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The seepage performance of a rock mass mainly depends on the rock fractures developed in it. Numerical calculation method is a
common method to study the permeability properties of fractures. Seepage in rock fractures is affected by various factors such as
fracture aperture, roughness, and filling, among which aperture and roughness are the two most widely influenced factors. The
Navier-Stokes (NS) equation can be solved directly for the seepage flow in rock fractures with good accuracy, but there are
problems of large computational volume and slow solution speed. In this paper, the fracture aperture space data is substituted
into the local cubic law as an aperture function to form a numerical calculation method for seepage in rough rock fractures,
namely, the aperture function method (AFM). Comparing with the physical seepage experiments of rock fractures, the
calculation results of AFM will produce a small amount of error under the low Reynolds number condition, but it can greatly
improve the calculation efficiency. The high efficiency of calculation makes it possible to apply AFM to the calculation of large-
scale 3D rough fracture network models. The pressure drop of fluid in the fracture has viscous pressure drop (VPD) and local
pressure drop (LPD). VPD can be calculated using the AFM. After analyzing the results of solving the NS equation for fracture
seepage, it is concluded that the LPD includes the pressure drop caused by area crowding in the recirculation zone (RZ),
kinetic energy loss in the RZ, kinetic energy loss in the vortices, and other reasons.

1. Introduction

Rock fractures are widely distributed in subsurface rock
masses, and for fluid transport, the permeability of rock frac-
tures is significantly greater than that of the rock matrix [1].
The hydraulic properties of rock fractures play an important
role in assessing the performance of subsurface engineering,
such as geothermal energy development, enhanced recovery,
nuclear waste disposal, and groundwater pollution control
[2–6]. Fluid flow in rock fractures can be calculated using
the Navier-Stokes (NS) equation. The NS equation is used
to solve the fracture flow with high accuracy, but the fracture
aperture dimension is much smaller compared to the dimen-
sion in the extension direction, which makes the modeling
difficult and the calculation workload is large. Zhou et al.

[7] used the NS equation to solve a real rock fracture
seepage model with a size of 150mm × 120mm, and the
number of model elements exceeded 106 to ensure the com-
putational accuracy.

Due to the complexity of the NS equation solution, a
concise fracture seepage equation, the cubic law, can be
derived by neglecting the nonlinear terms in fluid flow.
The same conclusion was obtained for the seepage experi-
ments using two smooth flat plates [8]. The natural rock
fracture surface is rough, which restricts the flow of fluid
in the fracture, and using the cubic law to calculate the frac-
ture flow would overestimate the permeability of the fracture
[9, 10]. Through theoretical derivation and experimental
research, some scholars proposed that under the condition
of low Reynolds number (Re < <1), the effect of inertial flow
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of fluid can be neglected, and the local cubic law (Reynolds
equation) can be used to calculate the fracture seepage flow,
and its calculation results do not deviate much [11–14].
Zimmerman and Bodvarsson [12] found by single fracture
seepage experiment that when Re is in the range of 1~ 10,
there is a weak inertia effect zone within the fluid in the frac-
ture, and the fracture seepage flow gradually deviates from
the linear relationship with the hydraulic gradient but
becomes a nonlinear relationship. By correcting the geomet-
ric mean aperture, arithmetic mean aperture, surface rough-
ness factor, and curvature factor, the local cubic law can still
be used to evaluate the fluid flow in the fracture [11, 14, 15].
Zhu et al. [16] concluded by theoretical derivation and
experimental study that the cubic law still has good applica-
bility in the laminar flow range (Re ≤ 2300) when the flow of
the fracture is long enough.

Javadi et al. [17] and Liu et al. [18] found that there is a
deviation between the calculated results of linear and non-
linear flow in the fracture, but the difference is not too big
at low Reynolds number conditions. Javadi et al. [17] consid-
ered that there are two types of pressure drop during fluid
flow in the fracture: one is viscous pressure drop (VPD)
due to fluid viscosity; the other is the local pressure drop
(LPD) due to the sudden change of aperture. For laminar
flow in a smooth flat plate, the VPD can be calculated using
the cubic law. For rough fractures, corrections for fracture
wall roughness and fracture curvature are required.

In this paper, the aperture function method (AFM)
based on the local cubic law is introduced, which utilizes
the fracture aperture function as the parameter of the
numerical model, where one fracture wall surface is used
as the geometric model, and the rough fracture seepage is
calculated based on the local cubic law. The results of the
AFM calculations are compared with the physical experi-
ments and the results of the numerical model of rough frac-
ture seepage based on the solution of the NS equation.
Multiple pressure boundary conditions are applied to the
inlet of the fracture models, and the rough fracture seepage
flow is solved based on the NS equation, and the formation
of the recirculation zone (RZ) in the fracture flow and the
reasons for the influence on the seepage flow are analyzed
in detail. The rotational motion of fluid flow is called vortex,
and the presence of vortices has a significant effect on the
motion of the fluid due to the vortices. This paper presents
the mathematical definition and identification of vortices
in fluids and identifies the vortices and their distribution in
rough fracture flows. A comparative analysis of vortices in
fracture flow and RZ is carried out, and the effect of vortices
on fracture seepage flow is studied.

