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The freeze-thaw cycles will cause continuous damage to the rock, which is much related to the microcrack length, rock
permeability, and frost heaving pressure. However, the failure mechanism of the rock under compression after freeze-thaw
cycles is not very clear; therefore, it is studied with the damage theory here. First of all, according to the hydraulic pressure
theory, the relationship between the frost heaving pressure and the microcrack propagation length in one single microcrack is
established based on the elastoplastic mechanics and fracture theory. Second, by assuming the total strain of the rock under
compression is comprised of the initial damage strain, elastic strain, additional damage strain, and plastic damage strain, a
constitutive model for a rock based on the deformation and propagation of the microcrack under compression after freeze-thaw
cycles is established. Finally, the proposed model is verified with the test result. In all, the proposed model can perfectly reflect
the deterioration of the rock mechanical behavior under compression after the freeze-thaw cycles.

1. Introduction

Rock deterioration under freeze-thaw cycles is a hot issue in
many engineering projects in cold regions. This deterioration
proceeds with the freeze-thaw cycles, and the rock will grad-
ually lose its stiffness and strength.

Water in the microcrack is assumed to be the key factor
leading to the rock deterioration under freeze-thaw cycles.
The deterioration mechanism of the porous media under
freeze-thaw cycles was firstly described by Powers [1].
According to his theory, the frost heaving pressure will be
generated by 9% volume expansion when water in the closed
microcrack freezes into ice. It will make the microcrack prop-
agate and cause damage to the rock. Thereafter, lots of labo-
ratory tests have been done by many researchers, for
instance, Altindag et al. [2], Momeni et al. [3], Nicholson
and Nicholson [4], Zhang et al. [5], Wang et al. [6], Tounsi
et al. [7], and Tang et al. [8]. All these results indicated that
with the increasing number of freeze-thaw cycles, rock will

deteriorate and degrade to some degree in terms of the com-
pressive strength, elastic modulus, mass density, and so on.

No, many research works have been done in this field.
Neaupane and Yamabeb [9] proposed a nonlinear elastoplas-
tic constitutive relationship and a two-dimensional (plane
stress) numerical modeling on the basis of the finite element
method. With the continuum mechanics, Exadaktylos [10]
established a coupled model for the saturated porous rocks
under freeze-thaw cycles which can be used for analyzing
the preliminary thawing experiments on the porous sand-
stone. According to the freeze-thaw cyclic fatigue tests on
sandstone and shale, Tang et al. [8] assumed that the rock
damage process included two coupled parts, e.g., the damage
induced by the freeze-thaw cycles and the damage evolution
caused by stress erosion. And then, a frost damage constitu-
tive model is accordingly established. Based on the mass con-
servation law, energy conservation law, and the principle of
static equilibrium, Kang et al. [11] studied the thermo-
hydro-mechanical coupling mechanism and then proposed
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a new THM (thermo-hydro-mechanical) coupling model by
considering phase change effect, in which the water migra-
tion caused by segregation potential and temperature gradi-
ent is described. By considering the coupling effects among
fluid flow, heat transfer, crystallization, and deformation in
porous media, Wu et al. [12] established a thermo-hydro-
salt-mechanical coupled model for fully saturated porous
media with phase change. From the viewpoint of the energy
conservation law, mass conservation law, and the principle
of static equilibrium considering water/ice phase change,
Huang et al. [13] set up a fully coupled THMmodel and ver-
ified its validity with the laboratory test. Based on a
microstructure-based random finite element model for the
frozen soil, Dong and Yu [14] established a holistic model
to simulate the temperature, stress, and deformation in fro-
zen soil and implement a model to simulate frost heave and
stress on water pipelines. In order to consider the migration
of unfrozen water during freezing, Wang et al. [15] proposed
a general thermo-mechanical-water migration coupled con-
stitutive model to model mechanical degradation of rocks
subjected to freeze-thaw cycles. Fan et al. [16] established a
universal damage constitutive model under freeze-thaw and
loading conditions based on the statistical damage constitu-
tive model. Meanwhile, it can be seen that plasticity theory
[17, 18] is often adopted to describe the nonlinear mechani-
cal behavior of rock-like materials under freeze-thaw cycles.

