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The mudstone and marl from western Hoh Xil basin, located in Tibet of the west of China, were deposited in Tertiary lacustrine
environment. Investigation of organic geochemistry, sedimentary characteristics, and 13C in kerogen was conducted to analyze the
sedimentary environment, biomarkers, paleoclimate, and source of organic matter during deposition. The Cenozoic sedimentary
facies of the basin included upper lacustrine facies and lower alluvial fan facies, which belong to Miocene Wudaoliang Formation
and Oligocene Yaxicuo Group, respectively. The Miocene marl-sandstone-mudstone from Wudaoliang Formation was analyzed.
Maceral composition was dominated by amorphous organic matter. Tmax values indicated that the mudstones were thermally
immature-low maturity with mainly type II and III organic matter, while organic matter in marlite belongs mainly to type I-II1
with low maturity-maturity stage. The biomarkers showed the characteristics of odd-over-even predominance of long-chain n-
alkanes, higher proportion of C27 sterane in most of the samples, heavy δ13Corg composition, low Pr/Ph ratios (0.11-0.36), and
so on. Organic geochemistry indicated that the organic matter originated from bacteria, algae, and higher plants. The rocks
were formed in reducing environments with stratified water column and high productivity. The paleoclimate became more
humid during depositional stage in the western Hoh Xil basin.

1. Introduction

After years of geological investigation, the Hoh Xil basin was
considered to be one of the important targets of hydrocar-
bon resource exploration for continental basin of Tibetan
Plateau. We found two continental facies oil and gas Ceno-
zoic basin belts of Bangong-Nujiang and Jinsha River on
Tibetan Plateau. These basins had good prospects for pre-
serving oil and gas resources and exploration potential.
The discovery of crude oil from Lunpola basin confirmed
that reservoirs of fossil resources occurred in Qinghai-
Tibet plateau [1, 2]. And the Hoh Xil basin has been con-
firmed existing a better prospect for preserving oil and gas

too [3–5]. The eastern basin and western basin (Yanghu
basin) of Hoh Xil had a conjoined basement, and there
existed a unified Hoh Xil basin in Miocene [6–8]. Because
of complex tectonism, the geological survey of western basin
was very few. Understanding the geological survey of the
western Hoh Xil basin (WHXB) is very important to recog-
nize the overall situation of Cenozoic basins on Tibetan Pla-
teau and the plateau lifting. Recently, sedimentary rocks of
Wudaoliang Group in Miocene were discovered in WHXB.
In this paper, we carried out detailed organic geochemistry
investigations of these rocks in WHXB. The pivotal aim is
to analyze paleoenvironment and paleoclimatic changes, to
give the other geologists more information of Tibet.
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2. Geological Setting

Hoh Xil basin is located in north Qiangtang block and the
central of Bayankala block, crossing the suture of Jinsha
River, and it is the greatest Cenozoic continental basin in
Tibet [4, 9]. The western Hoh Xil basin (WHXB), near the
eastern basin of Hoh Xil (EHXB), is an uncivilized basin in
the central Tibetan Plateau [7, 10, 11] (Figure 1). Because
of the harsh geographical environment and high altitude,
the geology of the WHXB remains indeterminate. The work
focuses on the detrital organic geochemical investigation in
WHXB (Figure 1).

The west basin of Hoh Xil is located at an altitude of
more than 4000m with the area of 28,000 km2, which
belongs to the depopulated zone of Tibet province. It is
bounded in the south of eastern Kunlun mountains and in
the east of the Altyn mountains. The length of WHXB is
about 540 km, and the width is about 60 km. In the west,
the basin is near to Altyn sinistral strike-slip faults with its
south branch. In the north, it is near to Subashi-Muztagh-
Whale Lake fault zone, and it is adjacent to the microconti-
nental block of Kunlun. The south boundary of the basin is
Lazhulong-Xijin Ulan-Jinsha fault zone, which is adjacent to
the Qiangtang terrane.