2. Methodology

2.1. Aperture Function Method (AFM)

2.1.1. Aperture Interpolation Method. Rough rock fracture
surface morphology is complex and can be obtained by
using high precision laser scanning technology [19–21],
and the obtained data can well reflect the real fracture sur-
face morphology. For the obtained fracture surface data, let

the fracture surface undulation height be z and use x
and y to represent the fracture plane coordinates; then,
the fracture surface geometry can be represented by the
function z = gðx, yÞ in the Cartesian coordinate system.
The 3D scanned fracture surface is processed to form a list
of values that can be expressed by the function z = gðx, yÞ.
For subsequent calculations, the x-direction is set to move in
the shear direction. The upper fracture surface function is
gUðx, yÞ, and the lower fracture surface function is gLðx, yÞ.
To calculate the aperture between the two fracture walls,
the following equation can be used [22–24].

e x, yð Þ =
gU x + us, yð Þ − gL x, yð Þ + uv gU x + us, yð Þ > gL x, yð Þð Þ
0 gU x + us, yð Þ ≤ gL x, yð Þð Þ

(
,

ð1Þ

where eðx, yÞ is the upper and lower fracture wall aperture
functions, us is the shear direction displacement, and uv is
the normal displacement.

When eðx, yÞ does not correspond exactly to the spatial
coordinates ðx, yÞ of gUðx, yÞ (or gLðx, yÞ), it is necessary
to use the interpolation method to find the aperture value
at the desired spatial location. In Figure 1(a), the gi,j point

on the geometric slit surface corresponds to the ei,j′ point in
the aperture, but there is no aperture value at this point, so
the interpolation method is used to obtain the aperture value
at the ei,j′ point.

The fracture aperture is a function of the spatial coor-
dinates ðx, yÞ, so each of the four points can be expressed
as ðx1, y1, eðx1, y1ÞÞ, ðx1, y2, eðx2, y1ÞÞ, ðx2, y1, eðx2, y1ÞÞ,
and ðx2, y2, eðx2, y2ÞÞ (Figure 1(b)). If we want to get the
aperture value eðx, yÞ at a certain position in the middle of
the four points, we can use linear interpolation to estimate it:

First, interpolate x to find eðx, y1Þ and eðx, y2Þ:

e x, y1ð Þ = e x1, y1ð Þ ⋅ x2 − x
x2 − x1

+ e x2, y1ð Þ ⋅ x − x1
x2 − x1

,

e x, y2ð Þ = e x1, y2ð Þ ⋅ x2 − x
x2 − x1

+ e x2, y2ð Þ ⋅ x − x1
x2 − x1

:

ð2Þ

Then, use the same idea to find eðx, yÞ:

e x, yð Þ = e x1, y1ð Þ ⋅ y2 − y
y2 − y1

+ e x, y2ð Þ ⋅ y − y1
y2 − y1

: ð3Þ

The above equation gives the value of the aperture at any
position within the spatial distribution of the aperture. Each
point gi,j ðx, yÞ on the fracture wall grid can also be found
corresponding to the desired aperture value.

When discretizing the fracture numerical model, each
fracture wall grid point corresponds to a tiny geometric grid
cell. Each grid cell can find the corresponding fracture aper-
ture data, and within this cell, the aperture value is a given
value; then, the geometric grid cell and the aperture value
can form a tiny virtual flat flow model. For each tiny virtual
flat plate model, the fracture flow calculation can be per-
formed using the cubic law, and the overall view is an
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application of the local cubic law. Since the fracture surface
and fracture aperture values of each cell are a list of values
that vary with space, a rough fracture model with two walls
is formed. A triangular grid Figure 2(a) or a rectangular grid
Figure 2(b) can be used when the fracture data are discrete.

2.1.2. From the NS to the Local Cubic Law Equations. The
fluid flow in the fracture of the rock is very slow, and
neglecting the effect of inertial forces, the Navier-Stokes
(NS) equation can be derived from the [12, 25, 26] equation
for the fracture flow in the laminar flow state, i.e., the Reyn-
olds equation, also called the local cubic law.

The two-dimensional space is expressed as follows:

∂
∂x

ρge3

12μ
∂h
∂x

� �
+ ∂
∂y

ρge3

12μ
∂h
∂y

� �
= 0: ð4Þ

Substituting the aperture function eðx, yÞ into Equation
(4) yields a clearer expression of the equation [27].

