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It is difficult to form a method for recognizing the degree of infiltration of a tunnel lining. To solve this problem, we propose
a recognition method by using a deep convolutional neural network. We carry out laboratory tests, prepare cement mortar
specimens with different saturation levels, simulate different degrees of infiltration of tunnel concrete linings, and establish
an infrared thermal image data set with different degrees of infiltration. Then, based on a deep learning method, the data
set is trained using the Faster R-CNN+ResNet101 network, and a recognition model is established. The experiments show
that the recognition model established by the deep learning method can be used to select cement mortar specimens with
different degrees of infiltration by using an accurately minimized rectangular outer frame. This model shows that the
classification recognition model for tunnel concrete lining infiltration established by the indoor experimental method has
high recognition accuracy.

1. Introduction

With the rapid development of China’s transportation indus-
try, it is estimated that the total operational mileage of rail
transit in China will reach 8565 km by the end of 2020, with
a significant portion of the rail being in underground or
above ground tunnels. However, during operation, many
tunnels have, in varying degrees, problems with leakage,
lining cracking, and voids [1]. In the field of geotechnical
engineering, many disasters are caused by water [2, 3], as
water not only reduces the stability of the tunnel lining struc-
ture which reduces the strength of the lining but also causes
traffic accidents due to slick surfaces (hydroplaning) and ice
on pavements [4]. Statistically, 28.4% of railway tunnels
and 30% of highway tunnels in China have serious water
leakage, and approximately 30% of urban subway tunnels
have water leakage damage. The issue of how to detect tunnel

leakage is a problem that China needs to address in the
coming decades.

At present, the main tunnel leakage detection method is
manual inspection. This is mainly based on the results of
visual observations, which are greatly influenced by human
factors and have problems of low efficiency and poor accu-
racy. Furthermore, because many water leakages are at the
top of the tunnel and the waist of the arch, examiners need
to stand on a lifting platform and cooperate with other
departments, which costs manpower and presents a safety
risk with traffic below [5, 6].

Distributed optical-fiber temperature sensor (DOFTS),
ground-penetrating radar (GPR), and infrared thermogra-
phy (IRT) are nondestructive testing methods that have been
used in geotechnical engineering in recent years [7–10]. By
monitoring whether the temperature field around a monitor-
ing point changes, DOFTS can be used to determine whether
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there is leakage around that point [11, 12]. However, this
result is only qualitative; the degree and area of leakage
cannot be obtained, and it is more difficult and costly to
arrange the optical fibers [13–15]. GPR is an electromagnetic
technology that uses antennas to transmit and receive high-
frequency electromagnetic waves in order to detect the char-
acteristics and distribution of underground structures [16].
When used for leakage detection, the presence and extent
of leakage in the tunnel lining can be judged by comparing
the signal reflection intensity in the radar spectrum [17].
However, it is suitable for a large amount of leakage behind
the lining, the detection efficiency of this method is low in
practical applications, and it cannot meet the requirements
of rapid leakage detection for cable tunnels [18]. As a fast,
quantitative, and nondestructive testing technology, IRT
has been widely used [19, 20]. In tunnel leakage detection,
the temperature difference observed in infrared images taken
of leakage and nonleakage areas is used to evaluate leakage
[21]. Asakura and Kojima used a vehicle-borne infrared cam-
era for preliminarily detection of water leakage from a tunnel
lining, which confirmed the feasibility of using IRT to detect
tunnel lining water leakage. However, the key problem of IRT
applied to tunnel detection is how to recognize objects in
images. Traditional image processing methods include image
preprocessing, image segmentation, feature extraction, object
recognition, and structural analysis [22], but it is difficult in
feature construction and feature selection and needs to be
combined with manual correction.