The geological investigation revealed that the outcrop-
ping strata in WHXB were mainly Devonian, Permian, Tri-
assic, Jurassic, Paleogene, and Neogene. A set of purple
continental clastic rocks and carbonate of Cenozoic strata
occurred in WHXB too. The Cenozoic sedimentary
sequences contain three main parts in these strata of
Wudaoliang Group, Fenghuoshan Group, and Yaxicuo
Group. At the bottom of EHXB, the Fenghuoshan Group
contains sandstone, bioclastic limestone in lacustrine, and
fluvial, rounded conglomerate, which obtains the magnetos-
tratigraphic age during the Early Eocene to Early Oligocene
(31.3-52.0Ma) [12]. The Fenghuoshan Group was covered
by the Yaxicuo Group (Early Oligocene). The Yaxicuo
Group comprises fluvial and playa gypsum, marl, mudstone,
and sandstone in Oligocene (23.8-31.3Ma) [8]. The uncom-
fortably overlying strata of the uppermost unit (Wudaoliang
Group) consist mainly of oil shale, mudstone, and lacustrine
marl with biostratigraphical age of basement about ~22Ma
[8]. The clastic rock association of Shapoliang (P01) in
WHXB is consistent with the lithologic association of the
Yaxicuo Group of Oligocene in EHXB; both of them uncom-
fortably underlie the volcanic rock of Chabaoma Formation
[13]. And lacustrine carbonate of Fengcaogou (P02) in
WHXB is consistent with the lithologic association of
Wudaoliang Group in EHXB; both of them to belong to
Miocene with nearly horizontal occurrence. In the south of
EHXB, there is a huge south poured Paleogene thrust
system, which is connected with the Tanggula thrust system
of south WHXB. Shapoliang (P01) and Fengcaogou (P02)
sections were measured at the marginal southeast of the
WHXB in the geological survey. Two sections have the rela-
tionship of superposing; the profiles have been measured
from the core of the syncline to the south part, no bottom.
The top of profiles contacts with the Triassic through
the fault.

3. Sedimentary Characteristics

Detrital zircon U-Pb isotopic compositions, sedimentary
facies, and deformation of Shapoliang and Fengcaogou sec-
tions in WHXB are similar with the Oligocene Yaxicuo For-
mation and Miocene Wudaoliang Group of EHXB,
respectively [7]. There are two depositional sequences devel-
oped in WHXB, including the lower alluvial fan (Shapoliang
section) and upper lacustrine facies (Fengcaogou section),
with a total thickness exceeding 1302m. The Wudaoliang
Group comprised crystalline limestone, bioclastic limestone,
algal lump limestone, calcarenite, and marl in EHXB with
the characteristics of carbonate of a paleolake [4]. The
research section of Wudaoliang Group (Fengcaogou section,
P02) is located in the southeast part of the WHXB
(Figure 2).

In the low part of P02 of Wudaoliang Group, the unit
contains gray, yellow-gray, gray-green, and gray-black mud-
stone and silty mudstone. This unit is sandwiched into
maroon thin-middle layer of mudstone, argillaceous silt-
stone, silty mudstone, and fine sandstone; and some gray-
green sheet marl and sandy limestone are outcrop. In the
middle part, lithologic column contains the interbedded fine
siltstone, mudstone, gray marl, and sandy limestones; this
unit was sandwiched into thickness marls (up to 3.0m).
The upper part shows the gray marl, yellow fine sandstone,
and brown red silty mudstone with a coarsening-upward
sequence from bottom to top, which deposits marl-silty
mudstone in the lower part and fine sandstone-siltstone in
the upper part (Figure 3). This section presents a sedimen-
tary cycle with coarsening-upward in the overall. Potential
organic rocks occur in lower-middle part of Fengcaogou sec-
tion, which is made up of gray and yellow-gray mudstone,
gray-black mudstone, and gray-green marl with a thickness
of about 100m.

The sedimentary environment of Wudaoliang Group
belongs to the shallow lacustrine [14]. The Fengcaogou
section mainly contains marl, sandstone, siltstone, and mud-
stone with the thickness of about 205m. The lithofacies indi-
cate the depositional environment is lacustrine. The massive
argillaceous rocks of the Fengcaogou section need suspen-
sion in a peaceful water environment. According to charac-
teristics of deposition of profiles, the Fengcaogou section of
Wudaoliang Group experienced the evolution of deposi-
tional environment by semideep to shallow lake subfacies.