∂
∂x

ρge3 x, yð Þ
12μ

∂h
∂x

� �
+ ∂
∂y

ρge3 x, yð Þ
12μ

∂h
∂y

� �
= 0, ð5Þ

where h is the hydraulic head, μ is the dynamic viscosity, ρ is
the fluid density, and g is the gravitational acceleration, and
eðx, yÞ is the aperture function. Figure 2 shows the meaning
of Equation (5) graphically by dividing the rough fracture
surface into a series of connected small parallel plates.

In this paper, the calculation method of using the aper-
ture function to characterize the aperture value and solving
the rough fracture flow based on the local cubic law is
referred to as the aperture function method (AFM).

2.2. Recirculation Zone in Fracture Seepage Flow. Lee et al.
[25], Zhou et al. [28], and Zhou et al. [7] found through
physical and numerical experiments that in the steady lami-
nar flow state, the fluid in the fracture will generate a recir-
culation zone (RZ) when flowing through the abrupt
change of aperture. The fluid in the RZ also consumes part
of the flow energy, and because the fluid in the RZ occurs
back on its own, it does not produce effective flow at the out-

let of the fracture. The size of the RZ is nonlinearly related to
the fluid flow rate and the fracture roughness procedure, and
its magnitude cannot be calculated using a simple equation.
In addition, Lee et al. [29] found experimentally that under
specific conditions, fluid can also produce slip phenomenon
at the fracture wall, which also affects the overall seepage
flow rate of the fracture.

In order to further verify whether a fluid RZ is generated
in the fracture model in this paper and to analyze whether
the RZ effect is a linear or nonlinear problem, with other
geometric and aperture conditions unchanged, a variety of
pressure boundary conditions are set, and two methods,
NS solution and AFM solution, are used to calculate and
compare, respectively, (Table 1). The JRC1 fracture model
inlets were applied with pressures ranging from 10Pa to
6000Pa (−dh/dl = 0:01 ~ 5:1) for a total of 52 submodels.
JRC3 fracture model inlets were applied with pressures rang-
ing from 10Pa to 890 Pa (−dh/dl = 0:01 ~ 0:76) for a total of
36 submodels. JRC6 fracture model inlets were applied
25Pa~650Pa pressure (−dh/dl = 0:02 ~ 0:55), respectively,
for a total of 26 sub-models. JRC9 fracture model inlets were
applied with 10Pa~1000Pa pressure (-dh/dl=0.01~0.85),
respectively, for a total of 34 submodels. The outlet pressure
of all fracture models is 0 Pa. The fluid density in the model
is 998.2 kg/m3, and the dynamic viscosity coefficient is
0.0010093Pa.s. The calculation software was carried out
using COMSOL Multiphysics finite element method.

2.3. Identification of Vortices in Seepage Flow. The phenom-
enon of vortices is prevalent in the fluid flow process. Intui-
tively, vortices represent the rotational motion of the fluid;
that is, where there is fluid rotation, there are vortices, and
conversely, where there are vortices, there is fluid rotation
[30]. In order to give a quantitative mathematical definition
of vortex, a parameterΩ is introduced, representing the ratio
of the size of the rotating part of the vortex to the size of the
total vortex, calculated as [31]

Ω = Bk k2F
Ak k2F + Bk k2F + ε

, ð6Þ

ei+1,j

eʹi,j
ei,j

ei,j+1

gi+1,j

gi,j

gi,j+1

x

y

z
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x

y

e (x1, y1) e (x2, y1)

e (x1, y2) e (x2, y2)

e (x, y)

(a) (b)

Figure 1: Schematic diagram of fracture aperture interpolation method: (a) schematic diagram of the relationship between the grid points of
the fracture wall and the grid points of the aperture; (b) solve the value of the aperture at a certain position (eðx, yÞ).
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where

Ak k2F =
∂u
∂x

� �2
+ ∂v

∂y

� �2
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� �2
+ 1
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1
2
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+ 1
2
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−
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+ ∂v
∂z

∂w
∂y

,

ð7Þ

where k kF represents the Frobenius parametrization of the
matrix, A is the symmetric part of the fluid velocity gradient
tensor, and B is the antisymmetric tensor (vorticity).

According to its physical meaning, it is obvious that Ω
takes values in the range 0 ≤Ω ≤ 1, which can be interpreted
as the concentration of vorticity, and more specifically, Ω

represents the rigidity of fluid motion, and when Ω = 1,
it represents the fluid doing rigid body rotation. When
Ω > 0:5 represents that the antisymmetric tensor B domi-
nates over the symmetric tensor A. Therefore, Ω slightly
larger than 0.5 can be used as the criterion for vortex identi-
fication. Liu et al. [31] proposes to use Ω = 0:52 to determine
the boundary of vortex.