Recently, the use of complex deep learning (DL) models
has received significant attention [23]. DL is a method based
on representational learning of data in machine learning.
Unlike traditional machine learning, deep learning models
can construct complex advanced features from low-level fea-
tures, so as to automate the feature construction process of
current problems and effectively solve the problem of pro-
cessing of large amounts of detection data [24, 25]. At pres-
ent, in the field of civil disease detection, some research
based on deep learning has been carried out both in China
and internationally. Hoang et al. [26] established and com-
pared the performance of two intelligent approaches for
automatic recognition of pavement cracks. The first model
relies on edge detection approaches of the Sobel and Canny
algorithms; the second model is constructed by the imple-
mentation of the Convolution Neural Network (CNN).
Experimental results show that the model based on CNN
achieves a better prediction performance than the method
based on the edge detection algorithms. Kumar et al. [27]
point out the closed-circuit television (CCTV) has been com-
monly utilized for sewer pipe inspection, but such a process
requires a large amount of image preprocessing and the
design of a complex feature extractor for certain cases. The
feature extraction method uses preengineered features for
classifying images, leading to poor generalization capabilities.
For this problem, a method based on the deep convolutional
neural network is proposed to detect and classify defects
from CCTV inspections and achieves a better prediction per-
formance. Dung and Anhb [28] proposed a crack detection
method based on a deep fully convolutional network (FCN)
for semantic segmentation on concrete crack images, and

the FCN network achieves about 90% in average precision.
Cha and Choi [29] used a deep CNN to detect concrete
cracks. Under different conditions (such as strong spots,
shadows, and very thin cracks), the recognition rate reached
98%. Compared with traditional Canny and Sobel edge-
detection methods, their result demonstrated that the deep
learning method can better solve the problem of concrete
crack identification. Chen and Jahanshahi [30] proposed a
deep learning model based on a CNN and a naive Bayesian
data fusion scheme (called NB-CNN). The CNN was used
to detect concrete cracks in each video frame, and the naive
Bayesian decision effectively eliminated errors. This frame-
work achieved a 98.3% hit rate. Xue and Li [31] used a fully
convolutional network (FCN) model for classification. Com-
paring with a traditional method, the results show that the
model is very fast and efficient, allowing automatic intelligent
classification and detection of tunnel lining defects.

The method of tunnel diseases detection based on deep
learning is advantageous because of its automatic construc-
tion features, fast recognition speed, and high accuracy.
According to the Technical Specification of Maintenance for
Highway Tunnel JTG H12-2015, the tunnel leakage diseases
are divided into no leakage, infiltration, dripping, gushing,
and spraying water. At present, most research on the detec-
tion of tunnel leakage water diseases directly analyzes an
image of the scene, and the grey-white binary method is used
to detect the leakage and the leakage area. Quantitative detec-
tion of the degree of leakage (infiltration) in a tunnel lining
has not yet been reported. Therefore, this paper proposes
a recognition method to obtain infrared radiation charac-
teristics from concrete samples with different degrees of
saturation by indoor experiments. The recognition model
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Figure 1: Classification recognition method for tunnel lining
infiltration based on a deep learning method.
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is established using a deep learning method (Faster R-
CNN+ResNet101 network model), which shows the feasi-
bility and validity of the recognition method.

2. Recognition Theory and Model

2.1. Classification Recognition Method for Infiltration Degree
of Concrete Lining. There is a clear nonlinear relationship
between the radiation intensity of an infrared thermal image
and the degree of infiltration (i.e., saturation) of a tunnel
concrete lining. Furthermore, the infrared radiation is differ-
ent for different degrees of infiltration. In order to study this
relationship, the data set T = ðO, F, CÞ is composed of
infrared thermal images and infiltration degrees, in which
O = fo1, o2,⋯, ong is the set of collected infrared thermal
images and oi represents the infrared thermal image of a
certain infiltration degree; F = f f1, f2,⋯, f mg is a set of
characteristic matrices of infrared thermal images (such as
grayscale, geometric features, and texture features) and fk is
a characteristic matrix; and C = fc1, c2,⋯, cjg is the infiltra-
tion degrees of the concrete lining. The entire infiltration
interval is divided into j subintervals c1, c2,⋯⋯ , cj, where
cj = ½bj, bj+1Þ denotes the jth infiltration subinterval, i.e., the
infiltration degree. Thus, C = fc1, c2,⋯, cjg = f½0%, b2Þ,½b2,
b3Þ,⋯, ½bj, 100%�g covers all possible values of the degree
of infiltration for a tunnel concrete lining. This method of
expressing the saturation extent provides completeness and
feasibility for subsequent identification tasks.

