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Monitoring and early-warning are critical for the prevention and controlling of rock burst in deep coal mining. In this study, rock
burst risk assessment criterion was built based on the correlativity between seismic velocity and stress state in coal and rock body.
Passive seismic velocity tomography using mining-induced seismic waves was conducted regularly and continuously. The evolution
of rock burst risk and range in front of a deep longwall panel with folds and adjoining goaf was determined. The influence of
pressure-relief measures on rock burst risk was analyzed. The study results indicate that burst risk level and range during panel
retreating increase first and then decrease, the peak is reached when it is located at 1# syncline shaft area. When approaching
the crossheading, high burst risk zones distribute along the crossheading and further intersect with those in 1# syncline shaft
area. Burst risk zones in the inclination of panel show distinct zoning features. Tomography results are in good agreement with
the drilling bit result, rock burst occurrence, microseismic activity, and working resistance of hydraulic supports. Pressure-relief
measures and mining layout have a distinct influence on burst risk of longwall panel. For prevention and controlling of rock
burst risk in deep coal mining, pressure-relief measures should be optimized based on passive tomography results.

1. Introduction

Due to long-term exploitation, coal resources at shallow
depths are gradually exhausted, and mining depth of coal is
continually increasing. Mining depth in overseas including
Poland, Germany, Britain, Japan, and France had already
exceeded 1000m as early as in the 1980s, and now, it has
reached 1500m [1, 2]. Currently, 47 coal mines in China
have exceeded 1000m [3]. With mining depth increasing,
the stress state of surrounding rock is continuously deterio-
rating and rock burst occurs more frequently [4, 5].

Various rock burst mechanisms have been put forward by
different methods [6–9]. A universally acknowledged view-
point is that rock burst is caused by the superposition of
dynamic and static stress, as shown in Figure 1. The “contribu-

tion rate” of static load and dynamic load for rock burst risk
varied with mining depth. Due to high static stress in deep
mining, a slight dynamic load increment caused by mining-
induced tremor can make superimposed stress exceed the crit-
ical value and even lead to a rock burst. Predictionmethods for
stress field and rock burst risk in deep buried uncertain envi-
ronments should be further investigated in the future [10].

Seismic velocity tomography, a new geophysical explora-
tion method inferring the wave propagation velocity through
structures, has been a novel measurement method for stress
redistribution in underground coal mining. Superior to pre-
vious methods such as drilling bits [11], pressure sensor
[12, 13], electromagnetic emission [14], and acoustic emis-
sion [15], seismic velocity tomography can provide compre-
hensive and continuous stress redistribution by imaging the
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seismic wave velocity in coal and rock body. Regarding seis-
mic sources, this method can be classified into two types, that
is, active velocity tomography and passive velocity tomogra-
phy [16, 17]. Active velocity tomography has been conducted
in geological structure and stress field detection and achieved
good results [18–22]. However, due to extra labor and eco-
nomic cost, the application of active velocity tomography is
limited to some extent. Alternatively, passive seismic velocity
tomography can rapidly and continuously present the stress
redistribution during coal mining by using mining-induced
seismicity as the sources seismic wave [23–27]. Passive seismic
velocity tomography in existing literatures was mainly used to
represent stress redistribution. The relationship between wave
velocity change and rock burst risk was rarely inferred.

In this study, a quantitative assessment criterion for rock
burst risk was established based on the relation between
stress and wave velocity [28–31]. Rock burst risk and range
of a deep longwall panel with folds and adjoining goaf were
determined continuously and visually based on passive seis-
mic velocity tomography. Moreover, the influence of
pressure-relief measures on rock burst risk was analyzed
based on tomography results.

2. Theory of Passive Seismic Velocity
Tomography for Rock Burst Risk

During the transmission of seismic wave, P-wave is first
monitored as it travels faster [23]. P-wave velocity variation
with stress under different loading schemes has been con-
ducted in laboratory [28], and it indicates the positive corre-
lation between stress and P-wave velocity. P-wave velocity
can reflect stress state and burst risk of rock and coal mass.

A 3D mesh network of mining area is necessary for pas-
sive seismic velocity tomography, and mining area is divided
into voxels in x, y, and z directions [25, 31]. During the prop-
agation, seismic rays will pass through voxels along the ray
path from seismic source to sensors.

Suppose the ray path of the ith seismic wave is Li and the
travel time is Ti, then, the travel time of ith seismic wave
from the source to the sensor is the integral of the slowness

S (or the inverse of velocity), which can be expressed by Eq.
(1)–Eq. (3) [31–33].