3. Results

3.1. Analysis of AFM Calculation Results. In order to verify
the rationality of the AFM, this paper compares the physical
experimental results of rough fracture fluid flow completed
by Zhu et al. [16, 32]. The typical definition of rock fracture
roughness curve (JRC) in rock mechanics was adopted for
the experiment, and the 1st, 3rd, 6th, and 9th of these curves
were selected and combined with a smooth flat plate to form
four fracture models with different roughness, each with a
fracture length of 100mm and a minimum aperture value
of 0.51mm. The four models were numbered as JRC1,
JRC3, JRC6, and JRC9, respectively. Multiple experiments
were conducted for each artificial fracture sample, and the
pressure gradient and flow rate were averaged.

Based on the AFM, the numerical model of the four frac-
tures was completed and calculated using the finite element

x
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z

eʹi,j
eʹi+1,j

eʹi+2,j+1

Sub-fracture

Parallel plate

Virtual grid

(a)

eʹi,j eʹi+1,j
eʹi+2,j+1

Parallel plate

Sub-fracture

x

y

z

Virtual grid

(b)

Figure 2: Discretizing the rock fracture to the volumetric elements: (a) triangular discrete grid; (b) quadrilateral discrete grid.

Table 1: Basic information of JRC1, JRC3, JRC6, and JRC9 numerical models.

Solution
Number of
elements

Element number
ratio

Mesh size/m
Hydraulic gradients

(-dh/dl)
Number of
submodels

JRC1
NS 901791

8.76
3:97 × 10−8 ~ 1:33 × 10−5

0.01~5.1
52

AFM 102930 3:36 × 10−5 ~ 3:11 × 10−4 34

JRC3
NS 743377

4.9
3:58 × 10−7 ~ 3:1 × 10−5

0.01~0.76
36

AFM 151790 1:82 × 10−5 ~ 2:78 × 10−4 36

JRC6
NS 265772

3.41
9:83 × 10−7 ~ 8:52 × 10−5

0.02~0.55
26

AFM 77884 2:54 × 10−5 ~ 3:9 × 10−4 26

JRC9
NS 178900

3.3
1:80 × 10−7 ~ 6:04 × 10−5

0.01~0.85
34

AFM 54202 7:44 × 10−5 ~ 6:88 × 10−4 34
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numerical calculation software COMSOL Multiphysics. For
better display, all the 4 fracture curves are stretched along
the direction perpendicular to the hydraulic gradient in the
numerical model to form 4 fracture space surfaces.

Figure 3 shows the numerical model, the aperture spatial
distribution, and the fracture seepage field. It can be
observed from the figure that the seepage capacity of the
fracture is very obviously affected by the minimum aperture.
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Figure 3: (a, d, g, j) 4 fracture curves (stretched properly for display). (b, e, h, k) Spatial distribution of fracture aperture. (c, f, i, l) Each
numerical model fracture surface velocity distribution.
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The error values in Table 2 are calculated as

ε = qs − qc
qs

× 100%, ð8Þ

where ε represents the flow error, qs represents the experi-
mentally measured flow rate per unit width of the fracture,
and qc represents qp calculated according to the average
aperture and the cube law or qn calculated using the AFM.

Table 2 shows the comparison of different calculation
methods with experimental results. It can be seen that the
results calculated by the average aperture and the overall
cubic law deviate very much from the experimental mea-
sured results. When the fracture roughness increases, the
error of the overall cubic law calculation results is even
larger. The results calculated by the numerical model using
the AFM are in good agreement.

3.2. Comparison of the Results of AFM and NS Method. The
results of the flow calculated by the AFM are compared with
the results of the NS equation solution. We plotted the flow
rate variation curves with hydraulic gradient derived from
the two calculation methods and plotted the error curves
of the two calculation methods (Figure 4).

The error curve shows that the AFM calculation result
overestimates the permeability of the fracture, causing its
calculated flow rate to be large, which is consistent with
the results of Yeo et al. [9] and Bauget and Fourar’s study
[10]. The errors of NS and AFM calculations are small at
low hydraulic gradient and become larger as the hydraulic
gradient gradually increases, which is consistent with the
results of Oron and Berkowitz [11] and Zimmerman et al.
[13]. The increase of fracture roughness also increases the
flow error (the overall error of JRC9 model is the largest).
The flow error variation also shows a nonlinear variation
pattern, rather than a simple linear increase.

3.3. Recirculation Zone Analysis

3.3.1. Evolution of the Recirculation Zone. The comparison
of the flow results in Table 2 shows that the results calculated
by the AFM under the low hydraulic gradient conditions are

in good agreement, but there is still a certain degree of error.
The theory of fracture seepage calculation used in the AFM
is the local cubic law, which makes a linear relationship
between flow and pressure drop (corresponding to the
hydraulic gradient) because it ignores the effect of fluid
inertia forces. In contrast, Javadi et al. [17] considers the
pressure drop during the flow of fluid in a fracture as VPD
and LPD. VPD is due to fluid viscosity and can be calculated
using the cubic law.