Rock properties including the microcrack size distribu-
tion and permeability also have significant influence on rock
mass mechanical behavior [19–22]. Hori and Moriniro [23]
treated the shape of the microcrack as an ellipse in rock
and set up a micromechanical model for the microscopic
process. Although they assumed that the rock damage was
induced by the microcrack propagation due to the water
freezing and movement, they did not discuss the influence
of microcrack distribution and permeability on rock deterio-
ration. Therefore, the main objective of this research is to
present an elastoplastic damage model for the rock with ran-
dom distribution of the microcrack and the plastic yield cri-
terion of the homogeneous medium combined with the
micromechanical damage model to simulate the rock plastic
deformation. The total strain of the rock is assumed to be
comprised of initial damage strain, elastic strain, additional
damage strain, and plastic damage strain [24], where the ini-
tial damage strain caused by the freeze-thaw cycles is calcu-
lated by the initial compliance matrix which is the function
of freeze-thaw cycles. Meanwhile, the Drucker-Prager crite-
rion is adopted to describe the plastic behavior of rock under
compression, in which the microcrack radius is assumed to
obey an exponential law [25]. Finally, the validity of the pro-
posed model is verified with the experiment results.

2. Propagation of One Single Microcrack under
Frost Heaving Pressure

2.1. The Relationship between the Microcrack Propagation
Length and Ice Pressure in One Single Microcrack. Figure 1
illustrates a two-dimensional propagation model for one sin-
gle microcrack under the frost heaving pressure. The micro-
crack is an ellipse, and its propagation under the frost

heaving pressure will lead to the rock damage. When freez-
ing, the frost heaving pressure p acts on the inner wall of
the microcrack normally and evenly.

The following assumptions are made in this study: (1) the
microcrack is always elliptical during the whole freeze-thaw
cycles. That is to say, the shape of the microcrack is the same;
only its size changes; (2) the rock particle is assumed to be
unchanged; (3) the microcrack is always saturated, and the
microcrack propagation obeys the linear elastic fracture
mechanics; and (4) the propagation process of the micro-
crack is stable.

Water will change into ice with the volume expansion
when temperature decreases to a certain degree. But because
of the constraint of the microcrack wall, the stress induced by
the ice volume expansion will act on the microcrack inner
wall which will produce the elastic strain energy in the rock.
When the stress intensity factor K I is larger than the rock
fracture toughness K IC, the microcrack will propagate, which
will lead to the release of the elastic strain energy. According
to the Griffith energy balance theory, there is

W = E −U , ð1Þ

where W, E, are U are work done by the frost heaving pres-
sure, elastic strain energy stored in the rock, and the reduced
total potential energy of the whole system, respectively.

Assume the elastic strain energy releases completely dur-
ing the microcrack propagation, Equation (1) can be written
into

W = −U : ð2Þ

The work W done by the frost heaving pressure on the
inner wall of the microcrack is expressed as

W = 2 × p × 2a × Δbð Þ = 4paΔb, ð3Þ

where p is the frost heaving pressure, △b is the microcrack
opening displacement increment, shown in Figure 1.

The reduced total potential energy U of the whole system
in Equation (2) can be expressed as

U = −2G × Δa, ð4Þ

y

xp2b
Δ
b

2a ryΔa
Δa'

Figure 1: The microcrack propagation model under the frost
heaving pressure. 2a and 2b are the length and width of the
microcrack, respectively. △a and △b are the propagation length of
the microcrack along two directions, respectively. ry is the length

of the plastic zone near the microcrack tip. △a′ is the equivalent
propagation length of the microcrack.
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where △a is the microcrack propagation length and G is the
microcrack Griffith energy release rate.

There is a relationship between the volume of water and
that of the ice [26]. Without considering the constraint of
the microcrack wall, we assume the ice expansion volume is
△V i under the free condition. However, in practice, the ice
is loaded by the stress p, and accordingly, the corresponding
volumetric strain εv can be calculated:

εv =
3 1 − 2νið Þ

Ei
p, ð5Þ

where Ei and vi are the ice elastic modulus and Poisson’s
ratio, and here, they are assumed to be 600MPa and 0.3,
respectively.