V = L
T

→ VT = L, ð1Þ

T =
ðLi
0

dL
V X, Y , Zð Þ =

ðLi
0
S X, Y , Zð ÞdL, ð2Þ

Ti = 〠
M

j=1
dijSj i = 1, 2, 3∙∙∙∙∙∙∙∙Nð Þ, ð3Þ

where VðX, Y , ZÞ is the velocity (m/s), Li is the ray path of the
ith seismic wave (m), Ti is the travel time (s), SðX, Y , ZÞ is the
slowness (s/m), dij is the distance of the ith ray in the jth voxel,
N is the total number of rays, and M is the number of voxels.

Generally, seismic event location and ray path are calcu-
lated using an initial velocity model [31]. Due to the
unknown velocity, distance, and time in an individual voxel,
thus, matrices expressed by Eq. (4) can be built with the voxel
slowness, distance, and time. Then, the velocity can be deter-
mined by the following matrix [33].

T =DS→ S =D−1T , ð4Þ

where T is the travel time per ray matrix (1 ×N), D is the dis-
tance per ray per voxel matrix (N ×M), and P is the slowness
per grid cell matrix (1 ×M).

Eventually, the key problem of seismic velocity tomogra-
phy is to solve the slowness vector S. The most effective way
to solve this problem is through an iterative process, and the
simultaneous iterative reconstructive technique (SIRT) [16,
29, 34] is the famous and effective one, which is adopted in
the paper.

Velocity of each voxel can be determined by seismic
velocity tomography introduced above. The relationship
between seismic velocity anomaly and stress coefficient was
given in [30, 31]. In deep coal mining, burst risk is primarily
dominated by static stress. Accordingly, an assessment
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Figure 1: Superimposed stress of static and dynamic stress-inducing rock burst.
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criterion for burst risk in Table 1 is built. Velocity anomaly
An is determined by

An =
Vp − Va

p

Va
p

: ð5Þ

Where Vp is P-wave velocity in certain voxel, and Va
p is

the average velocity of the model. It should be noted that
the zones with positive anomaly and negative anomaly are
overstressed and pressure-relieved, respectively [31]. In this
paper, the mining area was classified as None, Weak, Middle,
and Strong burst risk zones according to rock burst risk
assessment criterion in Table 1.

3. Site Characteristics of Selected
Longwall Panel

3.1. Geological Conditions. Panel 204 is the fourth fully mecha-
nized caving longwall face in No.2 mining district in a deep coal
mine in Shaanxi province, China. The coal mine is seriously
threatened by rock burst. Panel 204 is 1455m long in strike
and 200mwide in inclination, as shown in Figure 2(b). No.4 coal
seam, as the single minable seam, has a thickness of 5.9–15.0m
and maximum depth over 1000m. The coal seam elevation is
+72m–+147m. Panel 204 was in production in October 2018
and paused from October 2018 to April 2019 due to mine water
problem. It was in reproduction inMay 2019 and stopped in Feb-
ruary 2020 with 850m advancement. There exist two synclines
(named 1# and 2#) and an anticline. 1# and 2# synclines are
nearly perpendicular and parallel with the strike of panel 204,
respectively. The anticline is 45° oblique with the strike of panel.

There are two inferior key strata and one main key stra-
tum above coal seam, as shown in Figure 2(c). The thickness
of key strata is 21.1m, 54.0m, and 101.3m, and the distance
to coal seam is 13.4m, 139.1m, and 193.1m, respectively.

No.4 coal seam is of strong burst propensity, and the rock
strata in the floor and roof are both of weak burst propensity.
The maximum principal stress reaches 38.2-44.8MPa, and
the average uniaxial compressive strength of coal is
19.3MPa; hence, the stress concentration coefficient is 1.98-
2.32, which indicates its high burst risk [35].

3.2. Microseismic Data Acquisition and Processing. A micro-
seismic monitoring system called “SOS,” manufactured by
Central Mining Institute of Poland, was installed in the coal
mine, and the maximum locating errors are 20m in horizon-
tal direction and 30m in vertical direction, respectively. Seis-

mic monitoring network in July 2019 is shown in Figure 3.
The system has been optimized three times during the panel
204 retreating to ensure the monitoring accuracy. During
April 2019 to March 2020, over 3800 mining-induced
tremors in No.2 mining district were recorded by SOS. The
first arrival time of P-wave in each sensor was calibrated
manually till the error between the calculated and theoretical
values is less than 20ms. Some typical tremors in panel 204
are illustrated in Figure 4(b). Seismic wave attenuates by
power function as Eq. (6). Seismic waves with higher energy
attenuate slower and travel farther, which is consistent with
previous studies [36, 37]. Consequently, the quantity and
accuracy of microseismic events can satisfy the tomography.