LPD is the pressure drop (or energy loss) that occurs
when the fluid flows through a part of the fracture where
the aperture changes abruptly. When using the local cubic
law-based AFM for seepage calculations, the full LPD cannot
be calculated, which is the main reason for the deviation of
the AFM calculation results. Zhu et al. [16] and Liu et al.
[18] also found the phenomenon of LPD in their studies.
The RZ in the fracture flow is one of the important reasons
for the LPD. When using the NS solution method for
fracture seepage calculations, the extent of the RZ can be deter-
mined in the fracture model using streamlines. In this paper,
we take JRC3 and JRC6 models as examples to discuss the
evolution of RZ and the influence of RZs on fracture seepage.

Figures 5(a) and 6(a) are discrete mesh of the JRC3 and
JRC6 partial models, respectively. Figures 5(b) and 6(b) is a
schematic outline of the two models. Figures 5(c)–5(h) and
6(c)–6(h) show the streamlines in the fracture under the typ-
ical hydraulic gradient conditions of JRC3 and JRC6, respec-
tively, which can visualize whether there is a recirculation
zone or not. Under the low hydraulic gradient (JRC3, −dh/
dl = 0:13; JRC6, −dh/dl = 0:02) conditions, the fluid flow
velocity in the fracture seepage field is slow, and the inertial
force of the fluid has little influence, and no obvious RZ for-
mation is observed (Figures 5(c) and 6(c)). With the increase
of the applied hydraulic gradient, the influence of fluid iner-
tial force gradually increases, and small RZs appear in the
region of large changes in the fracture wall (Figures 5(f)
and 6(f)), and the range of RZs is small and has little influ-
ence on the mainstream zone. The further increase of
hydraulic gradient, the influence of fluid inertia force is fur-
ther revealed, not only to expand the range of RZ but also
the emergence of a number of RZs of different sizes, result-
ing in the narrowing of the mainstream zone, bending

Table 2: Comparative analysis of experiment results according to average aperture width and aperture interpolation function.

Specimen no. Ps/Pa qs/ 10−3 m2/s
� �

ep (mm) qp (m
2/s) ε qp

� �
/% qn/ 10−3 m2/s

� �
en (mm) ε qnð Þ/%

JRC1
486.50 0.165 0.91 0.268 62 0.185 0.773 12

98.20 0.035 0.91 0.054 55 0.037 0.773 7

JRC3
147.50 0.097 1.35 0.265 174 0.106 0.956 9

98.20 0.034 1.35 0.088 160 0.035 0.956 4

JRC6
290.20 0.187 3.30 7.623 3977 0.217 0.967 16

149.00 0.106 3.30 3.914 3593 0.112 0.968 5

JRC9
49.80 0.120 4.37 3.038 2432 0.139 1.499 15

29.90 0.081 4.37 1.824 2146 0.083 1.499 2

The subscript s represents the actual measurement result of the physical experiment; the subscript p represents the calculation result according to the average
aperture and the cube law; the subscript n represents the calculation results of AFM. εðqpÞ and εðqnÞ represent the error calculated by the flow rate.
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(Figures 5(g), 5(h), and 6(f)–6(h)). The RZ not only appears
on the side of the rough fracture wall but also produces
obvious RZ on the side of the smooth wall, which reflects
the strong influence of fluid inertia force. Figures 5(i), 5(j),
6(i), and 6(j) are local streamlines enlargement diagrams;
the arrows on the streamline show that the fluid in the RZ
is obviously refluxed and does not enter the main flow zone.
The fluid in the RZ consumes part of the energy of the frac-
ture flow and generates LPD, but it cannot generate effective
flow at the fracture outlet.

Figures 7 and 8 shows the variation of the fluid velocity
profile with hydraulic gradients on a cut line in the JRC3
and JRC6 fractures. When the hydraulic gradient is small,
the velocity distribution on the intercept line has a parabolic
shape; when the hydraulic gradient continues to increase,
the velocity profile has a bimodal shape due to the creation
of the RZ, reflecting the formation of the RZ.

