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Training image (TI) has a great influence on reservoir modeling as a spatial correlation in the multipoint geostatistics. Unlike the
variogram of the two-point geostatistics that is mathematically defined, there is a high degree of geological uncertainty to determine
a proper TI. The goal of this study is to develop a classification model for determining the proper geological scenario among
plausible TIs by using machine learning methods: (a) support vector machine (SVM), (b) artificial neural network (ANN), and
(c) convolutional neural network (CNN). After simulated production data are used to train the classification model, the most
possible TI can be selected when the observed production responses are put into the trained model. This study, as far as we
know, is the first application of CNN in which production history data are composed as a matrix form for use as an input
image. The training data are set to cover various production trends to make the machine learning models more reliable.
Therefore, a total of 800 channelized reservoirs were generated from four TIs, which have different channel directions to
consider geological uncertainty. We divided them into training, validation, and test sets of 576, 144, and 80, respectively. The
input layer comprised 800 production data, i.e., oil production rates and water cuts for eight production wells over 50 time
steps, and the output layer consisted of a probability vector for each TI. The SVM and CNN models reasonably reduced the
uncertainty in modeling the facies distribution based on the reliable probability for each TI. Even though the ANN and CNN
had roughly the same number of parameters, the CNN outperformed the ANN in terms of both validation and test sets. The
CNN successfully classified the reference model’s TI with about 95% probability. This is because the CNN can grasp the overall
trend of production history. The probabilities of TI from the SVM and CNN were applied to regenerate more reliable reservoir
models using the concept of TI rejection and reduced the uncertainty in the geological scenario successfully.

1. Introduction

Reliable reservoir modeling is one of the most important
tasks in the decision-making process in field development
planning. Various types of static data are used together to
build a reservoir model—most commonly, core samples, well
logs, seismic interpretation, outcrops, and geological con-
cepts. In particular, core and well logs are important for res-
ervoir modeling as hard data, but they are only available by
drilling which costs a lot. Therefore, understanding spatial
correlations such as variograms and training images (TIs) is

important to generate reservoir properties where drilling
data in not available.

Conventional geostatistical algorithms such as sequential
Gaussian simulation and kriging identify spatial relation-
ships using variograms. However, variograms can only assess
the relationship between two points even though there are
other data available nearby [1]. Starting in the 1990s, multi-
point geostatistics (MPS), which is about sets of three or
more data points, has been developed [2, 3]. In MPS, a TI is
used in place of a variogram to convey spatial correlation
information. Although variograms are estimated by robust
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formulas, TIs are based on geological scenarios and geologi-
cal concepts [1].

In case of modeling channelized reservoirs, the direction
of channel stream in TI is one of the most important param-
eters because it affects connectivity between injection and
production wells. Some researchers used multiple TIs to eval-
uate plausible geological scenarios to consider uncertainty in
channel direction [4–6]. Even when the same hard and soft
data are used for the same geostatistics method, quite differ-
ent reservoir models can be created depending on which TI is
used [6]. In addition, channel stationary and ergodicity are
also important for securing connectivity when modeling a
channel reservoir [7].

To determine the most reasonable TI from among multi-
ple possibilities, previous researches have proposed the two
approaches: production-based TI rejection and blind well
test. The concept of the TI rejection is to exclude the unsuit-
able TI, which has a large error compared to the observed
production history after implementing reservoir simulation
using static models from multiple TI candidates [6, 8, 9].
However, it requires complex procedures, e.g., distance-
based clustering which is sensitive to the number of clusters
and the definition of distance [10]. The concept of the blind
well test is to quantitatively measure the degree of restoration
of logging data that is excluded when MPS is executed from
various TIs [11]. However, this approach is sensitive to ran-
dom seeds because of the equiprobability feature in sequen-
tial simulation and to which logging data is set to a blind test.

Machine learning has been applied to a wide variety of
research topics including speech recognition [12, 13], public
health [14], and gameplay [15]. Recently, machine learning
algorithms have been suggested as a solution to problems in
reservoir characterization. If a set of reservoir models and
their production data is available, both proxy and inverse
models can be built by machine learning methods. To con-
struct a proxy (or surrogate) model, supervised learning is
carried out using reservoir parameters in the input layer
and production responses in the output layer. This approach
has primarily been studied as a replacement for composi-
tional and unconventional simulations which require sig-
nificant simulation time [16–20]. Inverse models reverse
the order of the parameters: the production responses
and reservoir parameters for the input and output layers,
respectively. After implementing reservoir simulation to
hundreds of initial reservoir models to obtain training
data, observed production data can be used to make
history-matched reservoir models [21, 22].