4. Research Methods

4.1. Sample. 20 samples are selected from the Fengcaogou
profile in the western Hoh Xil basin. All of the samples were
analyzed by geochemical methods. Details of sampling loca-
tion, lithologic association, and stratigraphic columns are
shown in Figure 3. In order to minimize the modern pollu-
tions on surface and the effects of biodegradation and weath-
ering, we used a shovel to collect fresh samples. After the
collection of samples from the measured profiles systemati-
cally, organic geochemical tests were conducted. There are
distinctive heterogeneities in the deposition of lacustrine
sedimentary rocks (Table 1). After the evaluation of
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Wudaoliang Group samples in the WHXB, gray or yellow-
gray mudstones belong to nonpoor organic types of rocks;
gray-black mudstones belong to good organic types of rocks;
gray-green marl is moderate-good organic types of rocks.
The types of organic matter in mudstone belong to types II
and III. The types of OM in marl belong to type I-II1.

4.2. Analytical Methods. Some rocks are prepared to the test
of organic petrology, Rock-Eval pyrolysis, TOC, and δ13C.
Saturated fractions of some samples are tested by the
method of GC and GC-MS. Total organic carbon is analyzed
using the equipment Leco CS-200 carbon-sulfur. After get-
ting rid of carbonate by hydrochloric acid (HCl), some sam-
ple (120 mesh and 100mg) was raising temperature to
1200°C in the induction furnace. The test of Rock-Eval
pyrolysis was conducted on a TOC module-equipped appa-
ratus with Rock-Eval II by strict procedures [15]. In the
Soxhlet apparatus, some samples were conducted with chlo-
roform for 72 h. After setting of asphaltenes, through a silica
gel alumina column, NSO compounds, saturated hydrocar-
bons, and aromatic hydrocarbons were isolated from
extracts by column chromatography [16].

GC-MS testing of saturated hydrocarbon is conducted
using a Finnigan SSQ-7000 spectrometer. This instrument
equipped is with DB5-MS fused silica capillary column
(0:32mm ID × 30m × 0:25 μm film thickness). Carrier gas
is helium. The oven is isothermally kept at 35°C in 1min,
then raised to 120°C by 10°C/min, and then increased to

300°C by 3°C/min, keeping this temperature for half an
hour. MS is conducted by MID on a source temperature at
200°C with ionization energy of 70 eV. To identify molecular
fossils, metastable ion transition for tricyclic terpanes and
hopanes (m/z 191) and steranes (m/z 217) was kept an
account of a periodic time of 1 s and a residence time for
25ms per ion [17].

HCI/HF method is applied to 20 samples for kerogen
isolation. First, rock fragments were leached in 12N HCl
for getting rid of carbonates in 12 h, and then, keep them
clean with distilled water. Second, samples were conducted
by hydrofluoric acid to get rid of silicate in 12 h [18]. Third,
samples used distilled water for cleaning. Then, samples
were again leached with 12N HCl [18]. Maceral content is
conducted by Zeiss Axioskop 2 plus microscope and a point
counter for visual evaluating [16]. The test of N, C, H, S, and
O was conducted using a FLASH EA-1112 instrument; the
accuracy is 0.5% for N and 0.3% for C. The determination
of δ13Ckerogen is conducted using the EA Finnigan Delta plus
XL mass spectrometer; precision of carbon isotope is ±0.2‰
[19]. Isotopic analyses and GC-MS analyses as well as others
analyses were carried out in the Organic Geochemistry Lab-
oratory of Huabei Oilfield Branch Company of PetroChina.

5. Results and Discussion

5.1. Rock-Eval Pyrolysis. Because the weathering has an obvi-
ous effect on the sedimentary rocks, the organic carbon of
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samples needs recovery. TOC and Rock-Eval data are listed
in Table 1. TOC content of Fengcaogou mudstones is in
the range of 0.03-1.38wt.% and an average of 0.19% with
most samples > 0:1wt:%. After the recovery with coefficient
of 2.2 [20], the restoration of organic carbon content is in
the range of 0.08%~3.04wt.% and an average of 0.42%.
The TOC content of the Fengcaogou marl is in the range
of 0.09~0.18wt.% and an average of 0.14%; after the recov-
ery with coefficient of 1.5 [20], the restoration of organic car-
bon content is in the range of 0.13%~0.27wt.% and an
average of 0.20%.

