/8860119

https://orcid.org/0000-0002-9193-1075
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8860119


have great potential in fluid discrimination and lithology
identification of unconventional reservoirs. However, the
physical meaning of these two parameters is undefined. Con-
sidering the effectiveness of the fluid factors and the stability
of nonlinear inversion algorithms, we select the fluid factor
ρf as one of target parameters of the nonlinear inversion
method to directly detect the fluids.

Prestack seismic data contain abundant and reliable
information about fluids and lithology compared to post-
stack seismic data. Therefore, various amplitude variation
with offset (AVO) or amplitude variation with incidence
angle (AVA) inversion methods based on prestack seismic
data for fluid discrimination have been developed rapidly in
recent years. Russell et al. [6] derived a linear approximate
formula in terms of f , μ, and ρ (the Russell fluid factor, shear
modulus, and density) and achieved linear inversion using
standard least-squares inversion method. Zong et al. [13]
derived a linear approximation equation that contains the
P- and S-wave moduli and then realized the indirect esti-
mation of the Russell fluid factor based on a petrophysical
relationship. In order to avoid the cumulative error caused
by indirect calculation, Zong et al. [14] realized the direct
inversion of Russell fluid factor by using Russell linear
approximation. Du and Yan [15] derived new linear
approximations which containing the fluid factor ρf for
PP and PS wave reflection coefficients and then realized
the joint inversion. Yin and Zhang [11], Zong et al. [16],
and Du et al. [17] derived the fluid matrix decoupled linear
approximation equation and realized the linear inversion of
the fluid modulus. Zong and Yin [12] achieved direct inver-
sion of Young’s and Poisson impedances for fluid discrim-
ination. It should be noted that the forward operators of
above inversion methods are linear approximation equa-
tions of the exact Zoeppritz equations. Actually, the exact
Zoeppritz equations show that the relationship between res-
ervoir parameters and prestack AVA reflection coefficients
is complicated and highly nonlinear. If nonlinear equation
degenerates into linear equation, it is easy to appear the
case that the reflection coefficients calculated by the linear
and nonlinear equations are similar, but the input parame-
ter values are quite different [18]. Therefore, inversion
methods based on linear approximations will cause strong
nonuniqueness and uncertainty in inversion results. Stovas
and Ursin [19, 20] derived quadratic approximations for
reflection and transmission coefficients in isotropic media.
Compared with linear approximations, the relationship
between reservoir parameters and AVA reflection coeffi-
cients described by these quadratic approximations is closer
to the real situation. Based on these quadratic approxima-
tions, Rabben et al. [18] and Aune et al. [21] achieved
nonlinear inversion using different methods. They showed
that the nonlinear inversion methods based on quadratic
approximations can effectively reduce the nonuniqueness
and uncertainty of inversion results, which provides an
important theoretical guarantee for the research content
of this paper. In order to improve the estimated accuracy
of fluid factor and reduce its uncertainty, a novel quadratic
approximation of exact Zoeppritz equations is derived on
the basis of the existing quadratic approximation. Since

the forward operator we used is a nonlinear function, the
objective function is also nonlinear. At present, intelligent
algorithm (support vector machine, quantum particle
swarm, etc.) and deterministic algorithm (Gauss-Newton
method, Generalized Linear Inversion method, etc.) [22–28]
are popular to solve the nonlinear inversion problems. In
order to solve nonlinear objective function quickly and stably,
the classical Gauss-Newton method is chosen in this paper.

We proposed a nonlinear inversion for the fluid factor ρf
based on a quadratic approximation. First, a new quadratic
approximation of the exact Zoeppritz equations which con-
taining the fluid factor ρf , shear modulus, and density is
derived based on poroelasticity theory. Then, a nonlinear
objective function is constructed using this quadratic approx-
imation in a Bayesian framework, and the classical Gauss-
Newton method is applied to solve this nonlinear problem.
Finally, we apply the proposed method on both synthetic
and field data, indicating the feasibility and effectiveness of
the proposed method and draw some conclusions.