Most previous studies have relied on simple artificial neu-
ral network (ANN) algorithms, which have occasionally been
extended to deeper ANNmodels by increasing the number of
hidden layers [23]. Recent advances in deep learning have
been driven by even more state-of-the-art algorithms, such
as probabilistic neural network (PNN), recurrent neural
network (RNN), convolutional neural network (CNN), and
generative adversarial network (GAN). PNN consists of
input, pattern, summation, and decision layers and has been
applied to lithofacies classification for more reliable perme-
ability modeling [24]. A number of studies have recently
attempted to apply RNNs to reservoir time-series data such

as production rate and pressure [25–29]. RNNs have been
applied in place of decline curve analysis (DCA) to predict
the production of shale reservoirs, as unconventional
reservoirs do not satisfy standard assumptions in DCA.
[25, 27, 28]. Some studies have applied CNN algorithms to
image data, e.g., seismic data and core images. Using seismic
data, fault interpretation [30] and object classification [31]
can be automated via CNN. The CNN algorithm has been
successfully applied to microcomputed tomography images
to estimate porosity and pore size [32], to drilling cuttings
to classify lithofacies [33], and to SEM image segmentation
for mineral characterization [34]. A convolutional autoen-
coder has been applied to extract main features from seis-
mic images, with the resulting reparameterized data used
for ensemble-based history matching [35]. GAN is one
of the popular generative models which train two different
networks simultaneously. GAN can generate new samples
based on the distribution of training data, and we can
manage the samples by conditioning the networks [36].
Also, spatial correlated data can be generated by GAN
without any additional MPS, which reduces calculation
costs in reservoir modeling [37].

In this study, a novel classification model for four TIs
with different channel directions based on production data
was developed using machine learning algorithms. The pro-
posed classification model used production data in the input
layer and provided a probability for each TI in the output
layer. In other words, the machine learning model tells us
that it is likely to be a certain channel direction to have pro-
duction history in the input layer. Then, the probability for
TI was used to regenerate channelized reservoir models to
figure out the effect of uncertainty reduction in channel
direction. For comparison, three algorithms, support vector
machine (SVM), ANN, and CNN, were applied to compare
accuracy of TI classification. In particular, the CNN was the
firstly applied to a two-dimensional matrix of production
history. In the case of SVM, it is one of conventional machine
learning algorithms, which are not based on the concept of
neural network, and has shown reliable performance in facies
classification [38–40]. In this study, it has been verified
against the TI classification problem.

In Section 2.1, the workflow of the proposed method is
introduced, and the following Section 2.2 explains the
SVM, ANN, and CNN algorithms. Section 2.3 deals with
the dataset used in this study. Sections 3.1 and 3.2 show clas-
sification results among the four TIs for the training and test
data sets using SVM, ANN, and CNN. In Section 4.1, the
trained models are tested for the reference field to obtain
the probability for each TI, and then the probability is used
to regenerate channel models in Section 4.2. Section 5
includes the findings through this research and future works.

2. Methodology

2.1. Proposed Classification Model. Geological uncertainty in
reservoir models can lead to difficulties for reliable prediction
of production performance. Because reservoir properties are
highly heterogeneous in channel reservoirs, it is more
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important to construct plausible geological models for man-
aging the uncertainty.

Our goal is to construct a machine learning-based classi-
fication model for TI in MPS to reduce geological uncer-
tainty. Figure 1 shows the concept of the proposed method,
which is a kind of inverse model because the static parameter,
TI, is estimated by production history. The input data in our
model are oil and water production histories, and the output
is probability in each geological scenario, which shows the
most probable TI of the reservoir.

We tested the three machine learning algorithms in this
study: SVM, ANN, and CNN. In particular, we focused on
whether the CNN can be applied to time-series data such as
production rates although it has been known for outperfor-
mance of image data, e.g., distributions of permeability, satu-
ration, and pressure. In this study, we arranged production
data into a 2D matrix to apply 2D CNN.

2.2. Machine Learning Methods

2.2.1. Support Vector Machine (SVM). SVM is one of the
most powerful classifiers among supervised learning algo-
rithms [41, 42]. SVM finds a hyperplane that can separate a
given set of data from other groups. It is effective at classify-
ing data into two categories but can also be used in multiclass
classification [43, 44].

Figure 2(a) shows a toy problem involving 80 training
data points within a 2-dimensional space. The data are cate-
gorized into two classes as red and blue colors. Using the
training data, the SVM finds a hyperplane (a solid line) that
maximizes a margin between the two groups. The data clos-
est to the hyperplane define as support vectors, and the mar-
gin is calculated as the sum of the distances between the
hyperplane (dotted lines) and support vectors (highlighted
in green). After the training by the SVM, the model can clas-
sify new datasets as shown in Figure 2(b). The new 20 data
points, 9 yellow and 11 cyan colors, are successfully grouped
as the red and blue areas, respectively.