Then, the actual volume increment ΔV i′ is

ΔV i′= ΔV i −V iε, ð6Þ

where V i is the volume of water before freezing.
According to the relationship of the water volume before

and after the phase change, there is

πab + ΔV i′= π a + Δað Þ b + Δbð Þ: ð7Þ

The microcrack propagation length can be obtained by
combining Equations(3), (4), (6), and (7)

A Δað Þ2 + B Δað Þ + C = 0, ð8Þ

where A = πG, B = πð2pab + aGÞ, and C = −2ΔV i′pa.
Solving Equation (8) yields

Δa =
− 2abp + aGð Þπ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2abp + aGð Þ2π2 + 8Gpa × ΔV i′

q
2Gπ :

ð9Þ

For the rock especially the soft rock, the plastic zone will
be formed near the microcrack tip when the microcrack wall
is loaded by the frost heaving pressure. So, in order to satisfy
the requirement of the linear elastic fracture mechanics, it is
necessary to deal with the plastic zone near the microcrack
tip with the equivalent method. The plastic region reduces
the stiffness of the rock which is equivalent to a longer micro-
crack. The equivalent propagation length a′ of the micro-
crack is [27]

a′ = a + ry , ð10Þ

where a is the original microcrack length and ry is the
length of the plastic zone near the microcrack tip shown
in Figure 1, which can be expressed as for a plane stress
issue [27].

ry =
1
2π

KI
σs

� �2
, ð11Þ

where σs is the rock yield strength and KI is the first stress
intensity factor at the microcrack tip.

So after amendment, the actual propagation length Δa′
of the microcrack shown in Figure 1 is

Δa′ = Δa + ry: ð12Þ

The shape of the microcrack after propagation is shown
as the dotted line in Figure 1.

After m freeze-thaw cycles, the microcrack half-length
am is

The microcrack propagation corresponds to the rock
damage, and accordingly, the rock elastic modulus and com-
pressive strength will also decrease.

2.2. The Frost Heaving Pressure. According to Walder and
Hallet [28], the frost heaving pressure pi is related to the
duration time of the low temperature, the value of tempera-
ture, the volume of ice and water, and flow resistance, which
can be calculated by

pi tð Þ =
L −Tcð Þ
vsTa

1 − e− t/τð Þ
� �

+ p0e
− t/τð Þ, ð14Þ

where the characteristic time τ is [28]

τ = 8
3π

� � 1 − ν

μ

� �
gavL
v2s

� �
Rf , ð15Þ

where piðtÞ is the frost heaving pressure of ice at time t; Lð
−TcÞ/vsTa = 1:1MPa/°C × ð−TcÞ. Lð−TcÞ is the fusion heat
of ice at T = Tc, kJ/mol; vs and vL are the relative volume of
ice and water, respectively; when T < −1°C, vL = 0:07 and vs
= 0:93 [29]; Ta is the absolute temperature, 273.15K; p0 is
the initial frost heaving pressure, and according to the exper-
iment result, it is 2MPa; v is the rock Poisson ratio; μ is the

am = am−1 +
− 2am−1bp + am−1Gð Þπ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2am−1bp + am−1Gð Þ2π2 + 8Gpam−1 × ΔV i′

q
2Gπ : ð13Þ
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rock shear modulus, MPa; Rf is the flow resistance, Pa·s/m; g
is the gravitational acceleration, m/s2; a is the microcrack
half-length. Here, the freezing and thawing temperatures
are adopted to be -20°C and 20°C, respectively. The time of
one freeze-thaw cycle is 12 h. The detailed calculation
method of Rf has been introduced byWalder and Hallet [28].

Therefore, the variation of the frost heaving pressure with
time is shown in Figure 2.

The work done by the frost heaving pressure along the
microcrack inner wall for one freeze-thaw cycle is

W =
ðti
0
4api tð Þ

Δb
ti

dt = 4aΔb
ti

ðti
0
pi tð Þdt, ð16Þ

where ti = 43200s and piðtÞ can be solved with Equation (14).