2. Theory and Method

2.1. Derivation of a Novel Quadratic Approximation in terms
of ρf , μ, and ρ. Lithology prediction also plays an important
role in reservoir exploration [29]. Shear modulus is an
important characteristic parameter for lithology prediction.
Therefore, in order to reduce the uncertainty of lithology
prediction results, shear modulus μ is also selected as one
of the target parameter of the nonlinear inversion. Through
detailed comparison, Rabben et al. [18] have proved the
effectiveness of the quadratic approximation derived by
Stovas and Ursin [19, 20] in reducing the uncertainty of
inversion results and improving the accuracy of inversion
results. On this basis, we derive a novel quadratic approxima-
tion in terms of ρf , μ, and ρ to improve the estimated accu-
racy of fluid factor.

The existing quadratic approximation of the exact Zoep-
pritz equations in terms of P- and S-wave impedances and
density is given by [18, 20]
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where IP = ρVP and IS = ρVS represent P- and S-wave
impedances, θ is the incidence angle of P wave, φ is the reflec-
tion angle of PS converted wave, and ρ is density. γsat =
ðVP/VSÞsat is the background ðVP/VSÞsat ratio of the satu-
rated rock.
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Firstly, we establish the relationship between the wave
impedances and the fluid factor ρf where f is Russell fluid
factor. The expression of Russell fluid factor f is shown below

f = ρV2
P − γ2dryρV

2
S, ð2Þ

where VP, VS, and ρ are the P- and S-wave velocities and
density of saturated rock, respectively, γ2dry = ðVP/VSÞ2dry rep-
resents the square of the dry-rock velocity ratio. Russell et al.
[5, 6] and Wang [30] had discussed the effect of γ2dry on the
reflection coefficients in detail. It is usually estimated from
well logging data and is treated as a constant in the inversion
algorithm [13, 14]. Then, we have

ρf = ρ2V2
P − γ2dryρ

2V2
S = I2P − γ2dryI

2
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 !
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Rearranging equation (3) as

I2P = ρf + γ2dryI
2
s : ð4Þ

Taking the derivatives of both sides of equation (4), we
can obtain

2IPΔIP = Δρf + 2γ2dryISΔIS: ð5Þ

Combining equations (3) and (5), the following equation
can be obtained
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For S-wave impedance, we have

I2S = ρμ: ð7Þ

Taking the derivatives of both sides of equation (7), we
obtain
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Substituting equations (6) and (8) into equation (1), a
new quadratic approximation in terms of fluid factor ρf ,
shear modulus, and density is derived
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Based on equation (9), we only estimate the reflectivity of
the fluid factor, shear modulus, and density. Then, we need to
use these results to perform trace integral operation to obtain
the parameter values of the fluid factor, shear modulus, and
density. In fact, the trace integral calculation not only
depends on the initial values but also brings cumulative
errors, thus affecting the final estimation accuracy of the fluid
factor and other parameters. Therefore, in order to invert the
fluid factor, shear modulus, and density directly, we rewrite
equation (9) as the following form
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where subscripts 1 and 2 represent the upper and lower
media. Equation (10) is the novel quadratic approximation
in terms of the fluid factor, shear modulus, and density on
both sides of the interface. In order to test the calculation
accuracy of the new quadratic approximation shown in equa-
tion (10), two representative models shown in Table 1 are
used to compare the reflection coefficients. Using these two
models can effectively verify the calculation accuracy of the
new quadratic approximation. Figures 1(a) and 2(a) show
the comparison of reflection coefficients calculated by the
exact Zoeppritz equations, Aki-Richards approximation,
and Russell linear approximation, and the new quadratic
approximation for the two models’ incidence wave is P wave
with incidence from 0°–45°. Figures 1(b) and 2(b) show the
difference of the reflection coefficients between the exact
Zoeppritz equations and the three approximations, respec-
tively. Note that the novel quadratic approximation of the
exact Zoeppritz equations derived is satisfactory in calcula-
tion accuracy, which ensures the estimated accuracy of fluid
factor.
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2.2. Nonlinear Inversion Based on the Novel Quadratic
Approximation. In order to improve the stability and accu-
racy of nonlinear inversion algorithm, the nonlinear inver-
sion objective function is constructed in a Bayesian
framework. The likelihood function Pðd ∣mÞ and the prior
distribution function PðmÞ are assumed following the Gauss-
ian distribution and Cauchy distribution, respectively. Their
expressions can be expressed as follows

P d ∣mð Þ∝ exp −
1

2σd
2 d −Q mð Þð ÞT d −Q mð Þð Þ

� �
, ð11Þ
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� � !