In order to establish the recognition model, firstly, infra-
red thermal images of the tunnel lining under different infil-
tration degrees are collected, and then the features of the
infrared thermal images are automatically extracted using a
deep learning algorithm. The correlation between infrared
image radiation characteristics F and the infiltration degree

C is established, that is, the classification recognition of the
degree of tunnel lining infiltration based on infrared radia-
tion characteristics is realized (Figure 1). Using this model,
the infrared image of the unknown infiltration degree can
be acquired in real time and then inputted to recognize the
actual degree of infiltration in the tunnel lining. The degree
of infiltration of the tunnel lining can be recognized rapidly
and automatically, so the extent of infiltration damage in
the tunnel can be evaluated.
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Figure 2: Schematic of the Faster R-CNN algorithm [35].

Table 1: Network structure parameters [37].

Layer name Output size 101-layer

conv1 112 × 112 7 × 7, 64, stride 2

conv2_x 56 × 56

3 × 3 max pool, stride 2

1 × 1,64
3 × 3,64
1 × 1,256

2
664

3
775 × 4

conv3_x 28 × 28
1 × 1,128
3 × 3,128
1 × 1,512

2
664

3
775 × 3

conv4_x 14 × 14
1 × 1,256
3 × 3,256
1 × 1,1024

2
664

3
775 × 23

conv5_x 7 × 7
1 × 1,512
3 × 3,512
1 × 1,2048

2
664

3
775 × 3

— 1 × 1 Average pool, 1000-d fc, softmax
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2.2. Selection of Recognition Model Based on Deep Learning.
After Krizhevsky et al. proposed the AlexNet network recog-
nition model [32], deep learning in computer vision has been
widely used in image classification, object detection, image
segmentation, image question and answer, image descrip-
tion, image generation, and other fields. The classification
and recognition of the degree of infiltration of tunnel con-
crete lining belong to the problem of object detection in the
field of computer vision, so this paper uses the image detec-
tion network model to study the classification of the degree
of infiltration of tunnel concrete lining.

At present, image detection algorithms can be divided
into two categories: (1) two-stage detection algorithms,
which divide the detection problem into two stages, and
(2) one-stage detection algorithms, which directly generate
the class probability and position coordinate values of objects
in a single stage. In two-stage detection algorithms, first,
region proposals are generated and then classified (generally,
location refinement is also needed). Prototypical two-stage
detection algorithms are those in the R-CNN series, such as
R-CNN, Fast R-CNN, and Faster R-CNN [33–35] In con-
trast, one-stage detection algorithms do not need to generate
region proposals. Typical one-stage detection algorithms are
YOLO and SSD [36, 37]. Generally speaking, two-stage
algorithms are more accurate, regardless of the cost of time
and space, while one-stage algorithms are quicker if the
time cost (speed) and space cost (memory consumption)
are considered.

Because this paper is a preliminary study, the accuracy of
detection is the first consideration, and the second is the
detection speed and space. Moreover, in the tunnel field
detection, it is not necessary to obtain the results in real time,
so infrared images can be collected first and then processed;
this study chose a two-stage detection algorithm (one-stage
detection algorithms have poor ability to detect small targets,
which is not conducive to future extended applications).
Compared with the previous model, in the R-CNN series,
Faster R-CNN shares convolution layer computing (Figure 2)
in feature extraction. It integrates the Region Proposal Network
(RPN) layer, which replaces the off-line Selective Search (SS)
module, greatly reducing the time consumed by image recogni-
tion and eliminating the performance bottleneck. Additionally,
Faster R-CNN implements an end-to-end training mode.