2.2.2. Artificial Neural Network (ANN). Neural networks are
inspired by the human brain, which is good at pattern recog-
nition [45]. Each neural network has input and output layers
and multiple hidden layers between them to solve nonlinear
problems [46–48]. It is a basic form of neural layer percep-
tron which has been developed to various forms of methods
such as CNN, RNN, and GAN. In this study, ANN with
two hidden layers was used to train the TI classification
model.

ANN showed sensitive performance if the number of
data is relatively small for the given problem [23]. In this
case, hyperparameters such as the number of hidden layers
and neurons for each hidden layer should be examined
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through sensitivity analysis. Nowadays, the optimization of
hyperparameters can be automatically implemented by auto-
mated machine learning algorithms such as the AutoKeras
algorithm [49].

Training data are entered into the input layer, and their
labels are used in the output layer to train the ANN model.
The objective is to minimize the misfit between the true label
data and estimated value by optimizing the weights and bias
of all connections between layers. There are several ways to
improve the classification performance of the ANN [50],
and we used the min–max scaling and dropout technique.
Because we want to know the probability of each TI in the
output layer, the softmax activation function is used so that
the sum of neurons becomes 1 in this study.

2.2.3. Convolutional Neural Network (CNN). CNN is one of
popular deep learning algorithms and is superior to the
ANN model in terms of feature extraction and training abil-
ity for image data. The input data format for CNN is a 2D or
3D matrix, making them widely used in studies of image and
vision processing [51–53]. The main factor differentiating
CNN from ANN is the use of convolution and pooling layers
to extract features of images automatically [54].

In the convolution layer, a filter is used to extract the
main features from the image data and weights in the filters
are adjusted to minimize the objective function during train-
ing (Figure 3(a)). Pooling is a downsize sampling scheme
involving the extraction of main features, and Figure 3(b)
shows a simple example of max pooling in which the maxi-
mum value is selected among the values within the max pool-
ing filter. The process of convolution and pooling makes the
CNN superior to other deep learning methods in terms of
learning image data. Detailed information on the CNN archi-
tecture used in this study is provided in Section 3.2.1.

2.3. Dataset for the Analyses. Synthetic reservoir models were
generated by using the Stanford Geostatistical Modeling Soft-
ware (SGeMS) tool. We constructed two-dimensional chan-
nel reservoir models with distinct distributions of facies of
sand and shale. High-permeability sand was spread out as
channel facies, making it important to characterize the direc-
tion and connectivity of the channels to predict oil and water
production, properly. We assume that there is uncertainty in
geological scenarios of channel direction and the four images
in Figure 4 are plausible TIs [6].We want to know which TI is
more proper for the given production history data.

To train the machine learning-based classification model,
a total of 800 models were constructed by the single normal
equation module in SGeMS: 200 models for each TI. Each
model was laid out on a 25 × 25 × 1 grid system, with each
grid containing 50 × 50 × 50 = 125,000 ft3. As shown in
Figure 5(a), we assumed nine wells from which core data
were extracted contained sand facies. It consists of the eight
production wells and the single water injection well, which
is located in the center of the model to improve production
efficiency via waterflooding. The reference model used in
the study is shown in Figure 5(b), and it has channel connec-
tivity in the vertical direction because it was generated using
the vertical (0 degree) TI in Figure 4(a). Uniform permeabil-
ity is set to each facies of 1,000 and 1md for sand and shale,
respectively [5, 6, 8]. Figure 5(c) shows four of the 200 reser-
voir models corresponding to each TI. Even though the same
hard data were used for the same geostatistical algorithm, the
uncertainty in the geological scenario, TI, has large impact on
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the static modeling. That is why we want to develop the
machine learning-based classification model of a proper TI.

We split the 800 reservoir models into three groups for
constructing the machine learning-based classification
model. Twenty models among 200 models from each TI were
selected for the test set, and the remaining 180 models were
divided in an 80/20 ratio of 144 training models and 36 vali-
dation models. For the 800 initial models from the four TIs,
the 576 training and 144 validation data were chosen ran-
domly, while the 80 test data were selected uniformly from
each TI group.

