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In this study, stress solution for rock mass containing two rectangular openings was calculated based on the Schwarz
alternating method to investigate the stress distribution in rock mass around openings with different layouts. In addition,
large-scale numerical models were further established for the two-opening system by means of the PFC-FLAC coupling
method, in which the stress evolution, failure patterns, and acoustic emission (AE) events were presented. With the
combination of analytical and numerical solutions, the interaction mechanism between two openings under different
layouts was discussed from the perspective of stress and failure. The result shows that the confining stress within a certain
range contributes to relieving tensile stress concentration around openings. The stress condition within the connecting area
and coalescence pattern between two adjacent openings is dominated by their layout. Compared with small-size rock
specimens in laboratory tests, the failure patterns around openings show a better agreement with the stress concentration
characteristics determined by analytical stress solutions.

1. Introduction

There exist a large number of openings with different shapes
and sizes underground in various mines, like roadways and
tunnels in service and goafs waiting for filling or which have
been abandoned, which may present potential environmen-
tal issues and security risks. Under high geostress, rock mass
around openings or flaws may be subjected to high stress
concentration, which may lead to initial failure triggering
the instability of rock structures [1–8].

The analytical solution and failure behaviour for rock mass
containing a circular opening have been comprehensively
investigated by a wide range of literature. It has been reported
that there are three kinds of failure, namely, tensile cracks, spal-
ling cracks, and far-field cracks within the rock mass [9–11].
Under uniaxial compressive conditions without confining

stress, the initial tensile cracks usually appear in the top and
bottom of the openings, which are tensile stress concentration
areas. Spalling cracks appear around the side walls of the open-
ings because of high compressive stress concentration. Similar
failure patterns also happened to rock mass containing a non-
circular opening reported by other studies [12].

In addition, the analytical stress solution for plates con-
taining a single opening has been also comprehensively
investigated to explain the mechanical behaviour of rock
mass around the opening by a lot of studies [13–18]. Based
on the complex variable method, stress solution for elastic
plates containing an opening with typical shapes, such as
circular, elliptical, triangular, and rectangular shapes, has
been calculated by Ukadgaonker and Awasare [19–21],
Ukadgaonker and Rao [22], and Sharma [23]. Combining
analytical solution and laboratory test, Wu and Ma [12]
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calculated the stress concentration factor on the periphery of
a horseshoe-shaped opening and discussed its effect on the
failure patterns of rock specimens. Tan et al. [24] considered
six kinds of holes with typical shapes in practical rock
engineering and discussed the shape effect on stress distribu-
tion and failure patterns around the openings based on the
analytical solutions combined with numerical and experi-
mental results.

When there exists more than one opening within an area
underground, the adjacent openings may change the stress
distribution around an opening significantly and thus lead
to complicated failure patterns [25]. The interaction between
two openings has also been discussed by many studies from
the perspective of analytical stress solution. Zhang et al. [26,
27] proposed a method to calculate stress solution for plates
containing two or more openings with arbitrary shapes
based on the Schwarz alternating principle. This method
was further improved by Tan et al. [28] for a better solution
accuracy, based on which the effects of opening layouts and
confining stress on the stress distribution and failure pat-
terns for two U-shaped openings and two arched openings
were investigated, respectively. Besides analytical solutions,
laboratory experiments for rock specimens containing two
or more flaws or openings have also been widely carried
out to understand the mechanical interaction mechanism
between two defects. Zhou et al. [29] conducted uniaxial
compression tests combined with acoustic emission (AE)
and digital image correlation (DIC) techniques and then
analyzed the fracture coalescence behaviour around marble
specimens containing two rectangular openings. Zhao et al.
[30] conducted a series of uniaxial compressive tests on rock
specimens containing several circular openings and found
that openings were strongly affected by each other with com-
plicated failure patterns. Similar results were also presented
by Lin et al. [31] when studying the crack initiation and coa-
lescence patterns within rock specimens containing multiple
openings under uniaxial compression. It can be concluded
that the fracturing behaviour and specimen stability are sig-
nificantly affected by opening layout including their distance
and the connecting angle between them. However, in labora-
tory tests, the size of specimens is usually small relative to
openings within them, which may lead to a strong boundary
effect interfering with the mechanical behaviour of rock
mass around openings. To address this problem, numerical
modelling methods have been widely employed, which can
avoid the boundary effect on interesting areas by establishing
a large-scale numerical model. Among them, the finite ele-
ment method (FEM) and finite difference method (FDM)
are popular in terms of the solution for deformation prob-
lems in rock engineering but are not good at describing
material fracturing behaviour. The discrete element method
(DEM) is another leading numerical method dealing with
rock failure problems, but DEM numerical modelling may
give rise to huge calculation costs for the problem about a
small interesting part in a large model with a great number
of particles. In view of this, coupling the DEM method with
the FEM method or FDM method is an interesting alterna-
tive promising the solution accuracy for mechanical behav-
iour of rock mass close to the opening within a large

model with little effect from the model boundary. In partic-
ular, coupling simulation with particle flow code (PFC) and
fast Lagrangian analysis of continua (FLAC) has been widely
used in rock engineering [32–34].