3. Establishment of the Rock Constitutive
Model under Compression after Freeze-
Thaw Cycles

3.1. Establishment of the Rock Constitutive Model. It is
assumed that the water/ice phase change in freeze-thaw con-
dition is the main reason leading to rock deterioration. The
frost heaving pressure is generated by 9% volume expansion
of freezing water in closed microcrack. The pressure makes
the microcrack propagate and when the temperature rises,
the melt water will go into the newly formed microcracks.
The repeated freeze-thaw cycles cause continuous damage
to the rock. Based on this viewpoint, the propagation of one
single microcrack under the frost heaving pressure is studied,
and the relationship between the propagation length of the
microcrack and the frost heaving pressure is obtained.
Because new damage continuously occurs under freeze-
thaw cycles, the elastoplastic theory is adopted to study the
rock damage mechanical behavior, and finally, a new consti-
tutive model for a rock based on the deformation and prop-
agation of microcracks under compression after freeze-thaw
cycles is proposed.

3.2. Strain Decomposition. In this proposed model, the total
strain of the rock under compression can be decomposed
into the following four components such as the initial dam-

age strain, elastic strain, plastic strain, and additional damage
strain induced by the microcrack propagation. It can be
expressed as

ε = εd + εe + εda + εp, ð17Þ

where ε is the total strain, εd is the initial damage strain, εe is
the elastic strain, εda is the additional damage strain, and εp is
the plastic strain. Their calculation methods are discussed
below.

3.2.1. Initial Damage Strain Induced by Freeze-Thaw Cycles.
The initial damage strain induced by freeze-thaw cycles is

εd½ � = Cd½ � σ½ �, ð18Þ

where ½Cd� is the initial damage compliance matrix.
Assume the half-length of the ith microcrack becomes am

after m freeze-thaw cycles. αi is the orientation of the ith

microcrack; then, the initial damage compliance matrix due
to one single microcrack is given by [25]

C½ � = C0½ � + Ai½ �−1� �T
ΔCi½ � Ai½ �−1, ð19Þ

where [C0] is the elastic compliance matrix, [Ai] is the trans-
formation matrix, and ½Ai�−1 is its inverse matrix.

Ai½ � =
cos2αi sin2αi −sin 2αi
sin2αi cos2αi sin 2αi

1
2 sin 2αi −

1
2 sin 2αi cos 2αi

2
6664

3
7775,

Ai½ �−1 =
cos2αi sin2αi sin 2αi
sin2αi cos2αi −sin 2αi

1
2 sin 2αi −

1
2 sin 2αi cos 2αi

2
6664

3
7775,

ΔCi½ � =

0 0 0

0 Ci
na

i
m

Ki
n2dh

0

0 0 Ci
sa

i
m

Ki
s2dh

2
6666664

3
7777775

ð20Þ

where Ci
n, C

i
s, K

i
n, and Ki

s are the compression transferring
coefficient, shear transferring coefficient, normal stiffness,
and shear stiffness of the ith crack, respectively. d and h are
width and height of the rock sample, respectively.

The total compliance matrix including N microcracks
whose half-length am is

C½ � = C0½ � + 〠
N

i=1
Ai½ �−1� �T

ΔCi½ � Ai½ �−1: ð21Þ

The orientation and size of the microcracks in the rock
are assumed to be random, which can be expressed with a
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Figure 2: Variation of the frost heaving pressure with time during
one freeze-thaw cycle.
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probability density function ρða, αÞ = ρðaÞρðαÞ. According
to the distribution law of the microcrack, its orientation
and size satisfy the following normalization condition [30]:

ðamax

amin

ρ að Þda
ðπ/2
0

ρ αð Þ sin αdα = 1: ð22Þ

Assume the total number of the microcracks is Nc, and
then, the number N of the microcracks with half-length of
a can be expressed as

N =Nc

ða
amin

ρ að Þda: ð23Þ

Assume the orientation of the microcrack evenly distrib-
utes in all directions [31], and according to the definition of
the density function, ρðαÞ = 1 is obtained. Therefore, the total
compliance matrix including all microcracks is

C½ � = C0½ � +Nc

ðamax

amin

Ai½ �−1� �T
ΔCi½ � Ai½ �−1ρ að Þda

ðπ/2
0

sin αdα:

ð24Þ

With Equation (24), the initial damage compliance
matrix for different freeze-thaw cycles can be calculated and
then, the initial damage strain can be finally obtained.