We have information of the geological model and its TI,
but additional information, the model’s dynamic data, is
required to build the classification model based on produc-
tion data. Reservoir simulation was conducted on the 800 ini-
tial models to obtain production responses using ECLIPSE
100 from Schlumberger. The four dynamic items, i.e., well
oil production rates, well water cuts, and field cumulative
oil and water productions, were obtained until 1,000 days
in 20-day intervals. Therefore, each model consisted of a total

of 900 production data: 400 well oil production rates (50 time
steps × 8 producers), 400 well water cuts, and 50 field cumu-
lative oil and water productions. Finally, each initial model
has a set of production data and TI index which were used
in the input and output layers, respectively.

3. Training and Validation of Machine
Learning Models

The purpose of machine learning-based classification models
is to predict the TI index (coded as 1, 2, 3, and 4 for 0, 45, 90,
and 135 degrees, respectively) corresponding to production
data in the input layer. We trained the SVM, ANN, and
CNN using the dataset described in Section 2.3. Classification
performance for TI was compared quantitatively from the
accuracy scores for the training, validation, and test sets. In
particular, we paid attention to the test set score because it
indicates the general applicability of the trained models.

We used Python 3.7 as the program code and several
Python libraries, including NumPy, scikit-learn, and
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Figure 5: Generation of reference and initial models. (a) The location of injection and production wells, (b) the reference field, and (c)
examples of channel reservoir models based on different TIs.
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Matplotlib, to analyze the data. Also, we used TensorFlow
1.13 to build the ANN and CNN models. All of the libraries
used were open-sourced programs that are continuously
upgraded to enable users to construct latest-version machine
learning models.

3.1. SVM

3.1.1. Feature Selection. SVM attempts to find the best hyper-
plane which can classify a set of input data (see Section 2.1.1).
When the dimensionality of the data is high, the hyperplane
can be obscure, which deteriorates the classification. There-
fore, rather than using all input parameters (the 900 produc-
tion data in this study), it is preferable to exclude redundant
features via feature selection to improve classification results.
Unlike CNN, SVM is needed to preprocess the feature extrac-
tion before the training.

The SVM was coupled with a discrete wavelet transform
(DWT), which is a widely used method for feature extraction
via the selection of principal features from among input data
[55–57]. The DWT uses the superposition of a group of
wavelets to construct a basis function for wavelet transform.
Various types of wavelets can be used for this purpose,
including Haar, Daubechies, biorthogonal, coiflet, symlet,
and Meyer wavelets [58]. Because our dataset was not sensi-
tive to wavelet type, we used Haar wavelets—the simplest
type of wavelet—to carry out the DWT.

The number of selected features can be adjusted by the
decomposition level in the DWT. Increasing the decomposi-
tion level reduces the number of features; a rule of thumb for
selection of the level is given as

Decomposition level ≤ log2 size of input featuresð Þ, ð1Þ

which is nine or less [59] because the size of input features is
900.

The sensitivity analysis on the decomposition level was
implemented to optimize the performance of the SVM by
feature extraction. Table 1 lists the accuracies of the SVM
models to training, validation, and test sets by adjusting the
decomposition level from zero to nine. The accuracy scores
were calculated by dividing the number of correct classifica-
tions by the total number of each dataset: 576 training, 144
validation, and 80 test data. The conventional classification
model has evaluated the machine learning model based on
the confusion matrix because it has only two options,
whether a landslide has occurred or not [60–62]. However,
the classification model of TI used the probability of TIs itself
to evaluate geological scenarios instead of selecting the high-
est probability TI as a one-hot encoded solution. It is impor-
tant to review possible geological concepts and assess
uncertainty in TIs rather than a clear answer.

As the decomposition level is higher by a DWT, the num-
ber of features selected is smaller. The SVMmodel using only
two features (the highest decomposition level) provided the
poorest classification for the three data sets although the
two features is effective for visualization. Figure 6 shows the
distribution of 80 test reservoir models using the two fea-
tures. If the test set was classified properly with only the

two features, a sharp hyperplane could be defined to distin-
guish it according to TI; however, the mixed TI indexes on
the 2D plane indicated a poor accuracy of the SVM.

The curves in Figure 7 drew the accuracy score of the sen-
sitivity analysis in Table 1. The blue, red, and green lines indi-
cate the results for the training, validation, and test sets,
respectively. Increasing the number of features to four, eight,
and then fifteen significantly improved the scores, which
fluctuated beyond fifteen features. However, it is not always
better to use more features: the best test set score was
obtained using the 450 features, while the second-best was
obtained using the 29 features. Because the slopes of the lines
started to change after the decomposition level was 6, the 15
features were selected as the desirable number of features for
the given problem.

3.1.2. SVM Models with Reduced Raw Data. In the previous
section, the sensitivity analysis was implemented on the fea-
ture reduction from the original 900 raw data: 400 oil pro-
duction rates, 400 water cuts, and cumulative 50 oil and 50
water productions. Because most of the problems in reservoir
engineering have underdetermined, a large amount of input
data generally helps in obtaining improved solutions.