In this study, analytical solutions as well as numerical
simulations were conducted for a better understanding of the
stress distribution and mechanical behaviour of rock mass
around openings under a large-scale area. The influence of
the connecting angle of two adjacent openings on stress
distribution was discussed based on the analytical stress
solutions calculated by the Schwarz alternating method. This
influence on the failure patterns of surrounding rock mass
was further investigated based on PFC-FLAC coupling
numerical simulations.

2. Analytical Stress Solution of Plates
Containing a Single Opening

2.1. Mapping Function. Rock mass around openings in deep
mines underground can usually be simplified to be an infi-
nite elastic plate [35, 36]. With conformal mapping, the
region outside a unit circle in the ζ-plane can be mapped
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Figure 1: Schematic diagram of a plate containing two openings.
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Figure 2: Schematic diagram of the configuration of two
rectangular holes.
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Figure 3: Continued.
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onto a simply connected region outside an opening in the
z-plane by a mapping function in the following form:

Z = ω ζð Þ = 〠
∞

k=1
Ckζ

2−k, ð1Þ

where Ck = Ak + iBk. Both Ak and Bk are real constants.
With Ck truncated tom terms, the mapping function can

be written as

Z = ω ζð Þ = 〠
m

k=1
Ckζ

2−k: ð2Þ

For m points on the unit circle in the ζ-plane with coor-
dinates of ð1, θjÞ, the coordinates of their mapping points are
ðr j, αjÞ in the z-plane. According to the orthogonality of trig-
onometric functions, Ak and Bk can be calculated by [37, 38]

Ak =
1
m
〠
m

j=1
r j cos αj cos k − 2ð Þθj

� �
− rj sin α j sin k − 2ð Þθj

� �� �
,

Bk =
1
m
〠
m

j=1
rj cos α j sin k − 2ð Þθj

� �
+ rj sin α j cos k − 2ð Þθj

� �� �
:

8>>>>><
>>>>>:

ð3Þ

By sampling 2n points uniformly on the unit circle in the
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Figure 3: Hoop stress around Hole 1 in different cases: (a) α = 0°; (b) α = 15°; (c) α = 30°; (d) α = 45°; (e) α = 60°; (f) α = 75°; (g) α = 90°.
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ζ-plane, the sampled points in two groups σe,j ð1, θe,jÞ and
σo,j ð1, θo,jÞ can be expressed as

θe,j =
2πj
n

,

θo,j =
π 2j − 1ð Þ

n
,

8>><
>>:

 j = 1, 2, 3,⋯, n: ð4Þ

By keeping submitting σe,j and σo,j into Equation (3)
alternately and moving the calculated mapping points into
the opening boundary during iterations, the optimal values
of Ak and Bk can be quickly determined once the conver-
gency is reached. For a rectangular opening whose size is

0 15 30 45 60 75 90

α/°

σ
θ
/M

Pa

2.0

1.5

1.0

0.5

0.0

𝜆 = 1.0
𝜆 = 2.0

𝜆 = 0.0
𝜆 = 0.5

(c)

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0

0 15 30 45 60 75 90

α/°

σ
θ
/M

Pa

𝜆 = 1.0
𝜆 = 2.0

𝜆 = 0.0
𝜆 = 0.5

(d)

Figure 4: Hoop stress at monitoring points: (a) point A; (b) point B; (c) point C; (d) point D.

Figure 5: Schematic diagram of an approach of FDM-DEM.
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40 × 20 (width × height), the optimal mapping function cal-
culated by this method can be expressed as

ω ζð Þ = 17:422ζ + 5:354ζ−1 − 2:531ζ−3 − 0:436ζ−5 + 0:083 × 10−3ζ−7
h i

:

ð5Þ

2.2. Principles of Schwarz Alternating Method. As shown in
Figure 1, there is an infinite plate containing two openings,
namely, Hole 1 and Hole 2. Mapping functions for them
are Z1 = ωðζ1Þ and Z2 = ωðζ2Þ, respectively. Two coordinate
systems, namely, the x1O1y1 coordinate system and x2O2y2
coordinate system, are defined in the plate. The origin of
the former one is the centroid of Hole 1, and that of the later
one is the centroid of Hole 2. For a point whose coordinate is
z1 in the former coordinate system and z2 in the later one,
the relation between them is z1 = z2 + c.