3.2.2. Elastic Strain. For a plane stress issue, the elastic consti-
tutive relationship of rock is [32]

εe½ � = C0½ � σ½ �, ð25Þ

where ½εe� is the elastic strain matrix, ½εe� = ½ε11 ε33 ε13�T , ½σ� is
the stress matrix, ½σ� = σ11 σ33 σ13½ �, and ½C0� is the elas-
tic compliance matrix,

C0½ � =

1
E

−
ν

E
0

−
ν

E
1
E

0

0 0 1
μ

2
66666664

3
77777775
, ð26Þ

where E, μ, and υ are the rock elastic modulus, shear modu-
lus, and Poisson ratio, respectively.

3.2.3. Additional Damage Strain due to Compression. Under
compression, the microcrack will firstly close, and then, the
friction occurs along the microcrack face. When the shear
stress along the microcrack face is larger than the friction,
the wing crack will initiate and propagate from the micro-
crack tip. The propagation of the microcrack will lead to
the decrease in the rock elastic modulus, strength, and
increase in the rock permeability. The sliding microcrack
model under compression is shown in Figure 3.

After m freeze-thaw cycles, the microcrack length
becomes am, and for this moment, the first stress intensity

factor K I at the microcrack tip is [31, 33]

K I =
2ffiffiffi
3

p τ∗
ffiffiffiffiffiffiffiffiffi
πam

p , ð27Þ

where τ∗ is the effective shear stress on the microcrack face,
τ∗ = τm − fσm, τm and σm are the shear and normal stresses
on the microcrack face, respectively, and f is the friction
coefficient of the microcrack face.

τm = σ1 − σ3
2 sin 2α,

σm = σ1 + σ3
2 −

σ1 − σ3
2 cos 2α:

ð28Þ

When KΙ ≥ K IC (KIC is the rock fracture toughness), the
microcrack begins to propagate, and the stress intensity fac-
tor KW

I at the wing crack tip is [31, 33].

KW
I = 2aτ∗ cos αffiffiffiffiffi

πl
p − σ3

ffiffiffiffiffi
πl

p
, ð29Þ

where

τ∗ = 1
2 σ1 − σ3ð Þ sin 2α − f σ1 + σ3 +ð½ σ1 − σ3ð Þ cos 2αÞ�:

ð30Þ

The wing crack will stop propagating when KW
Ι ≤ KIC, so

l can be calculated with Equation (29).
The additional damage of a rock is due to the wing

crack propagation. According to Li and Lajtai [34], the

l

2a

¦1Ò

¦3Ò
¦Á

2d

2h

Figure 3: The sliding microcrack model under compression. 2a and
α are the length and dip angle of the microcrack, respectively. l is the
wing crack length. 2h and 2d are the height and width of the model,
respectively.
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macroscopic strain of a rock can be calculated.

ε∗1 =
8λχ cos α

E
2τ∗ cos α

π
ln l

a
− σ3

l
a
− 1

� �	 

,

ε∗3 =
χ

E

16τ∗γ cos2α
π

ln l
a
+ σ3π

l2

a2
− 1

 !

−8 cos α l
a
− 1

� �
σ3γ + τ∗ð Þ

2
66664

3
77775,

ð31Þ

where ε∗1 and ε∗3 are the strains along the vertical and hor-
izontal directions, respectively; λ = sin α cos α − f cos2α; γ
= −cos α sin α − f sin2α. χ is defined as the initial micro-
crack density and is expressed as χ =Na2/V . N is the total
number of the microcracks in a two-dimensional body of
unit thickness whose volume is V = 2 h × 2d.