V0 Lð Þ =V0,maxL
−λ: ð6Þ

Where L is the distance between tremor and sensor,
V0,max and V0ðLÞ are the particle velocity at tremor and sen-
sor, respectively, and λ is the attenuation coefficient.

3.3. Inversion Parameters. Tomography area is 2200m long,
2560m wide, and 360m high, which is divided into voxels
by 20m in x and y directions and 30m in z direction, respec-
tively, as shown in Figure 3. More ray paths enable a higher
accuracy in the computation [38]. Thus, only tremors
recorded by more than six sensors are considered as seismic
sources, and the voxels with more than 10 rays are considered
reliable. To improve the efficiency and accuracy of inversion
and source locating, SIRT was adopted to recalculate the seis-
mic location, and the slowness in each voxel along the seismic
rays was modified by iteration till the threshold value was
reached. To start the first iteration and reduce indeterminacy,
P-wave initial velocity its range was assumed 4.48 km/s and
3.5 km/s-6.5 km/s, respectively, which was obtained from
the P-velocity data in Figure 5.

4. Passive Seismic Velocity Tomography Results

4.1. Rock Burst Risk Evolution with Longwall Panel
Retreating. Passive seismic velocity tomography in the mining
area was carried out regularly with 2 times per month since
May 2019. Thereinto, 8 tomography results of panel 204 are
illustrated in Figure 6. Mining-induced tremors in the follow-
ing one month or half one month are plotted simultaneously
to verify the burst risk zones highlighted by tomography. In
Figure 6, the velocity anomaly (An) in green, yellow, and red
area is 0.05-0.15, 0.15-0.25, and >0.25, and the corresponding
burst risk is weak, middle, and strong, respectively, based on
the rock burst risk criterion given in Table 1.

Notably, panel 205 was in production since November
2019, and tremors were induced in the goaf of panel 204 and
abutment area ahead of panel 205, which would bring about
seismic rays and high burst risk zones across the goaf. The dis-
tance between panels 204 and 205 always exceeds 700m.
Hence, the extraction of panel 205 will not interfere with this
study. To illustrate burst risk in front of panel 204 clearly,
burst risk zones in the goaf were eliminated artificially.

As clearly shown in Figure 6, the general evolution of
rock burst risk and range in front of the face line is closely

Table 1: Relation between positive velocity anomalies and rock
burst risk level.

Rock burst risk
index

Rock burst risk
level

Positive velocity anomaly,
An/%

0 None <5
1 Weak 5-15

2 Middle 15-25

3 Strong >25
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related to the retreating of panel 204. High burst risk zone
scale ahead of the face line in the strike, including middle
and strong burst risk zones, is illustrated in Figure 7. Due
to increasingly broadened goaf behind panel 204, goaf of
panel 203, and the folds, high burst risk zone scale in front
of face line first increases from 60m, reaches the peak of
410m, and then decreases to 80m gradually. The peak is
reached when panel located in 1# syncline shaft area in Octo-
ber 2019 (as shown in Figure 6(e)). Burst risk is the highest at
that time as well. When the face line is close to the crosshead-
ing, high burst risk zones distribute along the crossheading
and further intersect with the burst risk zones in 1# syncline
area, which indicates the high stress level of the zones adja-
cent to the crossheading.

In terms of high burst risk along the inclination of panel
204, the range of burst risk zones on the ventilation roadway

side is always larger than that on the haulage roadway side.
However, the evolution of high burst risk shows distinct zon-
ing features. Hence, the mining process of panel 204 can be
divided into 3 phases along the strike, as shown in Figure 8.

(i) Phase 1. May 2019-July 2019, during this period, high
burst risk zones (zone 1) are mainly lying beside the
haulage roadway, as shown in Figures 6(a) and 6(b),
which could be caused by the tectonic stress of 2#
syncline and the coal seam dip angle change

(ii) Phase 2. August 2019-December 2019, in this phase,
high burst risk zones (zone 2 and 3) are mainly lying
beside the ventilation roadway and the vicinity of the
cross heading and 1# syncline shaft beside the haulage
roadway, respectively, as seen in Figures 6(c)–6(f).