Table 1: The sensitivity analysis of the decomposition level for the
SVM models. The original features consist of 900 data: 400 oil
production rates, 400 water cuts, and cumulative 50 oil and 50
water productions.

Decomposition
level

Feature
size

Training
set

Validation
set

Test set

9 2

Score

0.4635 0.4167 0.4125

8 4 0.6944 0.6458 0.6375

7 8 0.8003 0.7917 0.7625

6 15 0.9028 0.9028 0.8375

5 29 0.9201 0.8889 0.8750

4 57 0.9306 0.8611 0.8500

3 113 0.9236 0.9236 0.8375

2 225 0.9184 0.9097 0.8500

1 450 0.9184 0.9167 0.8875

0 900 0.9184 0.9028 0.8628
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Figure 6: The distribution for the 80 test reservoir models in the 2D
plane using the two features from the original 900 data by the DWT.
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However, in classifying the TIs using the SVM, a large num-
ber of features did not guarantee better results. Also, redun-
dancy measurement data gave spurious information during
history matching [63]. Thus, in this section, we tested the
performance of the SVM with reduced raw datasets to
improve accuracy score.

The number of raw data was reduced by either (a) using
only the oil production rates and water cuts of the producers
(800 features in total) or (b) using oil production rates only
(400 features). Tables 2 and 3 show the scores of the SVM
for each case. In Table 3, the maximum decomposition level
was eight because of limiting the number of features to 400
although it was equal to nine in Tables 1 and 2.

The results in Tables 2 and 3 followed a similar trend to
those by the SVM in Table 1. When only two features were
used for both the 800 and 400 raw data, the SVM was not
trained properly and gave unreliable classification for the test
set. The largest increase in test set score occurred at the four
and seven features for the 800 and 400 raw data, respectively.

At above thirteen features, the scores appeared to remain
stable.

Figure 8 shows a comparison of test set scores for the
three cases: the 900 data in Section 3.1.1 as the purple line,
the 800 data as the black line, and the 400 data as the cyan
line. The 400 data line showed the lowest test set scores
regardless of the decomposition level. This suggested that it
was preferable to use various types of data, i.e., oil and water,
to improve the SVM rather than using a single type of pro-
duction data. The 800-feature line indicated higher scores
than the 900-feature line, because the use of similar types of
data, e.g., well oil production and field cumulative oil produc-
tion, was likely to prevent the extraction of principal features
via DWT. It is important to determine an optimal number of
features in the DWT because the three SVM models showed
a reliable classification performance when the decomposition
level was nearly six regardless of the number of the raw data.

3.2. ANN and CNN. In this section, we analyzed the TI clas-
sification problem using the ANN and CNN, which had mul-
tiple hidden layers to train classification models. Based on
Section 3.1.2, the 800 dynamic data, the 400 oil production
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Figure 7: The accuracy scores for the SVM according to the
decomposition level.

Table 2: The sensitivity analysis of the decomposition level using
the 800 raw data: 400 oil production rates and 400 water cuts.

Decomposition
level

Feature
size

Training
set

Validation
set

Test set

9 2

Score

0.6094 0.5139 0.5750

8 4 0.7083 0.7222 0.7000

7 7 0.8299 0.8264 0.8125

6 13 0.8993 0.9167 0.8625

5 25 0.9288 0.8750 0.8750

4 50 0.9323 0.8958 0.8625

3 100 0.9306 0.8958 0.8750

2 200 0.9115 0.8958 0.8875

1 400 0.9236 0.9375 0.8875

0 800 0.9236 0.9167 0.8750

Table 3: The sensitivity analysis of the decomposition level using
the 400 oil production rates only.

Decomposition
level

Feature
size

Training
set

Validation
set

Test set

8 2

Score

0.5764 0.6042 0.5500

7 4 0.7517 0.6597 0.6250

6 7 0.8628 0.8264 0.8000

5 13 0.9219 0.8472 0.8375

4 25 0.9253 0.8889 0.8125

3 50 0.9392 0.8750 0.8000

2 100 0.9358 0.8819 0.8375

1 200 0.9497 0.8542 0.8125

0 400 0.9566 0.8472 0.8250
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Figure 8: Test set scores of decomposition level depending on the
number of raw data: the 400, 800, and 900 data.
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rates and 400 water cuts, were used in the input layer. The
main difference between ANN and CNN is the arrangement
for the 800 input data. CNN requires input data as an image,
i.e., a matrix type, while ANN assigns a vector type to the
input layer. Accordingly, we constructed a matrix-form data-
set of the production data for the CNN (Figure 9(a)). This
matrix shows the production trend in time as an image in
Figure 9(b). Before training both algorithms, the 800 produc-
tion data were normalized to have a value from 0 to 1 using a
min–max scaler to remove the effect of unit scale. We used
this image as an input in the CNN.