Maceral composition of kerogens from the Fengcaogou
section is shown in Table 2. Amorphous organic matter
exhibits a high abundance ranging from 50% to 90% with
an average of 66%. Exinite is in the range of 0~15wt.%
and an average of 4.37%. Vitrinite is in the range of
3~22wt.% and an average of 16.6%. Inertinite is in the range
of 5~31wt.% and an average of 12.95%. Organic matter of
kerogen in mudstone shows the types of mixed II (II1-II2),
whereas kerogen in marl shows the types of I-II1.

Rock-Eval S1 and S2 are in the change of 0.02-0.24 and
0.06-1.17mg HC/g rock. S2 values of marl are in range of

0.09-0.19mg HC/g rock, compared with 0.06-0.15mg
HC/g rock for mudstone (except P02-5S4) (Table 1). The
value of PY changes from 0.09 to 1.41mg HC/g rock, which
can reflect the potential yield and inversion of OM [21]. HI
values are not high with the range of 50 to 200mg HC/g
TOC. The HI of marls is higher with the value of 89 to
144mg HC/g TOC. Ro values change from 0.55 to 0.73.
The color of sapropel group in kerogen (yellow) reflects that
OM belongs to immature to early mature.

Tmax of all samples changes from 370°C to 532°C with
the average of 437°C (Table 1). In the mudstone, 9 samples
of Tmax values < 435°C indicating a thermally immature
stage; 3 samples of Tmax values change from 435°C to
440°C at low mature stage; 4 samples of Tmax are between
450°C and 580°C at high mature stage. Organic matter of
mudstones is in immaturity-low maturity stage. Tmax values
of marl change from 426 to 447°C; these indicate thermally
immature-mature. Difference in thermal maturity of two
rocks may depend on the history of burial. The PI (produc-
tion index) values of all samples are from 0.11 to 0.33. The
maturity suggested by PI and Tmax are not completely con-
sistent, which may be due to the weathering [22].
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Figure 2: Geological map of study area showing the location of the P02 section.
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5.2. Characteristics of the Element and Kerogen. The charac-
teristics of element can reflect the chemical features of iso-
lated kerogen [23]. And the analysis results of element are
shown in Table 2. Variability is marked in the Fengcaogou
section. O/C ratios of kerogen change from 0.22 to 0.39;
H/C ratios of kerogen change from 0.68 to 1.27 (Table 2).
The marl samples of Fengcaogou section have lower O/C
ratios (0.22, 0.22, and 0.24) and higher H/C ratios (1.21,
1.25, and 1.27) than the mudstones in this section; mud-
stones have lower H/C ratios (0.68-0.88) and higher O/C
ratios (0.34-0.39). Organic matter of mudstones are mainly
types II and III, while organic matter of marl is markedly dif-
ferent (Figure 4), which suggest the probable input of alloch-
thonous OM. And kerogens of type I with lacustrine source
are input by AOM and planktonic algae [24].

The variation tendency in different lithology is consis-
tent with kerogen’s maceral composition. AOM make up
75-90% kerogen assemblages, together by 1-2% sporinite,
3-15% vitrinite, and 5-10% inertinite for the marl sample
(Table 2). The marls contain more hydrogen-rich AOM
(75-90%), with much less inertinite and vitrinite (Table 2),
which fit well with characteristics of type I-II1 kerogen.

The kerogen in mudstones is composed of 50-72%
AOM, 1-6% sporinite, 12-22% vitrinite, and 9-31% inerti-
nite. There is no appearance of amorphous humic material,
indicating little input of land plants [25]. AOM is associated
with import sources of bacterial phytoplankton and algae
from surface of lacustrine [26]. Taking into account the geo-
chemical characteristics, it could indicate that OM contribu-
tion in the marl comes from more algal or bacterial
phytoplanktonic sources, while less bacteria and algae con-
tribution in the mudstone could be confirmed. Vitrinite
reflectance is used to determine the indicator of maturity.
In the mudstones, only one data was obtained (0.58), but
the Ro values of marl are 0.55-0.73.