Panel 205

Goaf of panel 203

Goaf of panel 201

+80+100+120+140
+80

+100

+120

+140

+160

27–2

Goaf of panel 202

200 m May, 2019-February, 2020

Haulage roadway

Ventilation roadway

Anticline sha�2# syncline sha�

N

Beijing 

Study area 

(a) (c)

(b)

Shaanxi
Province 

Lithology

54.0Coarse sandstone
Medium sandstone

21.1Coarse sandstone

4# coal seam 14.4

Remarks

854.4

101.3 800.4

980.1

1007.9

Inferior key strata
Main key strata

Inferior key strata

104.6 m

13.4 m

Depth/m�ickness/m

Panel 204

1# syncline sha�

Figure 2: Mining conditions. (a) Location of coal mine. (b) Layout of panel 204. (c) Stratigraphic column of bore 27-2.
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Zone 2 could be caused by the tectonic stress of 1#
syncline, side abutment stress of panel 203 goaf, and
the abutment stress of crossheading. Zone 3 could
be caused by the tectonic stress of 1# syncline and
the abutment stress of crossheading

(iii) Phase 3. January 2020-March 2020, as for this phase,
high burst risk zones (zone 4) are mainly lying
beside the haulage roadway, as seen in Figures 6(g)
and 6(h), which could be caused by the tectonic
stress of the anticline and coal seam dip angle change

Moreover, the distribution ofmining-induced tremors over
1E4 J in the following mining period (one month or half one
month after tomography) are well corresponding to high burst
risk zones determined by the previous tomography above.

4.2. Validation of Tomography Results

4.2.1. Drilling Bits. Tomography results on 30 April 2019
(Figure 6(a)) indicate that burst risk zones along the ventila-

tion roadway are mainly located at 95m-255m and 340m-
560m in front of the face line. Particularly, strong burst risk
zones are about 200m away from the face line.

Total 16 drilling bits boreholes with 10m in depth and
42mm in diameter were drilled in 15m-255m in front of face
line in ventilation roadway on 1-2 May 2019. Pulverized coal
results are illustrated in Figure 9(b). High pulverized zones
are lying in 110m-170m and 180m-230m ahead of face line,
respectively. The peak is located at 210m ahead of the face
line. Drilling bits results are well corresponding to burst risk
zones in Figure 6(a).

4.2.2. Rock Burst Occurrence. A rock burst occurred in 20m-
140m on 21 September 2019, and meanwhile, a tremor of 4:6
× 105 J was recorded at 18m in front of the face line on the
haulage roadway side, as shown in Figure 10. The floor of haul-
age roadway heaves for 1.5m in average and the cross-section of
roadway shrinks sharply, which leads to a 4 days shutdown of
panel 204. Furthermore, the tremor is at the intersection
between weak and middle risk zones, and rock burst areas are
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in the middle and strong burst risk zones determined by the
tomography on 15 September 2019. The typical rock burst area
matches well with the tomography result.

4.2.3. Microseismic Activity. According to Figure 6 in Section
4.1, mining-induced tremors over 1E4 J in the following
period are well corresponding to the former tomography
results. Moreover, microseismic activity of panel 204 from
May 2019 to March 2020 is depicted in Figure 11. And it
gradually increases since panel 204 is in reproduction,
reaches the peak in October 2019, and then decreases rapidly.

In October 2019, panel 204 is retreated in 1# syncline shaft
area. Microseismic activity is well consistent with rock burst
risk evolution in time sequence.

4.2.4. Working Resistance of Hydraulic Supports. Working
resistance contour of hydraulic supports in panel 204 is
shown in Figure 12. It should be noted that panel 204
was out of working from 21 January 2020 to 3 February
2020. The working resistance of hydraulic supports, on
the whole, is increasing gradually and decreasing subse-
quently along the strike direction, which is similar to the
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microseism activity in Figure 11. In addition, from May to
June 2019, high working resistance zones are mainly
located on the haulage roadway side, and it is identical to
the high burst risk zones in Figures 6(a) and 6(b). From
September to November 2019, high working resistance
zones are mainly distributed on the ventilation roadway
side, and it is identical to the high burst risk zones in
Figures 6(c)–6(f). From January to March 2020, high work-
ing resistance zones are mainly on the haulage roadway
side, which is identical to the high burst risk zones in
Figures 6(g) and 6(h).

In summary, the field drilling bit results, rock burst
occurrence, microseism activity, and working resistance of
hydraulic supports are well identical to the tomography
results, which indicate the feasibility and accuracy of passive
seismic velocity tomography for rock burst risk.

4.3. Influence of Pressure-Relief Measures on Rock Burst Risk.
Zones in 0m-250m ahead of panel 204 were intensified
pressure-relieved with deep presplitting blasting, coal blast-
ing in coal wall and floor since rock burst occurrence on 21
September 2019. In November 2019, panel 204 was extracted
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in the intensified pressure-relief zones, and the microseismic
activity decreased obviously (as shown in Figure 11), which
indicates that pressure-relief measures have a significant
influence on rock burst risk.