In the development of a network model, researchers gen-
erally believe that the deeper the network layers are, the more
abstract the extracted features are, and the more semantic
information they have, therefore the higher the accuracy is.
However, with the deepening of the network, the accuracy
of the training set decreases. In order to solve this problem,
He et al. proposed the residual network [37] and achieved
3.57% top-5 error in the ImageNet challenge in 2015. It
differs from the ordinary network in that it adds a shortcut
connection, that is, the identity, so that the deep network
can learn the characteristics faster and more easily. In order
to ensure the detection accuracy and speed of the model,
the Faster R-CNN+ResNet101 network model was applied
after comparing the performance results of various tests
(Table 1). The development framework adopts the Tensor-
Flow open-source framework developed by Google.

3. Acquisition and Establishment of Image
Data Set

The establishment of the image data set is the first step of
deep learning recognition and plays an important role in
model construction. A sufficient image data set can improve
the abstract expression ability of the network model and can
increase the robustness of the network model to the data and
avoid overfitting of the model [38].

3.1. Acquisition of Image Data Set. As cement mortar mate-
rial is similar to tunnel concrete lining material and has sim-
ilar infrared radiation emissivity, the degree of infiltration of
the tunnel lining was simulated by preparing several cement
mortar material samples with different saturation levels.
Acquisition of the image data set involved three laboratory
tests: the preparation of cement mortar test, the preparation
of cement mortar with different saturation levels, and the
infrared image acquisition test.

3.1.1. Cement Mortar Specimen Preparation Test. In order to
best simulate the surface of the tunnel concrete lining, for the
cement mortar, the proportion of cement to sand to water
was set to 1 : 3.19 : 0.6 by weight. The preparation steps were
as follows: (1) mixing the cement mortar evenly according
to their weight ratios and (2) putting the mixed mortar into

(a) (b) (c)

Figure 3: Experimental apparatus used for preparing cement mortar with different saturation levels [39]: (a) intelligent testing system for
gaseous water adsorption in deep soft rock, (b) electronic thermostat water tank, and (c) vacuum dryer.
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the mold and curing it in the concrete steaming room for 28
days. A total of 36 specimens were made. The specimen size
was 50mm × 50mm × 100mm.

3.1.2. Preparation of Cement Mortar Specimens with Different
Saturation Levels. Considering the practical application value
of tunnel infiltration detection, this paper divides the degree
of tunnel infiltration into four levels: dry, semidry, semiwet,
and wet, with corresponding saturation levels of 0–5%, 5–
60%, 60–90%, and 90–100%, respectively. The 36 specimens
were divided into nine groups, with four pieces in each group
numbered 1, 2, 3, and 4 corresponding, respectively, to the
four saturation levels.

0.7 mCement mortar

Infrared thermal imager

Data acquisition system

Figure 4: Experimental data acquisition system.

Table 2: Basic parameters of the test specimens.

Number Drying quality (g) Water absorption saturation quality (g) Saturation level Infiltration grade