5.3. Biomarkers

5.3.1. Normal Alkanes and Isoprenoids. The gas chromato-
grams of saturated hydrocarbons separated from Fengcaogou
in Wudaoliang Group of WHXB are shown in Figure 5 and
results are shown in Table 3. Saturated hydrocarbons of
mudstone and marl reveal the dominance of middle to high
carbon number molecular; the carbon peak is n-C23 (e.g.,
P02-13S3), n-C27, n-C29 (e.g., P02-5S6 and P02-7S1), or n-
C31 (e.g., P02-3S1). The value of C21−/C21+ of Fengcaogou
mudstones and marls changes from 0.06 to 0.24; all samples
show superiority of long-chain n-alkanes, which indicate ter-
restrial higher plant-derived n-alkanes [27]. The distribu-
tions of n-alkanes in the samples have an odd (nC27,29,31)-
over-even (nC26,28,30) carbon number predominance in the
nC23 to nC31 range (Figure 5). The OEP vary between 1.45
and 6.91, and most of the samples have the CPI values chang-
ing from 4 to 1.75. Long-chain n-alkanes (nC27 to nC31) are
considered coming from terrestrial plant waxes [28]. Thence,
predominate of long-chain n-alkanes (e.g., P02-3S1, P02-5S4,
P02-5S6, and P02-13S1 besides P02-13S3) can be confused
originating from terrestrial plants. But this interpretation is
in contradiction with petrographic investigation of kerogens.
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It has been proved that some nonmarine algae also may be
the origin of long-chain n-alkane [29]. Therefore, nonmarine
algae and higher plants may be the parent material of long-
chain odd n-alkanes together.

The mid molecular weight of n-alkanes (nC21 to nC25)
is probably considered coming from aquatic macrophytes

(predominate of nC23 and nC25) and Sphagnum [30, 31].
And the intermediate molecular weight of n-alkanes found
relative contents in most of the samples, especially in P02-
7S1. Because the causation of peat bog was precluded, the
source of OM from Sphagnum may be excluding and the
source of macrophytes leads to the n-alkane patterns.
The research shows that the upper strata of Wudaoliang
Group (P02) developed a lacustrine sedimentary system.
Therefore, n-alkanes of intermediate molecular weight
may have originated from macrophytes. By the calculation
of Paq = ðC23 + C25Þ/ðC23 + C25 + C29 + C31Þ, values of all
the samples (averaging 0.42) indicated that the submer-
ged/floating macrophytes were the contributors [30]
(Table 3).

Phytane is the dominant acyclic isoprenoid in the sam-
ples of WHXB but has a lower peak than n-alkanes in the
samples (Figure 5). The oxic/anoxic or the origin of OM is
judged frequently by the parameter of pristane/phytane
(Pr/Ph) ratio [32]. If phytol side chain of chlorophyll from
organic matter was oxidized, it would cause priority to form
pristine with high Pr/Ph ratios [33]. The values of Pr/Ph of
the mudstone and marl samples are relatively low in WHXB
changing from 0.11 to 0.36 (average 0.19) (Table 3). Mud-
stones from Fengcaogou section exhibit the values of Pr/Ph
changing from 0.12 to 0.36. However, Pr/Ph ratios of marl
indicate a lower value.

Generally, Pr/Ph > 1 suggests an oxic condition, but Pr/
Ph < 1:0 shows anoxic source-rock deposition [34]. How-
ever, several studies indicated that the source input and ther-
mal maturation and other factors can affect the Pr/Ph ratios

Table 2: Elemental and maceral composition and carbon isotope values of kerogens from the Fengcaogou section.

Sample no. H/C C/N O/C δ13CPDB (‰) aAOM Exinite Vitrinite Inertinite Color of sapropel group Ro (%) Type

P02-1S1 n.a. 67.8 n.a. -23.8 65 3 19 13 Yellow II2
P02-1S2 n.a. 40.1 n.a. -23.0 66 3 17 14 Yellow II1
P02-1S3 n.a. n.a. n.a. n.a. 55 4 20 21 Yellow II2
P02-1S4 n.a. 102.8 n.a. -24.5 50 13 22 15 Yellow II2
P02-3S1 n.a. n.a. n.a. n.a. 60 15 12 13 Yellow II1
P02-5S1 n.a. 117.3 n.a. -25.8 50 6 13 31 Yellow II2
P02-5S2 n.a. 39.5 n.a. -23.7 60 4 15 21 Yellow II2
P02-5S3 0.87 27.3 0.31 -25.3 69 3 18 10 Yellow II1
P02-5S4 0.88 24.6 0.39 -24.8 72 n.a. 19 9 Brown 0.58. II1
P02-5S5 n.a. 40.7 n.a. -23.8 66 3 20 11 Yellow II1
P02-5S6 n.a. 102.9 n.a. -23.6 67 4 19 10 Yellow II1
P02-5S7 n.a. 57.2 n.a. -23.8 60 1 20 19 Yellow II2
P02-7S1 n.a. 12 n.a. -24.1 66 3 21 10 Yellow II1
P02-9S1 0.68 45.9 0.34 -23.7 63 6 21 10 Yellow II1
P02-9S2 n.a. 922 n.a. -23.7 62 6 21 11 Yellow II2
P02-9S3 n.a. 46.96 n.a. -23.9 65 4 20 11 Yellow II1
P02-13S1 1.21 33.45 0.24 -21.3 75 1 15 9 Yellow II1
P02-13S2 1.25 36.12 0.22 -20.9 76 2 12 10 Yellow 0.59 II1
P02-13S3 n.a. 31.1 n.a. -21.9 90 1 3 6 Yellow 0.55 I