The stress solution for the plate is calculated according
to an improved Schwarz alternating method [28]. When
there is only a hole (Hole 1) in the plate, the boundary stress
condition can be expressed as [22]

φ0 σð Þ + ω σð Þ
ω′ σð Þ

φ0′ σð Þ + ψ0 σð Þ = −2Bω σð Þ − B′ − iC′
� �

ω σð Þ:

ð6Þ

The two complex stress functions φð0Þ
1 ðζÞ and ψð0Þ

1 ðζÞ for
the plate containing Hole 1 can be expressed as [39]

φ
0ð Þ
1 ζð Þ = Bω ζð Þ + φ0 ζð Þ,

ψ
0ð Þ
1 ζð Þ = B′ + iC′

� �
ω ζð Þ + ψ0 ζð Þ:

8<
: ð7Þ

B, B′, and C′ are constants relating to the far-field stress
condition, which are expressed as

B =
σ∞x + σ∞y

4 ,

B′ =
σ∞y − σ∞

x

2 ,

C′ = τ∞xy ,

8>>>>>><
>>>>>>:

ð8Þ

where σ∞x , σ∞y , and τ∞xy are far-field vertical stress, horizontal
stress, and shear stress, respectively.

The surface force on the suppositional boundary of
unexcavated Hole 2 caused by Hole 1 can be calculated by

f 12 σ2ð Þ = φ0
1 γ1ð Þ + ω1 γ1ð Þ

ω1′ γ1ð Þ
φ0
1′ γ1ð Þ + ψ0

1 γ1ð Þ, ð9Þ

where σ2 is a point on the boundary of the mapping unit cir-
cle in ζ2 plate for Hole 2 and γ1 is its corresponding point in
ζ1 plate.

The coordinate transformation from σ2 to γ1 is realized
by s series of steps. Firstly, σ2 is transformed into t2 in the
Z2 plate by the mapping function z2 = ω2ðσ2Þ. Next, t2 in
the x2O2y2 coordinate system into η1 in the x1O1y1 coordi-
nate system via η1 = t2 + c. The last step is the transforma-
tion of η1 into γ1. Zhang and Lu [27] realized this
transformation with the employment of inverse mapping
function. Though it is feasible, this method may cause an
evitable solution error. Alternatively, the optimization
method suggested by Tan et al. [28], which promised little
error of the coordinate transformation, is used in this study.

Figure 6: Schematic diagram of FDM-DEM numerical modelling.

d

α

Figure 7: Layouts of two openings in different numerical models.
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In the first iteration, the boundary stress condition can
be expressed as

φ
1ð Þ
2 σ2ð Þ + ω2 σ2ð Þ

ω2′ σ2ð Þ
φ

1ð Þ
2 ′ σ2ð Þ + ψ

1ð Þ
2 σ2ð Þ = −f 12 σ2ð Þ: ð10Þ

The stress function φ1
2ðζ2Þ and ψ1

2ðζ2Þ at the first itera-

tion are the combination of φ0
2ðζ2Þ and φð1Þ

2 ðζ2Þ and that of

ψ0
2ðζ2Þ and ψð1Þ

2 ðζ2Þ, respectively.
In the next iteration, the redundant surface force around

the boundary of Hole 1 is calculated by the current stress
functions. Then, the iterations will be conducted alternately
until the desired solution accuracy is achieved.

2.3. Calculation Models. Based on the method introduced
above, the stress solutions for plates containing two rectan-
gular holes with different contacting angles are conducted
and analysed. The schematic diagram of the two-hole system
is shown in Figure 2. σ∞

x was set as 1MPa. The hole
shape, size, and configuration are the same as those in
the DEM simulations.

As shown in Figure 3, under the influence of the adjacent
hole, shear stresses at the periphery of Hole 1 were no longer
at symmetrical patterns. Such asymmetry is not obvious with
the connecting angle of 0°. However, when the holes’
connecting line is oblique, the difference between the stress
on the side closer to the adjacent hole and on the other side
is notable.

Combining Figure 3 with Figure 4 shows that, for mon-
itoring points A and B which are closer to the adjacent hole,
notable fluctuations of hoop stress are observed with the
increase of the connecting angle. In contrast, hoop stress at
points C and D which are further from the adjacent hole is
relatively flat, indicating that they are less affected by the
connecting angle.

This phenomenon demonstrates that interactive effects
between adjacent holes mainly concentrate on the connect-
ing area. With a lateral stress ratio of 0, roof and floor
regions of Hole 1 are in intensified tensile stresses; when
the lateral stress ratio rises up to the range of 0.5 to 1.0,
the intensification level of tensile stress around holes drop
dramatically. This illustrates that, under confining condi-
tions, stability of the hole system will be considerably
improved with the axial stress ratio being at a reasonable
range. Nonetheless, when the axial stress ratio reaches 2.0,
tensile stress intensification will reoccur at parts of the

hole system, and continuous increasing of the axial stress
ratio will impose negative effects on the stability of the
hole system.

When λ is 0, tensile stress around Hole 1 is at its roof or
floor, which reaches the maximum when the connecting
angle is 45°. Accordingly, the stability of the hole system is
minimized, and the initial failure is mainly characterized
by tensile cracks at the roof of Hole 1 and the floor of Hole
2. Then, with connecting angle increasing, tensile levels
gradually decline. When the connecting angle reaches 75°,
stress at the roof of the hole converts to be compressive,
while that at the floor remains tensile on relatively stable
levels, which indicates that initial tensile failures might occur
at the floor of Hole 1 or the roof of Hole 2.