1-1 514.424 — 0–5% I

2-1 533.368 — 0–5% I

3-1 536.833 — 0–5% I

4-1 513.586 — 0–5% I

5-1 534.459 — 0–5% I

6-1 542.426 — 0–5% I

7-1 526.534 — 0–5% I

8-1 536.968 — 0–5% I

9-1 524.976 — 0–5% I

1-2 529.505 547.120 5–60% II

2-2 525.301 545.897 5–60% II

3-2 525.557 540.370 5–60% II

4-2 533.567 553.662 5–60% II

5-2 528.987 550.585 5–60% II

6-2 520.216 540.605 5–60% II

7-2 520.430 549.472 5–60% II

8-2 530.086 553.582 5–60% II

9-2 530.908 546.355 5–60% II

1-3 523.689 542.812 60–90% III

2-3 525.185 546.614 60–90% III

3-3 531.568 551.746 60–90% III

4-3 539.650 556.819 60–90% III

5-3 524.943 545.367 60–90% III

6-3 528.336 544.083 60–90% III

7-3 530.226 549.134 60–90% III

8-3 518.906 546.037 60–90% III

9-3 538.814 555.327 60–90% III

1-4 521.106 537.791 90–100% IV

2-4 534.918 550.490 90–100% IV

3-4 529.659 548.435 90–100% IV

4-4 534.13 549.292 90–100% IV

5-4 522.448 548.176 90–100% IV

6-4 528.006 543.724 90–100% IV

7-4 523.593 540.253 90–100% IV

8-4 525.378 543.457 90–100% IV

9-4 518.532 543.386 90–100% IV
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The cement mortar specimens with different saturation
levels were prepared in three steps. (1) The cement mortar
test pieces were placed in the vacuum drying box
(Figure 3(a) State Key Laboratory of Deep Geotechnical
Mechanics and Underground Engineering, Beijing, China)
for 24h. They were then taken out to be weighed on the bal-
ance, with the weight recorded after the sample’s temperature
was sustained at room temperature (22°C) for 12h. The No. 1
sample of each group was placed into the sealing bag. (2)
Sample nos. 2, 3, and 4 were placed into a water tank
(Figure 3(b) Keheng Instrument Equipment Co., Ltd., Shang-
hai, China) boiling at an electronically controlled constant
temperature for 8 h so as to reach a state of saturation, taken
out after the test piece cooled, and weighed on a balance after
the free water on the surface disappeared. Sample no. 4 from
each group was placed into a sealed bag. (3) The remaining
samples, sample nos. 2 and 3, were placed into the gaseous
water adsorption intelligent test system for deep soft rock
(Figure 3(c) State Key Laboratory of Deep Geotechnical
Mechanics and Underground Engineering, Beijing, China).
An evaporation experiment was conducted to prepare sam-
ples with saturation levels of 5–60% and 60–90%, and then
the samples were placed into a sealed bag (Table 2).

3.1.3. Infrared Image Acquisition Experiment. Tau 640, an
uncooled long-wave infrared thermal imager manufactured
by FLIR of the United States, was used to collect infrared
thermal images. It contains a highly sensitive microthermal
infrared sensor. With 17μm vanadium-oxide focal plane
array pixels, high-definition infrared thermal images can be
generated. In order to improve the infrared image acquisi-
tion, four specimens were collected in groups during the
acquisition process (nine groups in total). Images of the
front, back, left, right, top, and bottom sides of the specimens
were collected twice on each side with a time interval of 30 s
(twelve infrared images were collected for each group, 108
infrared images collected). In order to improve the generali-

zation ability of the data, one each of the no. 1, 2, 3, and 4
specimens were randomly selected from the 36 total speci-
mens and reassembled into a group to collect their infrared
images, totaling three groups (collect 36 infrared images). A
total of 144 infrared images were collected over the whole
experiment. The image size is 964 × 632 pixels. The experi-
mental acquisition system is shown in Figure 4.

3.2. Specimen Labelling. After the 144 images collected in the
experiment were screened to remove some unclear images
which may be because the infrared camera does not focus
well, 121 infrared images remained. Due to the use of the
supervised learning method for model training, it was neces-
sary to label the images to determine the target content of the
model images. Labellmg was used to set image labels; 0–5%
was labelled as I, 5–60% as II, 60–90% as III, and 90–100%
as IV, representing dry, semidry, semiwet, and wet infiltra-
tion degrees, respectively (Figure 5). Before deep network
training input, each image was cut into four pictures accord-
ing to different annotated rectangular frames to form a total
of 484 image sample data sets. As the sample data sets were
small, they were divided according to the approximate pro-
portions of the training set to the verification set 7 : 3, form-
ing 339 images in the training set and 145 images in the
verification set.