P02-13S4 1.27 41.1 0.22 -20.0 89 1 5 5 Yellow 0.73 I
aAOM= amorphous organic matter; n.a.: not analyzed.
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Fengcaogou section showing organic matter type. I: sapropelic
kerogen; II: humic-sapropelic kerogen, sapropelic-humic kerogen;
III: humic kerogen.
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[35]. Peters et al. [36] still suggest that Pr/Ph ratios < 0:6 sug-
gest the environmental characteristics of hypersaline and
anoxic condition; but Pr/Ph > 3 shows sedimentary environ-
mental characteristics with suboxic to oxic condition. With

the mudstone and marl form Fengcaogou, the feature of
Pr/Ph ratios can indicate an anoxic probably hypersaline
deposited condition in lacustrine environment. Hypersaline
environment would cause density stratification of water
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column increasingly and an anoxic condition at the bottom
of the lake. The ratios of Ph/n-C18 and Pr/n-C17 are shown
in Table 3.

5.3.2. Terpanes. Gammacerane first found in bitumen of the
Green River shale are detected in both mudstone and marl
samples (Figure 5) [37]. The ratio of gammacerane/C31
hopane ((22S+22R)/2) changes from 0.36 to 0.89 in Feng-
caogou section. The appearance of gammacerane suggests
the hypersaline, reducing sedimentary environment [38,
39]. Gammacerane originated from continental and oceanic
sedimentary environments with stratified water column
[40]. Gammacerane are found in freshwater lacustrine sedi-
ments too. In chemocline of stratified water column, there
exists tetrahymanol as precursor of gammacerane; tetrahy-
manol originates from anaerobic ciliates [40]. Because of
density-stratified hypersaline water columns, the com-
pounds can get together in the lacustrine environment.
The value of Pr/Ph < 0:5 is considered associated with
hypersaline environment [41]. The relevance of gammacer-
ane indices and Pr/Ph value in Fengcaogou supports the
inferred salinity relationship (Figure 6). Therefore, Fengcao-
gou sedimentary rocks might deposit in hypersaline lacus-
trine condition. The high salinity was accompanied by
anoxic condition in bottom water and water column density
stratification.

The relative abundances and distribution pattern of pen-
tacyclic and tricyclic terpanes detected by m/z 191 ion chro-
matograms are listed in Table 2 and Figure 5. Tricyclic
terpanes have little content from mudstone and marl and
are composed by C21-C24 with the peak at C23. In the present
studies, it was found that the tricyclic terpanes may originate
from some algae or lipids of bacterial membrane [42, 43].
And tricyclic terpanes can be used as parameters of deposi-
tional environment. Their relatively low concentrations
and the low ratios of tricyclic/pentacyclic terpanes (<0.25)

in all samples from the mudstone and marl in WHXB indi-
cate that the biomarkers originate from nonoceanic organ-
ism precursor [44, 45].

The primary pentacyclic terpanes with the peak at C30
hopanes are detected from the m/z 191 fragmentograms,
and a lot of homohopanes (C31-C35) are found in most of
the samples (Figure 5). Ourisson et al. [46] proposed that
homohopanes (C31-C35) originated from bacteriohopanete-
trol and other hopanoids of bacteria in chemocline of strat-
ified water column.