3. DEM-FDM Coupling Numerical Modelling

3.1. Principles of DEM-FDM Coupling Numerical Modelling.
The discrete element method (DEM) has been used widely
for studying the mechanism of rock’s deformation and fail-
ure characteristics microscopically in the field of rock and
soil mechanics, for it can reflect physical phenomena such
as rock mass failure and fracture propagation [40, 41]. The
computing efficiency of DEM, however, compares unfavour-
ably with the finite element method (FEM) or finite differ-
ence method (FDM) based on the continuous medium
mechanics theory. When the model includes excessive parti-
cles, DEM is inappropriate for simulating large-scale rock
engineering; the computation may be time-consuming and
requires powerful computing capability that PC cannot
afford. Whereas its limitation, a discrete-continuum method
was adopted [42]. The surrounding rock mass around open-
ings in the desired study area was stimulated by PFC, while
other regions by FLAC, which combines virtues such as
failure accuracy of DEM and time-saving of FDM.

The basic principle of PFC/FLAC coupling is the
exchange of data including forces and velocities between ele-
ments from FLAC and particles from PFC along the inter-
faces. The communication between the codes of PFC and
FLAC is achieved by FISH socket connection that resembles
TCP/IP transmission over the Internet. It allows the
exchange of data in FISH arrays in binary on the same
machine or two different machines on the same network
without the defect of data loss. A dominant approach of
PFC/FLAC coupling described by the Itasca consulting
group, shown in Figure 5, has been adopted by the majority
[43]. In this approach, the data structure that supports

Table 1: The mesoparameters of numerical models in PFC.

Particle parameters Parallel bond parameters
Ec 3.0GPa Effective modulus �E 3.0GPa Bond effective modulus

kn/ks 1.0 Ratio of particle normal to shear stiffness �kn/�ks 1.0 Ratio of normal to shear stiffness of the parallel bond

μ 0.577 Particle friction coefficient �σ 25.0MPa Tensile strength of the parallel bond

Rmax 0.75m The maximum particle radius �τ 15.0MPa Shear strength of the parallel bond

Rmin 0.5m The minimum particle radius

ρ 2.5 g/cm3 Particle density
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communication is defined as a segment list. Each segment
corresponds to the edge of a FLAC zone along the inclusion
boundary. A set of controlled particles is identified in
PFC2D by finding the particles that intersect the segments,
and each controlled particle is associated with only one seg-
ment. The time steps in both codes are identical, which is
achieved by running FLAC in static mode and PFC2D with
differential density scaling. When a computing cycle com-
pletes, the forces at the segment end points are applied
directly to the corresponding FLAC grid points and the
velocities of the FLAC grid points are passed to PFC2D via
the corresponding segment end points; the linear interpola-
tion procedure is used to map these velocities to the PFC2D
controlled particles.

The approach above requires neither special modelling
skills nor small-sized mesh around the boundary, making
PFC/FLAC coupling convenient as well as reducing the
number of meshes in the FLAC model. The basic precondi-
tions for this approach, however, are that data along the
boundary should be linear distribution rather than erratic
fluctuation. It is achievable only if the boundary is far
enough from the source of stress disturbance (such as goaf
underground), which means that the size of the PFC model
should be large enough to realize PFC/FLAC coupling with
acceptable coupling precision. In view of this, as shown in
Figure 6, a refined approach that transfers the data exchange
mode from “segment-particle” to “grid-particle” was pro-
posed. Regular particles were created one by one along the
boundary, which accurately matched to certain grids on
the other side. Instead of being calculated by the linear inter-
polation algorithm, the velocities set in each particle were
derived from unique corresponding grids during the data
exchange process. Though this approach requires higher
mesh density in FLAC as well as complex PFC modelling
approaches, the increased meshes in FLAC have limited
effects on computing speed since FDM, showing an effi-

ciency advantage over DEM, was applied by FLAC. In the
actual test, the particle number in PFC is responsible for
much of the long computing time of FDM-DEM coupling
simulation while the mesh number in FLAC for little. This
approach reaches the maximum coupling precision under
the condition that the particle number is determined, with
computing time considered at the same time.

3.2. Numerical Models. The layout of two rectangular open-
ings is illustrated in Figure 7. The distance between two-hole
centroids d = 20m. The connecting angle α is defined as the
angle of the line segment between centroids of two holes
with respect to the horizontal direction.

Figure 7 illustrates the layout of two rectangular open-
ings in numerical models. Combined goafs in model 1 were
on the same horizontal plane. The connecting angle α is the
angle of the line segment between centroids of two holes
with respect to the horizontal direction. In this study, con-
necting angles from 0° to 90° with an interval of 15° are con-
sidered. The size of the rectangular opening and of the DEM
models is 40m × 20m and 120m × 120 ðlength × widthÞ,
respectively. The shortest distance d between two openings
is 1m. The mesoparameters of numerical specimens are
listed in Table 1.