4. Training and Effectiveness of the Recognition
Model Based on Deep Learning

4.1. Training Process. The training phase is an important pro-
cess for automatically determining the weight parameters of
the deep convolution network model. An Intel(R) Xeon(R)
Bronze 3104 @ 1.70GHz, 6-core 12-thread processor, with
32GB RAM and three NVIDIA GEFORCE GTX 2080TI
GPUs, was used for this training. Firstly, the training set data
is input into the deep learning network model and stops after
300,000 iterations. The whole process takes 22 hours (using

Annotation frame

0~5%

Label: I Label: II Label: III Label: IV

5~60% 60~90% 90~100%

Figure 5: Saturation levels for different infiltration degrees and their corresponding labels.
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one GTX 2080TI), and the learning rate was set to 0.0003.
Loss function can be used to show the difference between
the predicted value and the actual data. The crossentropy loss
function was selected during the training, with the results
presented in Figure 6. Figure 6(a) presents the bounding
box classification loss. This mainly judges the accuracy of
the target categories (I, II, III, and IV) of the extraction area.
The smaller the value, the higher the recognition accuracy. It
can be seen from Figure 6(a) that the convergence rate is
approximately 50,000 steps and the classification loss is

approximately 0.0707. Figure 6(b) presents the bounding
box localization loss, which mainly judges the accuracy of
the minimized rectangular outer frame in the picture. The
smaller the value, the more accurate the box selection target
is. From Figure 6(b), it can be seen that approximately
100,000 steps were required for convergence, and the locali-
zation loss is approximately 0.4018. Figure 6(c) shows the
total loss function, which is the sum of all the loss functions,
with convergence achieved after approximately 200,000
steps, with a total loss of approximately 0.6129. At the same
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Figure 6: Loss functions: (a) classification loss, (b) localization loss, and (c) total loss.
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time, in order to effectively control the influence of gradient
explosion and gradient disappearance in the training process,
a gradient threshold was set in the training process so that the
final total loss function can be reduced to satisfactory results.

4.2. Analysis of Model Effectiveness

4.2.1. Detection Accuracy. Detection accuracy is the critical
index used to measure the quality of trained models. In order
to evaluate the trained model, the verification set data (145
infrared images) were used to detect the model, and the test
results were analyzed. The specific test results are shown in
Figure 7, where I, II, III, and IV indicate infiltration degree,
and 99% is the recognition accuracy on the condition that
intersection over union (IoU) equals 0.5 (IoU is the result
of dividing the overlapping part of two regions by the set part
of two regions). It can be seen that the shapes and outlines of
the specimens are all accurately selected by accurately mini-
mized rectangular outer frames, and the infiltration degrees
of the different specimens are also accurately calibrated.
The detection accuracy is evaluated in terms of the mean
average precision (mAP, P stands for precision accuracy,
AP is the average accuracy rate of a single category label
which is the average of the maximum accuracy rate in each
recall rate, and mAP represents the average accuracy rate of
all class labels.) with IoU thresholds of IoU = 0:5, IoU =
0:75, and IoU = 0:5 : 0:95, which have values of 0.99, 0.99,
and 0.95, respectively. Thus, the recognition effectiveness is
very good, which shows that the recognition method for clas-
sification of the degree of tunnel concrete infiltration based

on deep learning is feasible, and the recognition accuracy is
high.

4.2.2. Detection Speed. Another important performance
index is the detection speed, and the speed of model detection
is key to detection in real time. The time required to process a
picture is often used to evaluate the detection speed. Here,
during model testing, the annotation of the bounding box
takes 270ms, and classification of the results takes 50ms, giv-
ing a total time of 320ms, and the recognition speed is faster.
It should be noted that the total detection time is based on the
computer configuration mentioned earlier and may vary for
different processor specifications.

4.2.3. Robustness Analysis. Robustness refers to how the con-
trol system maintains some level of performance under cer-
tain parameter perturbations (e.g., in structure or size). In
deep learning, robustness is often used to assess the quality
of the trained model. In this test, the robustness of the trained
model was tested using transformations of the original data
set image. Through the test results, it was found that the
model can learn the geometric features, texture features,
and local features (such as distortion, extrusion, size, and
edge transformation) and has strong adaptability (see
Figures 8(a)–8(d)).