5.3.3. Steranes. The regular steranes were detected from
extracts of mudstone and marl in WHXB showed by m/z
217 mass chromatograms with variable peaks (Figure 5).
Most of the samples from profile indicated a higher ratio
of C27 sterane compared to C29 sterane or C28 sterane
(6.82%-20.74%), while some samples (P02-5S2, P02-5S4,
and P02-5S6) have C29 > C27 sterol distribution (Table 3).
The marl is dominated by C27 sterane (46.6%–48.5%, aver-
aging 47.59%). Volkman [47] and Peters and Moldowan
[48] suggest that C29 sterols originate from land higher
plants and C27 sterols are derived from aquatic algae. Later,
Volkman [49] and Volkman et al. [50] suggested that cyano-
bacteria or microalgae may be the main origin of C29 sterols
too. Here, the predominance of C29 steroids in mudstones of
the middle part in the Fengcaogou section shows a propor-
tion contribution of terrestrial plant; however, C27 steroids
dominant at the lower and upper part of profile may reflect
the contribution of algae. With samples from Fengcaogou
strata, the explanation of dominant C29 steroids is incon-
sistent with maceral composition and other parameters
(hopanoids). Phytane can reflect the contribution of
archaebacteria and haloalkaliphilic bacteria [49], and thus,
massive phytane in the Fengcaogou samples may originate
from bacteria and would not rule out higher plants.
Hopanes root from hopane polyols, and hopane polyols
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are discovered from cyanobacteria or bacterial membranes
[29]. All in all, a large number of phytane suggest the con-
tribution of bacteria or higher plants. Associated with
other feature of biomarker and petrographic observation,
the evidence indicates that the predominance of C29 ste-
roids originates from microalgae and bacteria or higher
plants. Steranes show the pattern of C27 > C28 < C29, show-
ing complex origination from algae, bacteria, or wax of
terrestrial plant [48].

5.4. Analysis of C Isotopes. Lake sediments can provide the
effective ancient environmental information. Because the
source of organic matter, paleoclimate, atmospheric CO2
concentration, and water chemistry of lakes is the influenc-
ing factors, the explanation of carbon isotopic ratios is a
complex problem [51]. The 13C value change could be
caused by PCO2, lake surface variation [52], lake trophic sta-
tus, biological community, obvious climate changes [19], or
the diversification of productivity [19, 53].

The mudstones or marls (e.g., P02-13S1) had obviously
heavier carbon isotopic composition in kerogen, changing
in δ13C of considerable OM from −20‰ to −25.8‰ with
an average of −23.4‰ (Table 2). In Indonesia, a homologous
isotopic feature was found in Pediastrum and Botrycoccus
algal shales [54]. Enrichment in 13C of Cenozoic oil shale
was found in Australia too [55]. The enrichment in 13C of
OM from Cretaceous shales has been found in the northern
Tibet plateau with a range of −20.79‰ to −21.78‰ [19].

By analyzing the 13Corg in 12 sediment cores from lakes,
Stuiver [56] found that the low 13Corg value corresponded to
the colder climate during low productivity period and the
high 13Corg value corresponded to the warmer climate with
higher productivity in the lake. If the organic productivity
was increased in lakes, aquatic plants would increase the
absorption of 12CO2 selectively. Then, this caused the
improvement of concentration of 13C in HCO3, resulting
in the value increasing of 13Corg of aquatic plant [57]. The
closed inland lake in the arid and semiarid area, when the
water increased, the biological productivity increased, sub-
merged/floating macrophytes used HCO3 or dissolved CO2
as main carbon source, resulting in the increasing of 13Corg;
conversely, when there is drought, the value of 13Corg
reduced [58]. Hypersalinity may lead to the heavy isotopic
composition in the environment of microbial mats [59],
but hypersalinity is not the only causation [19]. High pro-
ductivity that occurred in microbial/algal mats has been sug-
gested as the cause of abating fractionation of 13C [60].
Therefore, high productivity leads to the enrichment in 13C
in the lake ecosystem. OM of mudstones and marls in the
Fengcaogou section of the WHXB show different 13C enrich-
ment. The 13C of marl exhibit the values ranging from
−20‰ to −21.9‰, whereas the 13C of the mudstone samples
exhibit a lighter value ranging from −23‰ to −25.8‰. This
indicates the raising of productivity.

Moreover, similar source organisms have been con-
firmed between mudstones and underlying marl, so the
OM in samples should show consistent isotopic trends.
However, there is virtually no consistent tendency. OM of
mudstone P02-9S suggest no enrichment in 13C relative to

marls. Therefore, the enrichment of 13C cannot be triggered
by the source organisms. The exuberant productivity with
algae and bacteria is the main factor for the enrichment in
13C [61–63].