3.3. Stress and AE Characteristics. Acoustic emission (AE)
activity is closely related to evolution and propagation of
rock defects. Recording AE numbers of goaf models during
the failure process under compression can provide signifi-
cant information about the goaf’s instability behaviour,
which is conducive to revealing the failure mechanism of
rock mass around openings. In numerical simulation, AE
events originating from material failure can be accessed by
tracking bond breakage between particles. Particles are asso-
ciated with each other by a defined bond between them.
When the bond strength of contact is overcome, strain
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Figure 8: Stress curves and AE numbers of numerical specimens.
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energy stored in the particle contacts will be released as
kinetic energy in the form of a seismic wave that could be
an indication of an AE activity, based on which, the simula-
tion of AE can be reached [44]. This method has been widely
adopted in the field of rock mass engineering. Although the
particle size and number are limited by the computing capa-
bility of computers, AE characteristic in rock revealed by
PFC numerical simulation is consistent with that revealed
by laboratory tests, which is very significant to the study of
AE behaviours in rock under different conditions [45].

The stress condition at the DEM model boundaries is
relatively stable, which cannot reflect the stress change in
the rock mass around the openings. The stress of a monitor-
ing point, which is 60m right above and away from the mid-
dle point of the line segment between the centroids of the
two openings, was recorded. The stress curves as well as
acoustic emission numbers obtained in the simulations on
different models are shown in Figure 8. At the stages of
initial loading, each model is mostly in linear elastic defor-
mation, with little AE events observed. Then, AE events
become more and more frequent with slight stress curve

fluctuation in the prepeak stage. Some typical points with
significant AE burst and stress change are marked in each
curve. It can be seen that there is an obvious correlation
between AE event and stress evolution. Almost every AE
burst happens with corresponding stress fluctuation, which
may indicate sudden appearance of failure within rock mass.
Large numbers of AE events emerged in the postpeak stage
with intensive failure, but because of the confinement of
the far-field rock mass, postpeak stress remains stable to
the end of calculation.

3.4. Failure Patterns. The ultimate failure patterns around
openings with three representative connecting angles are
plotted in Figure 9. When two openings exist at the same
horizontal level (α = 0°), cracks initiate at the top of the con-
necting area between them. Then, intensive failure appears
in the connecting area, indicating that the connecting area
lost its bearing capacity. Tensile cracks initiate at the top
and the bottom of the damaged connecting rock mass,
respectively, and propagate along the loading direction. At
the same time, failure is observed in the corners of the

(a) α = 0° (b) α = 45°

(c) α = 90°

Figure 9: Representative failure patterns of numerical models containing two openings.

12 Geofluids



openings. Later, tensile cracks from the damaged pillar con-
tinue to develop; both side walls of the goaf are squeezed to
deform and spalled subsequently, resulting in sloughing at
last. Lots of failure appears around openings and causes
the instability of the surrounding rock mass. When α = 45°,
failure only exists in a narrow area between the floor of the
upper goaf and the roof of the lower goaf; adjacent side walls
between two openings (the left side wall of the upper goaf
and the right of the lower) both remain almost intact. When
θ = 90°, failure forms at the side walls of the lower opening
and spreads around them. Inclined cracks from the failure
zone are observed. All the failure zones, however, mainly
concentrate around the lower opening, contrary to what
happened to the upper goaf, the region around which
remains almost intact with only little failure near the
opening’s corners.

The analytical stress solutions around Hole 1 for the
three representative kinds of two-opening systems under
uniaxial compressive stress conditions, whose failure pat-
terns are given in Figure 9, are plotted in Figure 10. It can
be seen that compressive stress concentration appears at
opening corners and tensile stress is observed in the roof
and floor of the openings in all cases, but stress distribution
and concentration level vary from case to case. When the
connecting angle is 0° or 90°, two openings are symmetrical
to each other about X or Y axis. Accordingly, the stress in
the two-opening system also shows symmetrical distribu-
tion. When the connecting angle is 45°, the stress concentra-
tion at the upper left corner of Hole 1 close to the adjacent
hole is much stronger than that in the two-opening system
with other connecting angles. Combining Figures 9 and 10
shows that when α = 0°, the highest compressive stress concen-
tration appears in the connecting area, which leads to the
coalescence between two openings. In contrast, when α = 90°,
the stress around the connecting area is relatively lower than

that in other areas and no failure is found in this area in
numerical simulation.

4. Discussion

This study emphasizes the stress distribution and failure pat-
terns of rock mass surrounding openings within a large-scale
area without model boundary effect. As the numerical model
size is much greater than the opening size, the failure pat-
terns of rock mass around openings in numerical models
are in line with the stress concentration areas determined
by analytical stress solutions. Though rock mass is a kind
of elastic-plastic material, for hard rock with strong brittle-
ness, it is mainly subjected to elastic deformation in the pre-
peak stage. Therefore, the analytical elastic solutions for
plates containing openings can be an important reference
of failure predication within the surrounding rock mass.