,

ð12Þ
where d represents observed data,Q represents the nonlinear
forward operator (the new quadratic approximation), m =
½ fluid factor ; shearmodulus ; density�3N×1 is the target
parameters vector, and σd

2 is the noise variance. N is the size
of target parameters, and μ is the mean vector of target

parameters. Φi = ðDiÞTψ−1Di, of which ψ is a 3 × 3 covari-
ance matrix that contains the statistical correlations among
the three target parameters. Matrix D is a 3 × 3N matrix
defined as
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Substituting equations (11) and (12) into Bayes’ formula
[31], we have
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where Pðm ∣ dÞ is the posterior probability distribution.
Then, we need to find the maximum value of Pðm ∣ dÞ. This
problem can be converted into a problem that solves the min-
imum value of the following objective function

O mð Þ = 1
2 d −Q mð Þð ÞT d −Q mð Þð Þ + βR mð Þ, ð15Þ

where RðmÞ = 2∑N
i=1 ln ð1 + ðm − μÞTΦiðm − μÞÞ is the regu-

larization term and β = σd
2 controls the weight of the prior

information.
The classical Gauss-Newton method is adopted to solve

the above nonlinear problem. According to the Gauss-
Newton method, the iterative formula can be expressed as

mj+1 =mj −H mj� 	−1γ mj� 	
, ð16Þ

where γðmÞ and HðmÞ are the first and second partial deriv-
atives of the nonlinear objective function with respect to the
parameter vector m, respectively. Their expressions are
shown below

γ mð Þ = ∂O mð Þ
∂m = ∂Q mð Þ

∂m

� �T

Q mð Þ − dð Þ + β
∂R mð Þ
∂m

� �
,

ð17Þ

H mð Þ = ∂2O mð Þ
∂m2 ≈

∂Q mð Þ
∂m

� �T ∂Q mð Þ
∂m

� �
+ β

∂R2 mð Þ
∂m2

� �
:

ð18Þ
In equations (17) and (18), the matrix ∂QðmÞ/∂m is the

partial derivative of the nonlinear forward model based on
the new quadratic approximation with respect tom (Jacobian
matrix). The derivation of this matrix (∂QðmÞ/∂m) is given
in Appendix A. The matrices ∂RðmÞ/∂m and ∂R2ðmÞ/∂m2

are the first and second partial derivatives of the regulariza-
tion term RðmÞwith respect tom. Their derivations are given
in Appendix B.

3. Examples

3.1. Synthetic Data Example. First, a synthetic profile with
single-well logs which are obtained from a sandstone layer
in an actual oil field in China is used to verify the feasibil-
ity and stability of the new method. The value of γ2dry is
set to 2.333. The parameter curves of the single-well are
shown in Figure 3, where the solid lines represent the real
fluid factor, shear modulus, and density curves, and the
dashed lines represent the initial model data that are
obtained by smoothing the true curves. Then, the seismic
forward modeling is implemented by convoluting a Ricker
wavelet (the main frequency is 30Hz) with the reflection
coefficients generated by the exact Zoeppritz equations.

Table 1: Parameters of model 1 and model 2.