The most classical mathematical description of nonlin-
ear flow of a fluid in a fracture is Forchheimer’s law [13, 33]

−∇p = μ

k
v + ρβv2, ð9Þ

where ∇p is the hydraulic gradient ∇p = ρg ðdh/dlÞ, v is the
average flow velocity of the fluid under hydraulic gradient
conditions v = q/eh, and k is the intrinsic permeability of
the fracture k = eh

2/12. β½m−1� is the inertial resistance coef-
ficient of the fluid, eh is the equivalent hydraulic aperture of
the fracture, μ is the viscosity coefficient of the fluid, and ρ is
the fluid density. It should be noted that k is the permeability
when the hydraulic gradient (−dh/dl) is tiny and the effect of
fluid inertial forces can be neglected. When the hydraulic
gradient increases, eh changes when there is the creation of
a RZ. The kðehÞ and the coefficient β can be obtained from
the applied hydraulic gradient and the flow fitting (Equation
(9)). The fitted equations of the Forchheimer equation for
the JRC3 and JRC6 models are labeled in Figure 9, respec-

tively, and the fitted curves are perfect, reflecting the phe-
nomenon that the nonlinear flow in the fracture becomes
progressively more pronounced with the increase of the
hydraulic gradient.

Reynolds number is a quantified parameter to compare
the proportional relationship between inertial and viscous
forces in the fluid, and for the fluid passing through the frac-
ture, the Reynolds number is calculated as [13]:

Re = ρvD
μ

= ρQ
μw

, ð10Þ

where v is the average flow velocity of the fluid in the frac-
ture, μ is the viscous coefficient of the fluid, ρ is the fluid
density, and D is the characteristic length in the flow system;
here, the average aperture of the fracture is taken. Q is the
fracture flow rate, and w is the width of the fracutre sample
perpendicular to the direction of the hydraulic gradient.

We calculated the Reynolds number for each hydraulic
gradient condition in the JRC3 and JRC6 fracture NS seep-
age model, respectively, and the variation of the Reynolds
number is represented as a curve (blue solid line in
Figure 9). The obtained Reynolds number can only indicate
the trend of increasing fluid inertia force with the hydraulic
gradient, but it does not tell the kind of conditions in which
significant nonlinear flow occurs.

In order to quantify the nonlinear flow, Javadi et al. [34]
and Zhou et al. [33] proposed to use the critical Reynolds
number (Rec) to make a judgment. Rec indicates the begin-
ning of the transition from fluid flow to non-Darcy flow
and can be defined as the Reynolds number when the per-
centage of nonlinear pressure drop (βρv2) to total pressure
drop (μv/k + βρv2) reaches the critical point α. Rec can be
obtained from the following equation.

Rec =
αeh

1 − αð Þβk , ð11Þ

where α = 5% and eh, β, and k are obtained from the
Forchheimer’s law fitting equations for the two models
JRC3 and JRC6. Using Equation (11), we obtained that
Rec = 109:27 (Figure 9(a)) for JRC3, corresponding to a
hydraulic gradient −dh/dl = 0:30 (Table 3) and Rec = 74:03
(Figure 9(b)) for JRC6, corresponding to a hydraulic gradient
−dh/dl = 0:16 (Table 3). Referring to the meaning of the crit-
ical Reynolds number, it can be considered that the hydraulic
gradient corresponding to the critical Reynolds number,
theoretically the fluid inertia force for the overall pressure
drop is equal to 5%; combined with the Equation (10) to
calculate the variation of Reynolds number, the smaller the
hydraulic gradient, the smaller the Reynolds number, the
impact of the inertia force is also smaller.

The critical Reynolds number (Rec) indicates the critical
point between linear and nonlinear flow in fracture flow.
The formation of the RZ is again an important factor for
the effect of nonlinearity in rough fracture flow. Therefore,
when the Reynolds number of fracture flow is less than the
critical Reynolds number (Rec), it is not easy to form the
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RZ or only a small RZ is formed, and the linear flow is dom-
inant at this time. And when greater than the critical Reyn-
olds number (Rec), the formation of obvious RZ, and with
the increase of hydraulic gradient and increase, the nonlin-
ear flow in the fracture flow is more significant.

3.3.2. The Effect of Recirculation Zone. In order to further
study the influence of RZ on fracture seepage, we analyze
the area occupied by the RZ and the kinetic energy of fluid
in the RZ, respectively. The extent of the RZ is difficult to
be directly defined, but there must be a velocity vector in
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the RZ that is opposite to the main seepage direction. The
main seepage direction of all models in this paper is the x
-direction, i.e., the range of velocity u < 0 in the x-direction
is part of the RZ. According to the interrelationship between
the velocity vector and the flow line in Figure 10, it is found
that the range of u < 0 can be approximated to half of the
area of the RZ. The area of u < 0 under a certain hydraulic
gradient is calculated and taken as two times its size as the
area of the RZ, although there is a certain deviation from
the real RZ area, but it can reflect the RZ area change law.

The fluid in the RZ for circular flow, its internal fluid
kinetic energy is calculated using a similar method. Calculate
the kinetic energy of the fluid with velocity u < 0 in the x
-direction and then multiply it by 2 as the total kinetic
energy of the fluid in the RZ. Then, analyze the law of kinetic
energy change in the RZ. The kinetic energy of the fluid is
calculated as follows:

EΩ =
ð
Ω

ρΔVU2

2 dV , ð12Þ

where E is kinetic energy, Ω is the area of RZs, ρ is fluid den-
sity, U is fluid flow velocity (scalar), and ΔV is element
volume.