3.2.1. The Structure of the ANN and CNN Models. ANN is
generally improved as its hidden layer is made “deeper.” It
is therefore important to set similar numbers of parameters
in ANN and CNN architectures when comparing their per-

formances. Tables 4 and 5 show the structure of neural net-
works in the ANN and CNN, respectively. We built the
ANN structure with the two hidden layers of size 450 and
200. The number of the input and output layers were fixed
as the 800 production data and the probability for the four
TIs. The sum of the number of parameters in each layer, as
shown in Table 4, is a total of 451,454.

Table 5 provides a detailed structure of the CNN model.
The CNN architecture was configured with the two convolu-
tion layers and two fully connected layers. The number of ele-
ments in the input matrix (16 × 50) was equivalent to that of
the input vector in the ANN. The first convolution layer used
32 filters of size 5 × 5, and zero-padding was used to maintain
the input size. Then, max pooling was used to downsize the
data by 50%. After repeating the process twice with 64 filters
of size 5 × 5 × 32 in the second convolution layer, the data
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Figure 9: The matrix of the 800 production data for the input layer in the CNN: (a) arrangement of the production data and (b) example of an
input image.

Table 4: Neural network structure and the number of parameters in the ANN.

Layer
Number
of nodes

Number of parameters
Activation
function

Input 800 —

800 × 450 + 450 = 360,450Hidden layer 1 450 ReLU

450 × 200 + 200 = 90,200Hidden layer 2 200 ReLU

200 × 4 + 4 = 804
Output 4 Softmax

Sum 451,454

Table 5: Neural network structure and the number of parameters in the CNN.

Layer Dimensions Number of parameters Activation function

Input 16 × 50 × 1 —
5 × 5 × 32 + 32 = 832Convolution layer 1 16 × 50 × 32 ReLU

—Max pooling layer 1 8 × 25 × 32 —
5 × 5 × 32 × 64 + 64 = 51,264Convolution layer 2 8 × 25 × 64 ReLU

—Max pooling layer 2 4 × 13 × 64 —
3,328 × 128 + 128 = 426,112Fully connected layer 128 ReLU

1,024 × 4 + 4 = 4,100
Output 4 Softmax

Sum 478,724
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were flattened for the fully connected layer, which had 128
nodes. Finally, it was fully connected to the four-node output
layer, which is equal to the number of the TIs. A total of
478,724 parameters was used in the CNN as the sum of the
number of parameters in the convolutional and the fully con-
nected layers. Note that the max pooling layer does not have
parameters because of predetermined weights. Therefore, the
numbers of parameters for the ANN and CNN were reason-
ably similar.

3.2.2. Classification Model by the ANN Algorithm. Using the
structure described in Section 3.2.1, we trained the ANN
model to classify the TIs based on the production data. The
Adam optimizer was applied to minimize the loss function
at a learning rate of 0.0001. A training epoch of 1,000 was
applied using a batch size of ten.

The accuracy scores of training, validation, and test sets
by the ANN are shown in Figure 10. The difference between
Figures 10(a) and 10(b) is the effect of the dropout layer,
which is a useful regularization technique for preventing
the ANN from overfitting on the training set. When the
dropout layer was not added in the ANN (Figure 10(a)),
the overfitting problem happened after 100 epochs as the
score converged to 1 for the train set. Because the ANN
model was not modified after the epochs, the validation and
test scores did not improve anymore. The performance of
validation and test is more important than the train so that
the classification model is applied to unseen observed pro-
duction data reasonably.

When dropout was used in the ANN (Figure 10(b)), the
scores of the validation and test sets varied between 0.8 and
0.9 while the training set score converged to 0.95 at 1,000
epochs. However, the ANN model required extremely high
epoch numbers for training because the test set score was still
fluctuating. Although the ANN model can also be improved
by changing the batch size, optimizer, and structure, these

hyperparameters were fixed because our purpose was the
comparison of the classification performance between the
ANN and CNN.

3.2.3. Classification Model by the CNN Algorithm. The CNN
was applied to the matrix of the 800 production data. Other
parameters such as batch size and optimizer were the same
as those used for the ANN. A dropout rate is set to 0.5 and
training epoch is 100.