Lithology VP m/sð Þ VS m/sð Þ ρ g/cm3� 	
f Gpað Þ μ Gpað Þ γ2dry(-)

Model 1
Water sand 3050 1595 2.23 7.509 5.673

2.333
Gas sand 2780 1665 2.08 2.623 5.766

Model 2
Shale 2898 1290 2.425 10.951 4.035

2.333
Gas sand 2857 1666 2.275 3.838 6.314
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Figure 1: Comparison of reflection coefficients calculated by the exact Zoeppritz equations, Aki–Richards approximation, Russell linear
approximation, and the new quadratic approximation of model 1. (a) Reflection coefficients calculated by different formulas; (b) difference
of the reflection coefficients between the exact Zoeppritz equations and their three approximations, respectively.
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Figure 2: Comparison of reflection coefficients calculated by the exact Zoeppritz equations, Aki–Richards approximation, Russell linear
approximation, and the new quadratic approximation of model 2. (a) Reflection coefficients calculated by different formulas; (b) difference
of the reflection coefficients between the exact Zoeppritz equations and their three approximations, respectively.
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The corresponding noise-free synthetic angle gathers are
shown in Figure 4(a). Figure 5(a) shows the inversion
results of the proposed method using noise-free data. The
new method can converge to an optimal solution in only

4 to 5 iterations. We can see that in the absence of noise,
all of the fluid factor, shear modulus, and density can be
inverted with a high accuracy. In order to test the stability
of the new method, random noises with signal-to-noise
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Figure 5: Continued.
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ratio (SNR) of 2, 1, and 0.5 are added to the synthetic data.
These noise data with different SNR are shown in Figure 4
(b: SNR = 2, c: SNR = 1, d: SNR = 0:5). Figures 5(b)–5(d)
show the corresponding inversion results of noise data with
corresponding SNRs. We can see that the fluid factor and
shear modulus can be estimated stably with a satisfactory
accuracy, even when SNR = 0:5. However, the estimated
density results show more bias when noise exists, suggest-
ing that the estimation of density parameters is seriously
affected by noise.

In order to further demonstrate the advantage of the pro-
posed method, the inversion based on Russell linear approx-
imation is implemented on the synthetic data shown in
Figure 4(a), and the inversion results are shown in Figure 6.
From the comparison between Figures 5(a) and 6, it is obvi-
ous that the inverted density has been improved, and the
inversion accuracy of fluid factor, and shear modulus in the
range of 0 to 0.2 s also has been improved, which indicates
that the proposed method can effectively improve the accu-
racy of the inversion results.
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Figure 6: Inversion results of the traditional method based on Russell linear approximation.
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3.2. Field Data Example. A small 2D field seismic angle
gather data (effective angle range is 3°-34°) which is
extracted from a work area in China is used to further
demonstrate the feasibility and availability of the proposed
method in field data. The stack section of the field data is
shown in Figure 7. In this figure, the black line denotes
the location of Well A, and the black arrow indicates the
location of the target reservoir. The target reservoir is a

shale layer, located between two sandstone layers. A series
of conventional processing procedures, such as amplitude
compensation and correction, deconvolution, noise sup-
pression, Normal Moveout (NMO), interbedded multiple
suppression processing, and prestack time migration, were
performed on the field data to make sure the final prestack
angle gathers meet the requirements of prestack AVA
inversion.
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Figure 8: Field data inversion results: (a) fluid factor, (b) shear modulus, and (c) density. The black curve indicates the real logging data of
Well A, and the arrow indicates the target reservoir.
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Before the inversion algorithm is implemented, γ2dry was
estimated based on the statistical analysis of logging data.
First, the logging curve is divided into oil layers and nonoil
layers. Then, the corresponding fluid factor curve, which is
calculated with specified different γ2dry, is used to distinguish
the divided layers. Finally, the fluid factor curve with the rel-
atively high resolution is retained, and the corresponding
value of γ2dry is determined as 2.16. From the black curve
shown in Figure 8(a), it can be seen that the fluid factor can
well identify the oil-bearing layer, indicating that the esti-
mated value of γ2dry is reasonable. Next, the proposed method
is applied to the 2D field data. Figure 8 shows the field inver-
sion results for fluid factor (Figure 8(a)), shear modulus
(Figure 8(b)), and density (Figure 8(c)) inverted by using
the new method. Black curves indicate real logging data of
Well A. Figure 9 shows the comparison of inverted results
at the Well A location and real logging data in the time
domain. From these figures, we note that the inversion results
of fluid factor, shear modulus, and density show good agree-
ments with the logging data and the fluid factor inversion
results estimated by the proposed method can well character-
ize oil layer, which indicating that the proposed method is
feasible and valid in application to field data.