There have been a great number of studies on the
mechanical behaviour of rock mass containing openings or
flaws based on laboratory experiments. However, mechani-
cal tests for rock specimens may lead to an evitable bound-
ary effect, which may significantly interfere with the stress
distribution and fracturing evolution of rock mass around
openings. Many laboratory tests show that the rock speci-
mens are finally broken by tensile or shear cracks connecting
opening corners and specimen boundaries. Figure 11 pre-
sents the failure patterns of rock specimens containing two
rectangular openings under uniaxial compression tests con-
ducted by Zhou et al. [29]. Comparing Figure 11 with
Figure 9 shows that the coalescence patterns between open-
ings in rock specimens agree well with the corresponding
large-scale numerical models. However, for all rock speci-
mens, the instability is dominated by macro shear or tensile
cracks from openings and through the whole specimen,
which are suppressed in the large-scale numerical models.
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Figure 10: The hoop stress distribution curves around Hole 1.
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For the one hand, strong interaction between the rock spec-
imen boundaries and openings may promote crack propaga-
tion from openings to boundaries. For another, rock mass in
the large-scale area may also contribute to confining the
development of cracks. Therefore, the laboratory tests may
exaggerate the influence of deep-buried openings on rock
mass stability. The large-scale numerical modelling via the
PFC-FLAC coupling method is expected to be an important
addition to the study of the mechanical behaviour of deep-
buried surrounding rock mass.

5. Conclusions

In this study, the Schwarz alternating method based on com-
plex variable theory was used to calculate the stress solution
for the two-opening system. In addition, PFC-FLAC cou-
pling numerical modelling was employed to study the
mechanical behaviour of rock mass containing two rectan-
gular openings with different connecting angles under-
ground. With the combination of numerical and analytical
solutions, the effect of connecting angles on the stress distri-
bution and failure characteristics of rock mass around open-
ings was discussed. The main conclusions of this paper
include the following:

(1) According to the analytical stress solutions for elastic
plates containing two rectangular openings, the exis-
tence of confining stress within a certain range contrib-
utes to relief of the tensile stress concentration around
the openings, which is supposed to help improve the
stability of rock mass around openings. With the
increase of lateral pressure coefficient, the stress field
changes gradually and tensile stress concentration may
appear again in new areas once it reaches a certain level

(2) The opening layout mainly affects the stress distribu-
tion in the connecting area between two adjacent open-
ings, which further dominates the coalescence pattern
and stability of the two-opening system. Under uniax-
ial compression, the connecting area is a high compres-
sive stress concentration area in which appears
coalescence failure during numerical tests when the
two openings are arranged horizontally. When the
connecting angle is 90°, the connecting area is a low-
stress area and remains intact during the numerical test

(3) The AE characteristics in the numerical models show
that massive failure mainly happens in rock mass in
the postpeak stage, which follows the coalescence
between the two openings. In the prepeak stage, rock

(a) α = 0° (b) α = 45°

(c) α = 90°

Figure 11: Representative failure patterns of rock specimens containing two openings (after Zhou et al. [29]).
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mass around openings is mainly subjected to elastic
deformation. The positions of initial failure always
agree well with the stress concentration areas deter-
mined by analytical solutions
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study are included in the article.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This research was funded by the Fundamental Research Funds
for the Central Universities, grant number 2020QN44.

References

[1] R.-H. Cao, R. Yao, T. Hu, C.Wang, K. Li, and J. Meng, “Failure
and mechanical behavior of transversely isotropic rock under
compression-shear tests: laboratory testing and numerical
simulation,” Engineering Fracture Mechanics, vol. 241, article
107389, 2021.

[2] Z. Zhou, X. Cai, X. Li, W. Cao, and X. du, “Dynamic response
and energy evolution of sandstone under coupled static–
dynamic compression: insights from experimental study into
deep rock engineering applications,” Rock Mechanics and Rock
Engineering, vol. 53, no. 3, pp. 1305–1331, 2020.

[3] X. Cai, Z. Zhou, L. Tan, H. Zang, and Z. Song, “Fracture behav-
ior and damage mechanisms of sandstone subjected to wet-
ting- drying cycles107109,” Engineering Fracture Mechanics,
vol. 234, 2020.

[4] L. Tan, T. Ren, X. Yang, and X. He, “A numerical simulation
study on mechanical behaviour of coal with bedding planes
under coupled static and dynamic load,” International Journal
of Mining Science and Technology, vol. 28, no. 5, pp. 791–797,
2018.

[5] K. Zhou, L. Dou, S. Gong, J. Li, J. Zhang, and J. Cao, “Study of
rock burst risk evolution in front of deep longwall panel based
on passive seismic velocity tomography,” Geofluids, vol. 2020,
Article ID 8888413, 14 pages, 2020.

[6] Z. Song, H. Konietzky, and X. Cai, “Modulus degradation of
concrete exposed to compressive fatigue loading: insights from
lab testing,” Structural Engineering and Mechanics, vol. 78,
no. 3, 2021.

[7] X. Cai, Z. Zhou, L. Tan, H. Zang, and Z. Song, “Water satura-
tion effects on thermal infrared radiation features of rock
materials during deformation and fracturing,” Rock Mechanics
and Rock Engineering, vol. 53, no. 11, pp. 4839–4856, 2020.