Figure 11 shows the results by the CNN for the data
arrangement in Figure 9(a). The training set score was
approximately 0.95, indicating that the network was properly
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Figure 10: Accuracy scores of the ANN at dropout rates of (a) 0 and (b) 0.5.
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fitted. The scores of the validation and test sets at the 100th
epoch were 0.9 and 0.85, respectively. Because the test score
was increased by 30.77% compared to the ANN’s score in
Figure 10(b) at the same epoch, the CNN was more effective
than the ANN to make stable and reliable TI classification. In
case of the ANN, the important information of production
data such as well index, time index, and type of dynamic data
was missing through the vector of the 800 data. However, the
matrix of the data was constructed by the order of time step
in the column and well index and type of dynamic data in
the row in Figure 9(a). It is also apparent that the input pro-
duction image was effectively interpreted by the CNN.

We then examined whether the accuracy of the CNN was
affected by the data arrangement. Because the production
image in Figure 9(b) was not a picture with a distinct shape,
we reconstructed the image by varying the arrangement of
the 800 production data. Figures 12(a) and 12(b) show the
alternatives compared to the original arrangement in
Figure 9(a). In the case 1 in Figure 12(a), the 800 data were
arranged on the basis of production well and the matrix size
is the same as the original case, 16 × 50. The case 2 in
Figure 12(b) was a transposition of the original data configu-
ration (50 × 16 matrix).

The accuracy scores for the cases 1 and 2 in Figures 12(c)
and 12(d), respectively, followed similar trend to ones for the
original case in Figure 11. Although there appeared to be
some differences in accuracy scores among the three cases,
the effect was not critical for overall performance of the
CNN. Therefore, “image” of production data was not sensi-
tive to the arrangement of the production data because
CNN can extract important features automatically through
convolutional and pooling layers [64].

4. Uncertainty Quantification Using the
Training Models

4.1. Application to the Reference Model. Because the 800 initial
reservoir models were generated from the four different TIs
(Figures 4 and 5(c)), there was a high degree of uncertainty
in the initial models. To reduce the uncertainty in geological
scenarios, we want to know which TI is more appropriate
for the reference model in Figure 5(b). After the trained
SVM, ANN, and CNN models were applied to observe pro-
duction data from the reference field, the probability of each
TI, which is the output of the trained models, was used to
regenerate reservoir models based on its proportion.
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Figure 12: The effect of data arrangement in the CNN. Data arrangement for (a) the case 1 and (b) the case 2 and accuracy scores for (c) the
case 1 and (d) the case 2.
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Table 6 provides a comparison of the probability of TIs
obtained by the three trained models. The probability from
the SVM estimates TI 1 by 83.4%, and it is a reliable result
because the reference model was generated using TI 1. The
SVM-generated probability for TI 3 is the lowest among the
four indexes as 0.46% because TI 3’s horizontal channel con-
nectivity in Figure 4(c) is most contrasting with TI 1’s vertical
connectivity in Figure 4(a). Therefore, the SVM gives proper
estimation in the application of the reference production data.

The ANN produces a completely erroneous estimation in
which the observed data are linked with TI 4 only. It indicates
that the probability of TI 4 is equal to 100% and the remain-
ing TIs are useless. The probability for TI 1 from the CNN,
94.77%, is higher than that for the other models, and the
probability for TI 3 is equal to zero. The estimates for TI 2
and TI 4 are 1.14% and 4.09%, respectively, both of which
are relatively small values. The CNN provides the best esti-
mate among the three trained models; it can interpret the
hidden geological information of the observed data such as
time sequence and the location of wells as the matrix of pro-
duction history.

4.2. Comparisons of the Initial Reservoir Models and the
Regenerated Models. A hundred of new reservoir models
were generated by using the probabilities in Table 6. The con-
cept of TI rejection was adapted during regeneration of reser-
voir models [6, 8, 9]. Table 7 shows the composition of the
regenerated 100 models by the three machine learning algo-
rithms. For example, the 100 newmodels by the CNN consist
of 95 models from TI 1, one model from TI 2, and four
models from TI 4. Note that the initial 800 models were built
from the four TIs at the same rate (200 models per TI).

Even though hard data were fixed as the nine points in
Figure 5(a), the concept of a pseudo facies probability map
[6, 8] was applied for the MPS algorithm as the soft data to
improve the reliability of the regenerated models. The map
could be defined as the mean of the selective models among
the 800 initial models, which have less error between the sim-
ulated and observed dynamic data. Note that no additional
reservoir simulation was required to calculate the error,
because reservoir simulations had already been performed
for all initial models to train the machine learning models.
The error was evaluated by the absolute misfit of well oil
production rates as follows:

misfit = 〠
Nw

i=1
〠
Nt

j=1
qsimo
� �

i,j − qobso

� �

i,j

����

����, ð2Þ

where Nw and Nt are the numbers of production wells and
observed time steps, respectively, which are set to 8 and 50.
qsimo and qobso are the simulated and observed oil production
rates, respectively.