The main purpose of this paper is to analyze the propor-
tion of the RZ area to the total fracture area and the change
of the proportion of the kinetic energy of the RZs to the total
kinetic energy of the fluid. The influence of the RZs is ana-
lyzed according to the proportional change curve. The calcu-
lated results of solving the NS equation for four models,
including JRC1, JRC3, JRC6, and JRC9, are counted to show
the area of the RZs, the ratio of kinetic energy to total area,
and total kinetic energy under each hydraulic gradient, and
the change curves are plotted.

The JRC3 model is used as an example for illustration
(Figure 11(a)). The hydraulic gradient of JRC3 fracture
model ranges from 0.009 to 2.55, and the ratio of the RZ area
to the total area is 0.06% to 12.02%. With the increase of the
hydraulic gradient, the percentage change of the RZs area is
very obvious. The proportion of the kinetic energy of the RZ
area to the total kinetic energy is 0.0002%~ 0.21%. The
kinetic energy percentage is much lower compared to the
area, and under the condition of small hydraulic gradient,
the effect of kinetic energy in the RZs can even be ignored.
The remaining three models JRC1, JRC6, and JRC9 have
similar characteristics (Figures 11(b)–11(d)).

Therefore, it can be considered that the main effect of the
RZs on the rough fracture seepage is that the fluid occurs
back in the RZ by itself and does not produce an effective
flow at the fracture outlet. The fluid flow in the RZs is slow,
and the loss of kinetic energy of the fluid in the fracture is
not significant. However, the RZs squeeze the seepage chan-
nel of the fracture, resulting in the reduction of the actual
seepage capacity of the fracture. The area occupied by the
RZ increases with the hydraulic gradient and shows a non-
linear variation.

In addition, the area of RZs and the proportion of kinetic
energy do not increase infinitely with the increase of
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hydraulic gradient, but gradually reach a peak, and then sta-
bilize or slightly decrease. And the rougher the fracture is,
the easier it is to reach the peak. In terms of the peak area
share of the RZ, the four models JRC1, JRC3, JRC6, and
JRC9 reach the peak at the hydraulic gradient of 5.1, 1.68,
0.76 (presumed), and 0.57, respectively.

3.4. Analysis of the Effect of Vortices. The RZ is circled
according to the shape of the streamline, and its shape is
influenced by the number of streamlines and the calculation
method of the flow line. The RZ is intuitively seen as a back-
flow or rotation of the fluid, which is similar to the physical
concept of a vortex. However, the vortex determined accord-
ing to a strict mathematical definition differs significantly

from the RZ (Figure 12). Vortices are generated near the
fracture wall, inside the RZ, at the transition between the
reflux and main flow zones, or even within the main flow
zone. That is, when there is a velocity difference within the
fluid, vortices may be generated. Figure 12 shows that the
range of vortices also includes part of the mainstream zone;
that is, there is also local fluid rotation within the main-
stream zone. This part of the vortex is different from the
RZ; it will lose part of the fluid energy but at the same time
can produce effective flow.

To further analyze the effect of vortices on the seepage in
the fracture, the value of the vortex parameter Ω in the fluid
within the fracture is calculated using Equation (6), and the
kinetic energy of the fluid in the range Ω ≥ 0:52 is calculated
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Figure 9: (a) JRC3 model. (b) JRC6 model. Solid lines refer to the fitting curves using the Forchheimer equation, while the dashed lines refer
to that using Darcy’s law.

Table 3: Main calculation results of JRC3 and JRC6 numerical models.

Solution
Calculation
duration/s

Calculate duration
ratio

ε qnð Þ/% Critical Reynolds
number Rec

Hydraulic gradients corresponding to
Rec/(-dh/dl)