4. Conclusions

The proposed method aims to reduce the nonuniqueness and
uncertainty of the fluid factor inversion results. Therefore, we
derive a novel quadratic approximation of the Zoeppritz
equations with the chosen constants of fluid factor, shear
modulus, and density and proposed a new nonlinear inver-
sion method to achieve this purpose. In order to directly
invert the target parameters instead of indirectly calculating
them from the inverted reflectivity, we rewrite the expres-
sions of reflectivity in terms of target parameters on both
sides of the interface. Numerical experiments show that the
novel quadratic approximation has satisfactory calculation
accuracy. Then, the nonlinear inversion objective function
is constructed in a Bayesian framework, and the Gauss-
Newton method is used to solve this nonlinear problem.
Finally, we obtain the iterative updating formula of the fluid
factor, shear modulus, and density; achieve the nonlinear

direct inversion of these parameters; and avoid the cumula-
tive errors caused by trace integral operation. The synthetic
data test shows that the proposed method can estimate the
fluid factor information stably and reasonably, even with
low SNR. The field data test shows that the proposed method
can effectively identify reservoir fluids. Both of them confirm
the feasibility and availability of the proposed method.

Compared with the state-of-the-art approaches, the
advantage of the proposed method is that it can effectively
reduce the nonuniqueness and uncertainty of factor inver-
sion results and improve the estimation accuracy of fluid fac-
tors. Since the proposed approach uses a second-order
nonlinear forward equation, it will increase the instability of
the inversion algorithm. Therefore, the stability of the pro-
posed method could by enhanced, which will be studied in
the further.

Appendix

A. Derivation of the JacobianMatrix ∂QðmÞ/∂m:

The nonlinear forward model can be expressed as follows

Q mð Þ =W · r mð Þ, ðA:1Þ

whereW represents the angle-dependent wavelet matrix and
rðmÞ represents the P-wave reflection coefficients vector.
Then, the Jacobian matrix can be written as

∂Q mð Þ
∂m = ∂

∂m W · r mð Þð Þ =W · ∂r mð Þ
∂m : ðA:2Þ

For a certain angle θi, equation (A.2) can be written as

∂Q θi,mð Þ
∂m =W θið Þ · ∂r θi,mð Þ

∂m
=W θið Þ × X θið ÞY θið ÞZ θið Þ½ � N×3Nð Þ,

ðA:3Þ

where WðθiÞ is the wavelet matrix corresponding to the
incidence angle θi, and
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seismic well logging curve, and the blue line indicates the inversion results.
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X θið Þ =

∂r θi, 1ð Þ
∂ ρfð Þ1

∂r θi, 1ð Þ
∂ ρfð Þ2

⋯ 0 0

0 ∂r θi, 2ð Þ
∂ ρfð Þ2

⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯
∂r θi,N − 1ð Þ
∂ ρfð ÞN−1