[8] L. Zeng, W. Lyu, J. Li et al., “Natural fractures and their
influence on shale gas enrichment in Sichuan Basin, China,”
Journal of Natural Gas Science and Engineering, vol. 30,
pp. 1–9, 2016.

[9] B. J. Carter, E. Z. Lajtai, and Y. Yuan, “Tensile fracture from
circular cavities loaded in compression,” International Journal
of Fracture, vol. 57, no. 3, pp. 221–236, 1992.

[10] M. A. Lotidis, P. P. Nomikos, and A. I. Sofianos, “Numerical
simulation of granite plates containing a cylindrical opening
in compression,” Procedia Engineering, vol. 191, pp. 242–247,
2017.

[11] E. Dzik and E. Lajtai, “Primary fracture propagation from cir-
cular cavities loaded in compression,” International Journal of
Fracture, vol. 79, no. 1, pp. 49–64, 1996.

[12] H.Wu and D. Ma, “Fracture response andmechanisms of brit-
tle rock with different numbers of openings under uniaxial
loading,” Geomechanics and Engineering, vol. 25, no. 6,
pp. 481–493, 2021.

[13] H. Wu, P. H. Kulatilake, G. Zhao, W. Liang, and E. Wang, “A
comprehensive study of fracture evolution of brittle rock con-
taining an inverted U-shaped cavity under uniaxial compres-
sion,” Computers and Geotechnics, vol. 116, article 103219, 2019.

[14] P. Dharmin, J. Khushbu, and P. Chetan, “A review on stress
analysis of an infinite plate with cut-outs,” International Jour-
nal of Scientific and Research Publications, vol. 2, no. 11, pp. 1–
7, 2019.

[15] X.-L. Gao, “A general solution of an infinite elastic plate with
an elliptic hole under biaxial loading,” International Journal
of Pressure Vessels and Piping, vol. 67, no. 1, pp. 95–104, 1996.

[16] A. Sharma, B. P. Khushbu, and C. P. Nirav, “A general solution
for the stresses around internally pressurized circular hole in
symmetric laminates,” Stress, vol. 2, p. 12, 2011.

[17] D. S. Sharma, N. P. Patel, and K. C. Panchal, “Stress distribu-
tion around triangular hole in orthotropic plate,” Nirma Uni-
versity Journal of Engineering and Technology (NUJET),
vol. 1, no. 2, pp. 61–65, 2000.

[18] H. Wu, G. Zhao, and W. Liang, “Mechanical properties and
fracture characteristics of pre-holed rocks subjected to uniaxial
loading: a comparative analysis of five hole shapes,” Theoreti-
cal and Applied Fracture Mechanics, vol. 105, article 102433,
2020.

[19] V. Ukadgaonker and P. Awasare, “A novel method of stress-
analysis of an infinite-plate with rounded corners of a rectan-
gular hole under uniform edge loading,” Indian Journal of
Engineering & Materialsences, vol. 1, no. 1, pp. 17–25, 1994.

[20] V. Ukadgaonker and P. Awasare, “A novel method of stress
analysis of an infinite plate with elliptical hole with uniform
loading at infinity,” Journal of The Institution of Engineers
(India), vol. 73, pp. 309–311, 1993.

[21] V. Ukadgaonker and P. Awasare, “A novel method of stress-
analysis of infinite-plate with circular hole with uniform load-
ing at infinity,” Indian Journal of Technology, vol. 31, no. 7,
pp. 539–541, 1993.

[22] V. Ukadgaonker and D. Rao, “Stress distribution around trian-
gular holes in anisotropic plates,” Composite Structures,
vol. 45, no. 3, pp. 171–183, 1999.

[23] D. S. Sharma, “Stress distribution around circular/elliptical/tri-
angular holes in infinite composite plate,” Engineering Letters,
vol. 20, no. 1, p. 1, 2012.

[24] L. Tan, T. Ren, L. Dou, X. Yang, M. Qiao, and H. Peng, “Ana-
lytical stress solution and mechanical properties for rock mass
containing a hole with complex shape,” Theoretical and
Applied Fracture Mechanics, vol. 114, article 103002, 2021.

[25] L. Tan, T. Ren, L. Dou, X. Cai, X. Yang, and Q. Zhou,
“Dynamic response and fracture evolution of marble speci-
mens containing rectangular cavities subjected to dynamic
loading,” Bulletin of Engineering Geology and the Environment,
vol. 80, no. 10, pp. 7701–7716, 2021.

15Geofluids



[26] L. Q. Zhang, Z. Q. Yue, C. F. Lee, L. G. Tham, and Z. F. Yang,
“Stress solution of multiple elliptic hole problem in plane elas-
ticity,” Journal of Engineering Mechanics, vol. 129, no. 12,
pp. 1394–1407, 2003.

[27] L.-Q. Zhang and A.-Z. Lu, “An analytic algorithm of stresses
for any double hole problem in plane elastostatics,” Journal
of Applied Mechanics, vol. 68, no. 2, pp. 350–353, 2000.