4.2.4. Model Comparison. Different CNN network models
based on Faster R-CNN were selected for comparison, and
the results are shown in Table 3. The results demonstrate that
the difference between mAPs for IoU = 0:5 and IoU = 0:75 of
the two models is the same, while the difference between

(a) (b)

(c) (d)

Figure 7: Model test results.
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mAPs for IoU = 0:5 : 0:95 is large. This shows that Faster R-
CNN+Resnet101 is more accurate in location and detection
than the another model. The detection speed of Faster R-
CNN+Resnet101 has been significantly improved. The time
to recognize a single image is 320ms, which is much lower
than the Faster R-CNN+Inception2 network model. In sum-
mary, the Faster R-CNN+Resnet101 network model selected
in this paper performs better when considering detection
accuracy and speed.

5. Discussion

In this paper, a classification recognition method for the
degree of tunnel lining infiltration was established via labora-
tory experiments. The recognition model was used to identify
cement mortar specimens with different degrees of infiltra-
tion, and the results are good, which show that the method
is effective. However, there are some problems in this study.
It should be noted that, although the experimental method
can ensure the quality of the training data set, the laboratory
environment is relatively isolated and the test conditions are
relatively stable, which is quite different from the complex
environment of a tunnel site. In a tunnel, wind, light, and lin-

ing roughness will affect the acquisition of the infrared image.
Therefore, it is necessary to further develop the recognition
model based on complex laboratory environment including
wind, environment temperature, lining roughness, and so
on. In the field of tunnel detection, people are more con-
cerned about the leakage of the tunnel rather than the infil-
tration grade of the tunnel, so we may apply it to the
determination of the water content of rock in the geotechni-
cal field. The strength of the rock is closely related to its water
content; many geological disasters are caused by water. In
engineering, engineers often want to know its water content
to judge the strength of the rock, so we apply this method
to it which may be more significant.

6. Conclusion

In this paper, cement mortar specimens with different levels
of saturation were made to simulate different degrees of infil-
tration of tunnel concrete lining via laboratory experiments,
and a data set of infrared thermal images with different
degrees of infiltration was established. Finally, based on a
deep learning method, the Faster R-CNN+ResNet101 net-
work was used to train the data set, the recognition model

Table 3: Network model performance.

Model name mAP (IoU = 0:5) mAP (IoU = 0:75) mAP (IoU = 0:5 : 0:95) Speed (ms) Outputs

Faster R-CNN+Inception2 0.99 0.99 0.93 740 Boxes

Faster R-CNN+Resnet101 0.99 0.99 0.95 320 Boxes

(a) (b)

(c) (d)

Figure 8: Model robustness tests via (a) twist, (b) extrusion, (c) wavy edge, and (d) size transformations.
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was established, and its effectiveness was tested. The follow-
ing conclusions were obtained.

(i) The recognition model established using the deep
learning method displayed good recognition ability
for cement mortar specimens with different degrees
of infiltration. The specimens with different infiltra-
tion extents were selected by accurately minimized
rectangular outer frames. The mean average preci-
sions for intersection over union (IoU) thresholds
of IoU = 0:5, IoU = 0:75, and IoU = 0:5 : 0:95 were
1, 1, and 0.948, respectively. The classification recog-
nition method for infiltration of tunnel concrete
lining is thus shown to be feasible and accurate

(ii) The recognition model detects a single picture in
320ms (processed on an RTX 2080TI card). With
an improved processor configuration, it is possible
to realize on-site real-time detection

(iii) The recognition model can learn geometric features,
texture features, and local features (such as distor-
tion, extrusion, size, and edge transformation) of
the image and has strong adaptability. However, it
is sensitive and has poor adaptability to image color
features (such as brightness and contrast). Further
work should consider increasing the diversity of
the image data, as well as changing the annotation
methods and forms, in order to improve the robust-
ness and adaptability of the recognition model to the
environment

(iv) Faster R-CNN+Resnet101 models have significant
advantages over Faster R-CNN+Inception2, with
significant improvements in detection accuracy and
speed

Data Availability
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can access the data supporting the conclusions of this study.
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