In this study, the five permeability models with the smal-
lest misfit were selected and they were transformed into
facies models: 1,000md to sand (index 1) and 1md to shale
(index 0). The mean of the five facies models in Figure 13
was then used to a facies probability map for sand facies. This
map was combined with the TI guideline in Table 7 and the
hard data in Figure 5(a) within MPS algorithm.

Figure 14 shows the means of the 800 initial models and
the 100 regenerated models for each machine learning algo-
rithm. The mean model of the initial models had no connec-
tivity (Figure 14(a)) because the four TIs were applied equally
to generate the initial models. The locations where the hard
data are located can be identified. By contrast, the mean
models for the regenerated models had specific channel
patterns. In the ANN case, because the 100 models were gen-
erated using only TI 4 having a 135-degree channel direction
(Figure 4(d)), the average of the regenerated models had con-
nectivity of about a 135-degree direction in Figure 14(c),
which differed significantly from the reference field in
Figure 5(a).

The mean models of the regenerated models from the
SVM and CNN reasonably mimicked the high-permeability
connectivity in the reference field. For example, the connec-
tion between P1 and P2 in Figure 5(a) was present in
Figures 14(b) and 14(d). The two algorithms produced simi-
lar results because most of the regenerated models in both
cases were created from the true TI 1. Compared to the mean
of the 800 initial models (Figure 14(a)), the regenerated
models by the SVM and CNN could significantly reduce
the uncertainty in channel distribution by determining a
proper TI based on the observed data.

Table 6: TI probabilities from the three classification models to the
reference field’s observed production.

TI 1
(0 degrees)

TI 2
(45 degrees)

TI 3
(90 degrees)

TI 4
(135 degrees)

SVM 83.4 1.35 0.46 14.79

ANN 0 0 0 100

CNN 94.77 1.14 0 4.09

Table 7: TI rejection based on the probability of TI in Table 6 to
regenerate 100 models.

TI 1
(0 degrees)

TI 2
(45 degrees)

TI 3
(90 degrees)

TI 4
(135 degrees)

SVM 83 1 1 15

ANN 0 0 0 100

CNN 95 1 0 4
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Figure 13: Pseudo facies probability map for sand facies.
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5. Conclusions

In this paper, we proposed the machine learning-based TI
classification method based on the observed dynamic data.
The probabilities of the four different TIs were evaluated in
the output layer by using the 400 oil production rates and
400 water cuts in the input layer. The three algorithms, the
SVM, ANN, and CNN, were trained by the 800 initial chan-
nelized reservoirs’ TI and their production history.

In the case of the SVM, the result of the TI classification
was sensitive to the number of raw data as well as the number
of selected features. The accuracy score for the training set,
576 models, increased sharply until the decomposition level
reached 6, but after that, the score was converged. It meant
that the usage of a large number of features does not guaran-
tee a reliable SVM result and the sensitivity analysis should
be conducted to determine the optimal feature size for the
SVM.

The ANN used a vector of the 800 dynamic data for the
input layer while the CNN adopted the matrix of the
dynamic data, 16 by 50, for the input layer. Under the similar
complexity of neural networks between the ANN and CNN,
the CNN was superior to the ANN in terms of the accuracy
scores because the CNN can preserve the information of
the dynamic data such as the time-dependence and well
locations.

After training the three algorithms using the initial reser-
voir models, the trained models were applied to the observed
dynamic data from the reference model to obtain the proba-
bilities of TI. As a result, the CNN produced the best esti-
mate, with about 95% for TI 1, which was used for the
reference field. Using the probability for each TI, we regener-
ated 100 channel models to reduce uncertainty in channel

direction. Whereas the 100 regenerated models by the ANN
failed to mimic the channel connectivity in the reference
field, those by the SVM and CNN had similar permeability
distributions to the reference field. These results demon-
strated that the trained machine learning algorithms can
reduce uncertainty in the geological scenario by guiding a
reasonable TI. Also, the matrix of dynamic data was success-
fully applied to the CNN as image data. In the future work,
the regenerated models can be used as reliable prior models
for a history-matching method.

Data Availability

Data are available on request.

Additional Points

Highlights. (i) Classification model for training images (TIs)
is developed by using machine learning-based methods. (ii)
Output of the trained model for observed production data
suggests proper TI. (iii) Production data matrix is con-
structed to apply convolutional neural network (CNN). (iv)
CNN outperforms support vector machine and artifical neu-
ral network by reducing uncertainty in facies distribution.
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