[28] L. Tan, T. Ren, L. Dou, X. Yang, X. Cai, and M. Qiao, “Analyt-
ical stress solution for rock mass containing two holes based
on an improved Schwarz alternating method,” Theoretical
and Applied Fracture Mechanics, vol. 116, article 103092, 2021.

[29] Z. Zhou, L. Tan, W. Cao, Z. Zhou, and X. Cai, “Fracture evo-
lution and failure behaviour of marble specimens containing
rectangular cavities under uniaxial loading,” Engineering Frac-
ture Mechanics, vol. 184, pp. 183–201, 2017.

[30] X.-D. Zhao, H.-X. Zhang, and W.-C. Zhu, “Fracture evolution
around pre-existing cylindrical cavities in brittle rocks under
uniaxial compression,” Transactions of Nonferrous Metals
Society of China, vol. 24, no. 3, pp. 806–815, 2014.

[31] P. Lin, R. H. Wong, and C. Tang, “Experimental study of coa-
lescence mechanisms and failure under uniaxial compression
of granite containing multiple holes,” International Journal
of Rock Mechanics and Mining Sciences, vol. 77, pp. 313–327,
2015.

[32] M. Jia, Y. Yang, B. Liu, and S. Wu, “PFC/FLAC coupled simu-
lation of dynamic compaction in granular soils,” Granular
Matter, vol. 20, no. 4, p. 76, 2018.

[33] C. Shi, W. Li, and Q. Meng, “A dynamic strain-rate-dependent
contact model and its application in Hongshiyan landslide,”
Geofluids, vol. 2021, Article ID 9993693, 23 pages, 2021.

[34] D. Saiang, “Stability analysis of the blast-induced damage zone
by continuum and coupled continuum-discontinuum
methods,” Engineering Geology, vol. 116, no. 1-2, pp. 1–11,
2010.

[35] B. Brady and E. T. Brown, Rock mechanics for underground
mining, Allen & Unwin, 2006.

[36] L. Müller, “Rock mechanics,” Rock Mechanics, vol. 6, no. 1,
pp. 1-2, 1974.

[37] J. H. Zhu, J. H. Yang, G. P. Shi, J. Wang, and J. P. Cai, “Calcu-
lating method for conformal mapping from exterior of unit
circle to exterior of cavern with arbitrary excavation cross-sec-
tion,” Rock and Soil Mechanics, vol. 1, pp. 175–183, 2014.

[38] L. Tan, T. Ren, L. Dou, X. Yang, G. Wang, and H. Peng, “Ana-
lytical stress solution and numerical mechanical behavior of
rock mass containing an opening under different confining
stress conditions,” Mathematics, vol. 9, no. 19, p. 2462, 2021.

[39] D. S. Sharma, “Stress distribution around polygonal holes,”
International Journal of Mechanical Sciences, vol. 65, no. 1,
pp. 115–124, 2012.

[40] Z. Song, H. Konietzky, and M. Herbst, “Bonded-particle
model-based simulation of artificial rock subjected to cyclic
loading,” Acta Geotechnica, vol. 14, no. 4, pp. 955–971, 2019.

[41] J. Wang, S. Yang, W. Wei, J. Zhang, and Z. Song, “Drawing
mechanisms for top coal in longwall top coal caving (LTCC):
a review of two decades of literature,” International Journal
of Coal Science & Technology, 2021.

[42] B. Indraratna, N. T. Ngo, C. Rujikiatkamjorn, and S. W. Sloan,
“Coupled discrete element-finite difference method for analys-
ing the load- deformation behaviour of a single stone column
in soft soil,” Computers and Geotechnics, vol. 63, pp. 267–
278, 2015.

[43] W. Song and R. Hong, “PFC/FLAC coupled numerical simula-
tion of excavation damage zone in deep schist tunnel,” Applied
Mechanics & Materials, vol. 236-237, pp. 622–626, 2012.

[44] J. F. Hazzard and R. P. Young, “Simulating acoustic emissions
in bonded-particle models of rock,” International Journal of
Rock Mechanics and Mining Sciences, vol. 37, no. 5, pp. 867–
872, 2000.

[45] M. Cai, P. K. Kaiser, H. Morioka et al., “FLAC/PFC coupled
numerical simulation of AE in large-scale underground exca-
vations,” International Journal of Rock Mechanics and Mining
Sciences, vol. 44, no. 4, pp. 550–564, 2007.

16 Geofluids


	Stress Distribution and Mechanical Behaviour of Rock Mass Containing Two Openings Underground: Analytical and Numerical Studies
	1. Introduction
	2. Analytical Stress Solution of Plates Containing a Single Opening
	2.1. Mapping Function
	2.2. Principles of Schwarz Alternating Method
	2.3. Calculation Models

	3. DEM-FDM Coupling Numerical Modelling
	3.1. Principles of DEM-FDM Coupling Numerical Modelling
	3.2. Numerical Models
	3.3. Stress and AE Characteristics
	3.4. Failure Patterns

	4. Discussion
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