To investigate the influence of pressure-relief measures
on rock burst risk visually and quantitatively, pressure-
relief measures and zones in panel 204 from September
2018 to May 2019 were analyzed, and three passive tomogra-
phies were conducted in early May 2019.

Big-diameter borehole is the primary pressure prerelief
method. Secondary big-diameter boreholes or coal blasting

boreholes will be implemented again at interval of primary
boreholes if the risk is not effectively eliminated. Big-
diameter borehole is 153mm in diameter, 25m in depth,
and 1m in interval. Coal blasting borehole is 42mm in diam-
eter, 10m in depth, 5m in interval, 1.2m from the floor, and
charged with 3 kg explosive, as shown in Figure 13.

As illustrated in Figure 14(a), before 1 May 2019, the
zones 0-255m and 295m-490m ahead of face line on haul-
age roadway side and 0m-165m and 270m-320m ahead of
face line on ventilation roadway side were pressure-relieved
with big-diameter boreholes. And further, the zones 125m-
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285m ahead of face line on haulage roadway side were
pressure-relieved with coal blasting. Tomography results on
30 April, 6 May, and 12 May 2019 are shown in Figure 14.
Figure 14(a) illustrates that pressure-relieved zones match

well with the low burst risk zones except for the zones 0m-
200m ahead of the face line on the haulage roadway side.
In the following six days, 33 and 30 big-diameter boreholes
were carried out at haulage and ventilation roadway,
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Figure 14: Rock burst risk zones and pressure-relieved zones in panel 204. (a) 30 April 2019. (b) 6 May 2019. (c) 12 May 2019.
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respectively. Then, the corresponding high burst risk zones
are dispelled obviously, as shown in Figure 14(b). From 7
May to 12 May, 47 and 30 boreholes were drilled at haulage
and ventilation roadway, respectively. Similarly, the corre-
sponding burst risk zones are eliminated as well, especially
for the zones on the ventilation roadway side, as shown in
Figure 14(c).

Generally, with production, stress field is adjusted; high
stress and burst risk zones are shifted closer to the face line
in the strike direction and to haulage or ventilation roadway
in the inclination direction. Stress level and burst risk
increase simultaneously. However, burst risk zones on the
ventilation roadway side, contrarily, are being away from
the face line. Burst risk eliminated zones match well with
the pressure-relieved area, which indicates that pressure-
relief measures and intensity in ventilation roadway can
decrease burst risk effectively. However, high burst risk in
zones 200m in front of the face line on the haulage roadway
side is not eliminated substantially, which is further proved
by the future tremors in May 2019 as shown in Figure 6(a).
Hence, more pressure-relief measures, such as coal blasting
or deep presplitting blasting in roof, should be adopted till
the risk is eliminated thoroughly. Therefore, pressure-relief
measures have a distinct influence on stress field and burst
risk of panel, which can account for the none or weak burst
risk zones closely ahead of the face line in Figure 6. And
moreover, passive seismic velocity tomography before and
after the pressure-relief measures implemented can be a
novel and effective method to assess pressure-relief effect.

5. Conclusion

Based on passive seismic velocity tomography results and
rock burst risk assessment criterion, the burst risk and range
evolution of a deep longwall panel were determined, and the
influence of pressure-relief measures on burst risk was ana-
lyzed. The main conclusions are as follows:

(1) Seismic wave propagation velocity in rock and coal
mass is in positive correlation with the stress level.
Seismic wave velocity distribution of rock and coal
mass can be used to assess the rock burst risk in deep
coal mining. And accordingly, a rock burst risk
assessment criterion with velocity analogy was built

(2) Passive tomography results indicate that due to the
tectonic stress, abutment pressure, and mining lay-
out, rock burst risk and range of the deep panel firstly
increase, then decrease, and reach the peak at the 1#
syncline shaft area during panel retreating. High
burst risk zones in the inclination of panel show dis-
tinct zoning features. When panel approaching the
crossheading, high burst risk zones distribute along
the crossheading and further intersect with the burst
risk zones in 1# syncline shaft area

(3) High burst risk zones identified by passive seismic
velocity tomography are well correlated with drilling
bits results, rock burst records, microseism activity,
and the working resistance of hydraulic supports,

which indicates the practicability and accuracy of
passive tomography for rock burst risk in deep coal
mining

(4) Pressure-relief measures and mining layout of panel
have a distinct influence on rock burst risk, which
can be assessed by passive seismic velocity tomogra-
phy. Pressure-relief measures and intensity in differ-
ent mining phases should be optimized timely
based on the tomography results

Data Availability

The figures and tables used to support the findings of this
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