6. Paleoenvironmental Significances

The evolution of lacustrine paleoenvironment during Oligo-
cene and Miocene of the Hoh Xil basin of has been studied
frequently. The lake level fluctuation, lake productivity, geo-
chemical proxies of water, and the feature of organic geo-
chemistry are closely related with tectonic movement and
climatic factors [64–67]. The main reason of the formation
of carbonate saline lake is the input of outside material con-
tinuously in the humid environment with the tendency of
wet conditions [68, 69]. In contrast, in the extreme arid cli-
matic conditions, evaporation exceeding precipitation would
lead to the concentration of water, with sulfate deposits
appearing in saline lake [65]. Major petrological and geo-
chemical factors in sedimentary sequence of Neogene
Wudaoliang Group in WHXB suggest the condition of
lacustrine water chemistry. Wang [23] reported that Mio-
cene hydrocarbon source rock of Zhuonai Lake in the Hoh
Xil basin deposited in a freshwater lake. And paleoclimatic
variation from dry to humid caused the transformation of
water chemistry, which brought the saline water to fresher
water during Oligocene to early Miocene in lakes. There
were many tectonic activities, which are accompanied by
the uplift of Tibet and paleoclimate and lake ecosystem
[70–75]. DeCelles et al. [76] suggested that beneficiation of
δ18O and δ13C in carbonates of Nima basin indicated strong
evaporation and the arid climate during Oligocene. Wu et al.
[77] studied the fossils of vegetation; they suggested that
there was a dry, warm climate in Oligocene and a wet, cool
climate in early Miocene in central Tibetan Plateau. All evi-
dences suggest that in central Tibet exists the development
of saline paleolakes and arid climate in Oligocene. In the
early Miocene, many evidences show that the climate of cen-
tral plateau turns to humid. Accompanied with turning of
climate during early Miocene time, two paleolakes covered
plateau characterized by the Wudaoliang Group with conif-
erous trees [77]. Wudaoliang Group greatly distributes in
HXB during the early Miocene with freshwater lacustrine
limestone, which shows that large paleolake exists, the paleo-
lake named “Wudaoliang paleolake.” Miocene lacustrine
stromatolites were found in Wudaoliang Group in the Hoh
Xil basin, which indicated abnormal humid period [78].
Cai et al. [79] suggest that “Wudaoliang paleolake” turns
from a playa lake to the freshwater lakes with the precipita-
tion exceeding evaporation in humid climate. Yi et al. [80]
indicated that northern Tibetan Plateau climate evolved to
enter a humid stage in the early Miocene and paleolake
water salinity obviously dropped and reflected water level
rise in lower Wudaoliang Formation by using boron concen-
trations in lacustrine mudstone. Oxygen and isotopes in the
Wudaoliang Group showed a humid condition during the
lacustrine sedimentary period from ð24:1 ± 0:6ÞMa to ð14:5
± 0:5ÞMa [81]. The above information and organic geochem-
ical investigation indicated that the lacustrine ecosystem was
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adjusted and updated in the early Miocene characterized by
humid condition and productivity improvement.

7. Conclusions

The lacustrine sediment samples from the Miocene Wudao-
liang Formation sections of western Hoh Xil basin in
Tibetan are studied in order to appraise biologic-source con-
stitution, sedimentary environment, and maturity of organic
matter, reconstruct paleolake environment, and deduce
paleoclimatic change information.

(1) Organic matter abundance of samples is low, and
average organic carbon content of mudstone and
marlite is, respectively, 0.19% and 0.14%. Organic
matter of mudstones is mainly types II and III and
is in immaturity-low maturity stage, while organic
matter of marl is mainly type I-II1 and is in low
maturity-maturity stage

(2) The biomarker characteristics indicate that the main
sources of the organic matters are algae and bacteria
and higher plants. Some of the biomarkers indicate
that the sedimentary environment is characterized
by the reduced lake conditions and stratified water
column

(3) The samples from the Fengcaogou section in the
WHXB have obviously heavy C isotopic composi-
tion. The enrichment in 13C is caused by elevated
productivity

(4) The paleoclimate of the western Hoh Xil basin in
early Miocene for depositing mudstone and marl
became more humid
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