JRC1
NS 169415

8916.58 -0.26~ 14.34 143.06 0.39

AFM 19 — —

JRC3
NS 176712

6311.14 0.15~ 29.12 109.27 0.3

AFM 28 — —

JRC6
NS 58665

7333.13 0.73~ 32.47 74.03 0.16

AFM 8 — —

JRC9
NS 14772

1641.33 -1.78~ 36.21 39.6 0.0845

AFM 9 — —

Recirculation zone boundary

x

Recirculation zone

Figure 10: The magenta line represents the streamline; the blue arrow represents the velocity vector in the x-direction of the model; the gray
shaded part represents the area where the velocity in the x-direction is less than 0.
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using Equation (12), along with its percentage of the total
kinetic energy. Then, the variation of total kinetic energy,
intravortex kinetic energy, and the proportion of intravor-
tex kinetic energy of the fluid is shown as curves using
the hydraulic gradient as the horizontal coordinate.
Figure 13 shows the curves for the four fracture models.
It can be seen that (a) the intravortex kinetic energy
increases nonlinearly with the hydraulic gradient. (b) The
variation of intravortex kinetic energy ratio is much more
complicated. When the fluid Reynolds number is smaller
than the critical Reynolds number (Rec), the intravortex
kinetic energy ratio shows a decreasing trend. (c) The pro-
portion of kinetic energy in the vortex first decreases, then
rises, and then the curve changes to a smooth, indicating
that the kinetic energy in the vortex is not completely lost
energy, and the fluid in the vortex both rotational motion,
but also with the mainstream of the flat motion. (d) Com-
pared with the proportion of kinetic energy in the RZ, the
proportion of kinetic energy in the vortex is significantly
larger. In the JRC1 model, for example, the highest is
22.16%, and the lowest is 14.85%, so it is obvious that the
proportion of kinetic energy in the vortex is much larger
and has a greater impact.

4. Discussion

For the rough fracture seepage model, it is obvious that solv-
ing the NS equation directly can reflect the nonlinear flow
state in the fracture more accurately; for example, the fit of
Forchheimer equation is very high, and the corresponding
calculation results are more accurate. However, its disadvan-
tage is also very obvious; that is, the computational effort is
very large. In comparison, the computational efficiency of
AFM is much higher than the former.

Comparing the four models, the number of discrete ele-
ments of the model is much larger than that of AFM when
solving the NS equation directly (Table 1). This is because
AFM only needs to discrete one fracture wall surface. The
former has 8.76 times, 4.90 times, 3.41 times, and 3.3 times
more than the latter (Table 1).

Numerical calculations were performed using the same
computer (CPU: Intel(R) Xeon(R) CPU E5-1620 v3, RAM:
16G); the difference in computational efficiency between the
two is huge. The JRC1, JRC3, JRC6, and JRC9 models took
169415 s, 176712 s, 58665 s, and 14772 s, respectively, to solve
the NS equations (Table 3), while the computation time using
AFM was 19 s, 28 s, 8 s, and 9 s, respectively (Table 3).
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Figure 13: (a) JRC1 model; (b) JRC3 model; (a) JRC6 model; (b) JRC9 model. The solid blue squares represent the total kinetic energy in the
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The huge computational efficiency advantage of AFM can
complete more model computation work in a short time.
Because the calculation time-consuming of a single rough
fracture model is very short, the seepage calculation of a com-
plex three-dimensional spatial rough fracture network (e.g., a
fracture network composed of thousands of rough fractures)
can be completed using only an ordinary computer, which is
one of our future works. In addition, the geometric model of
AFM requires only one fracture wall surface, and themodeling
process of numerical model is simpler, while the aperture data
can be produced more quickly with the help of third-party
software or programming.

From this point of view, the huge numerical calculation
efficiency of AFM can offset the impact of its calculation
error, and the error is not significant at low Reynolds num-
ber conditions. This will help researchers to carry out
seepage calculations and research work on large scale rock
fracture networks.

5. Conclusions

From the above analysis and description, we can get several
conclusions as follows.

(1) Under the low Reynolds number condition, the
numerical calculation work of seepage flow in rough
fractures can be done by using the AFM, but the cal-
culation results will produce some small errors

(2) Due to the abrupt change of the fracture wall to pro-
duce recirculation zone (RZ), the main effect of RZ is
that it crowds the main flow range, making the effec-
tive seepage channel of the fracture narrower. The
area of the RZs is related to the hydraulic gradient
and varies nonlinearly. In addition, the fluid motion
inside the RZ is slow, and the loss of kinetic energy
of the fluid is not large, accounting for a small pro-
portion of the overall kinetic energy

(3) In addition to the RZ in the rough fracture, vortices
are formed, i.e., local fluid rotation. Vortex and RZ
area are very different, the fluid in the vortex loss
of kinetic energy, but can produce effective flow,
and its changes are more complex

(4) Using the local cubic law to solve the rough fracture
seepage flow, the main source of error in the calcula-
tion results is the LPD. The LPD in fracture seepage
includes the area crowding in the RZ, kinetic energy
loss in the RZ, kinetic energy loss in the vortex, and
pressure drop caused by other reasons

(5) The main advantage of AFM is the efficiency of its
numerical calculation. Based on this advantage,
AFM can quickly complete the numerical calculation
of a huge number of 3D rough fracture networks

Strictly speaking, the fracture model in this paper is a
single-wall rough fracture model, which has some shortcom-
ings of its own; for example, the nonuniformity and anisot-
ropy of the fracture are not sufficiently reflected. This is

mainly due to the need to be consistent with the fracture
physical model for comparative analysis. These will be
improved gradually in our subsequent studies.
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