∂r θi,N − 1ð Þ
∂ ρfð ÞN

0 0 ⋯ 0 ∂r θi,Nð Þ
∂ ρfð ÞN

2
66666666666666664

3
77777777777777775

N×Nð Þ

,

ðA:4Þ

Y θið Þ =

∂r θi, 1ð Þ
∂μ1

∂r θi, 1ð Þ
∂μ2

⋯ 0 0

0 ∂r θi, 2ð Þ
∂μ2

⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯
∂r θi,N − 1ð Þ

∂μN−1

∂r θi,N − 1ð Þ
∂μN

0 0 ⋯ 0 ∂r θi,Nð Þ
∂μN

2
66666666666666664

3
77777777777777775

N×Nð Þ

,

ðA:5Þ

Z θið Þ =

∂r θi, 1ð Þ
∂ρ1

∂r θi, 1ð Þ
∂ρ2

⋯ 0 0

0 ∂r θi, 2ð Þ
∂ρ3

⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯
∂r θi,N − 1ð Þ

∂ρN−1

∂r θi,N − 1ð Þ
∂ρN

0 0 ⋯ 0 ∂r θi,Nð Þ
∂ρN

2
66666666666666664

3
77777777777777775

N×Nð Þ

,

ðA:6Þ
where rðθi, jÞ represents the reflection coefficient of jth
reflection interface when the incident angle is θi. Next, we
need to calculate the partial derivatives of the reflection coef-
ficient with respect to the target parameters on both sides of
the interface. Assuming that the target parameters on both
sides of the jth reflection interface are
ðρf Þ1 μ1 ρ1 ðρf Þ2 μ2 ρ2½ �. Then, we have

rPP θi, φi, jð Þ = 1
4 cos2θi

1 −
γ2dry
γ2sat

 !
2 ρfð Þ2 − ρfð Þ1

ρfð Þ2 + ρfð Þ1

� �

+ 1
4 cos2θi

γ2dry
γ2sat

− 2 sin2φi

 !
2 μ2 − μ1
μ2 + μ1

� �

+ 1
4 cos2θi

γ2dry
γ2sat

− 2 sin2φi −
1
2 tan2θi +

2 sin2θi
γ2sat

 !
2 ρ2 − ρ1
ρ2 + ρ1

� �

+ tan θi tan φi

1
γ2sat

1 − 1 + 1
γ2sat

� �
sin2θi

� �
2 μ2 − μ1
μ2 + μ1

� �2
+

sin2θi
γ2sat

2 μ2 − μ1
μ2 + μ1

� �
2 ρ2 − ρ1
ρ2 + ρ1

� �� �
−
1
4 2 ρ2 − ρ1

ρ2 + ρ1

� �2

8>>>><
>>>>:

9>>>>=
>>>>;
:

ðA:7Þ

Assuming that

R ρfð Þ = 2 ρfð Þ2 − ρfð Þ1
ρfð Þ2 + ρfð Þ1

, R μð Þ = 2 μ2 − μ1
μ2 + μ1

, R ρð Þ = 2 ρ2 − ρ1
ρ2 + ρ1

,

ðA:8Þ

A = 1
4 cos2θi

1 −
γ2dry
γ2sat

 !
, B = 1

4 cos2θi
γ2dry
γ2sat

− 2 sin2φi

 !
,

C = 1
4 cos2θi

γ2dry
γ2sat

− 2 sin2φi −
1
2 tan2θi +

2 sin2θi
γ2sat

 !
,

D = 1
γ2sat

1 − 1 + 1
γ2sat

� �
sin2θi

� �
, E = sin2θi

γ2sat
:

ðA:9Þ
Substituting equations (A.8) and (A.9) into equation

(A.7), the following expressions can be obtained:

rPP θi, φi, jð Þ = AR ρfð Þ + BR μð Þ + CR ρð Þ +

tan θi tan φi D R μð Þð Þ2 + E R μð ÞR ρð Þð Þ − 1
4 R ρð Þð Þ2


 �
,

ðA:10Þ

∂rPP θi, φi, jð Þ
∂ ρfð Þ1

= A
∂R ρfð Þ
∂ ρfð Þ1

, ∂rPP θi, φi, jð Þ
∂ ρfð Þ2

= A
∂R ρfð Þ
∂ ρfð Þ2

,

ðA:11Þ
∂rPP θi, φi, jð Þ

∂μ1
= B

∂R μð Þ
∂μ1

+ tan θi tan φi 2DR μð Þ ∂R μð Þ
∂μ1

+ ER ρð Þ ∂R μð Þ
∂μ1

� �
,

∂rPP θi, φi, jð Þ
∂μ2

= B
∂R μð Þ
∂μ2

+ tan θi tan φi 2DR μð Þ ∂R μð Þ
∂μ2

+ ER ρð Þ ∂R μð Þ
∂μ2

� �
,

ðA:12Þ
∂rPP θi, φi, jð Þ

∂ρ1
= C

∂R ρð Þ
∂ρ1

+ tan θi tan φi ER μð Þ ∂R ρð Þ
∂ρ1

−
1
2
∂R ρð Þ
∂ρ1

� �
,

∂rPP θi, φi, jð Þ
∂ρ2

= C
∂R ρð Þ
∂ρ2

+ tan θi tan φi ER μð Þ ∂R ρð Þ
∂ρ2

−
1
2
∂R ρð Þ
∂ρ2

� �
,

ðA:13Þ
where

∂R ρfð Þ
∂ ρfð Þ1

=! − 4 ρfð Þ2
ρfð Þ2+− ρfð Þ1

� 	2 , ∂R ρfð Þ
∂ ρfð Þ2

=!4 ρfð Þ1
ρfð Þ2 + ρfð Þ1

� 	2 ,
ðA:14Þ

∂R μð Þ
∂μ1

=! − 4 μ2
μ2 + μ1ð Þ2 ,

∂R μð Þ
∂μ2

=!4 μ1
μ2 + μ1ð Þ2 , ðA:15Þ

∂R ρð Þ
∂ρ1

=! − 4 ρ2
ρ2 + ρ1ð Þ2 ,

∂R ρð Þ
∂ρ2

=!4 ρ1
ρ2 + ρ1ð Þ2 : ðA:16Þ

Finally, extending equation (A.3) to the nth incidence
angles situation, the Jacobian matrix ∂QðmÞ/∂m will become
a ðn ×NÞ × 3N matrix.
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B. Derivation of ∂RðmÞ/∂m and ∂R2ðmÞ/∂m2:

The regularization term is equation (15) is given blow

R mð Þ = 2〠
N

i=1
ln 1 + m − μð ÞTΦi m − μð Þ
� �

: ðB:1Þ

The first partial derivative of the regularization term Rð
mÞ with respect to m can be written as [32]

∂R mð Þ
∂m = ∂R mð Þ

∂m1
⋯

∂R mð Þ
∂mj

⋯
∂R mð Þ
∂m3N

� �T
:

ðB:2Þ

Taking the derivative of RðmÞ with respect to mj where
j = 1, 2, 3,⋯3N , we have

∂R mð Þ
∂mj

= 2〠
N

i=1

1
1 + m − μð ÞTΦi m − μð Þ

 !
∂

∂mj
m − μð ÞTΦi m − μð Þ

� �

= 2〠
N

i=1

1
1 + m − μð ÞTΦi m − μð Þ

 !
∂

∂mj
〠
3N

l=1
〠
3N

n=1
ml − μlð Þ mn − μnð ÞΦi

ln

 !

= 2〠
3N

n=1
〠
N

i=1

2Φi
jn

1 + m − μð ÞTΦi m − μð Þ

 ! !
mn − μnð Þ

= 4〠
3N

n=1
Ujn mn − μnð Þ,

ðB:3Þ

where U jn =∑N
i=1ðΦi

jn/1 + ðm − μÞTΦiðm − μÞÞ.
Finally, the first partial derivative of the regularization

term RðmÞ with respect to m can be expressed in the matrix
form shown below

∂R mð Þ
∂m = 4Um: ðB:4Þ

The second partial derivative of the regularization term
RðmÞ with respect to m can be written as:

∂2R mð Þ
∂m2 =

∂2R mð Þ
∂m2

1
⋯

∂2R mð Þ
∂m1∂mk

⋯
∂2R mð Þ
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⋮ ⋱ ⋮ ⋱ ⋮
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⋮ ⋱ ⋮ ⋱ ⋮
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3N

2
666666666666664

3
777777777777775

:

ðB:5Þ

Taking the second partial derivative of RðmÞ with respect
tomjmk where j = 1, 2, 3,⋯3N and k = 1, 2, 3,⋯3N , we have

∂2R mð Þ
∂mjmk

= ∂
∂mk
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,

ðB:6Þ

where Φi
j and Φi

k represent the j and k rows of matrix Φi,
respectively.
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