Finally, the total rock strain due to compression consid-
ering the normalization condition is

ε1 =Nc

ðamax

amin

ρ að Þda
ðπ/2
0

ρ αð Þ sin αdα ⋅
8λχ cos α

E

× 2τ∗ cos α
π

	
ln l

a
− σ3

l
a
− 1

� �

,

ε3 =Nc

ðamax

amin

ρ að Þda
ðπ/2
0

ρ αð Þ sin αdα ⋅
χ

E

× 16τ∗γ cos2α
π

ln l
a
+ σ3π

l2

a2
− 1

 !"

− 8 cos α l
a
− 1

� �
σ3γ + τ∗ð Þ



:

ð32Þ

3.2.4. The Plastic Strain due to Compression. The Drucker-
Prager model is adopted to describe the rock plastic
behavior, whose yield function and plastic potential func-
tion are

F σ, κð Þ = β1I1 +
ffiffiffiffi
J2

p
− κ,

G σ, κð Þ = β2I1 +
ffiffiffiffi
J2

p
− κ,

ð33Þ

where I1 = σ1 + σ2 + σ3, J2 = ð1/6Þ½ðσ1 − σ2Þ2 + ðσ2 − σ3Þ2
+ ðσ3 − σ1Þ2�, β1 = 2 sin φ/

ffiffiffi
3

p ð3 − sin φÞ, β2 = 2 sin ψ/
ffiffiffi
3

p ð
3 − sin ψÞ, and φ and ψ are the friction angle and dilation
angle, respectively. κ is the hardening function, which can
be expressed as [35]

κ = σ0 + a1λ exp a2I1 − a3λð Þ, ð34Þ

where a1, a2, and a3 are the constants which can be
obtained by fitting with the uniaxial compressive stress-
strain curve. σ0 = 6c cos φ/

ffiffiffi
3

p ð3 − sin φÞ; c is the rock
cohesion.

According to Tan et al. [36], the rock internal friction
angle is basically the same, but the rock cohesion decreases

with the freeze-thaw cycles and obeys the following exponen-
tial function:

c mð Þ = c0e
−0:072m, ð35Þ

where c0 is the original cohesion strength (before freeze-thaw
cycle) and cðmÞ is the cohesion after the mth freeze-thaw
cycle.

The plastic strain rate is

_εp = _λ
∂G
∂σ

, ð36Þ

where _λ is a proportion coefficient.

3.2.5. The Number of the Microcracks in a Rock. The proba-
bility function [37] of the microcrack length can be expressed
as

ρ að Þ =
−
1
ac

exp −
a
ac

� �
, amin ≤ a ≤ amax,

0, otherwise,

8><
>: ð37Þ

where ac is the characteristic length of the microcrack, ac =Ð amax
amin

ρðaÞada. Nc is the total number of the microcracks per

unit volume, which is determined by the total volume of
the microcrack, Vc = 2πbNc

Ð amax
amin

ρðaÞa2da.
Finally, the curve of probability density function of the

microcracks is shown in Figure 4.
According to the experiment result of Rostásy et al. [38],

the total number of the microcracks basically remains the
same after freeze-thaw cycles. The longer microcracks will
propagate, while the shorter ones will close under the extru-
sion of other microcracks. Therefore, it is assumed that the
total volume of the microcrack is the same during the
freeze-thaw cycles and compression. So the total volume Vc
of the microcracks can be expressed with the rock void
porosity e and the total volume V of the rock sample, namely,
V c = eV .

1E–7 1E–6 1E–5 1E–4
0

2000

4000

6000

8000

10000

𝜌 
(a

)/
 1

 (m
)

a (m)

ac = 0.0001m

Figure 4: Probability density functions of the microcracks.
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The first stress intensity factor KI of the microcrack with
different lengths at the same stress condition can be
expressed as

K I =
2ffiffiffi
3

p τ∗
ffiffiffiffiffiffi
πa

p
: ð38Þ

Equation (38) can be changed into

ffiffiffi
3

p
KIC

2τ∗

 !2 1
π
= acr, ð39Þ

where τ∗ = ð1/2Þ½ðσ1 − σ3Þ sin 2φ − f ðσ1 + σ3 + ðσ1 − σ3Þ
cos 2φÞ� where acr is the critical length of the microcrack
which becomes active at the condition of σ1 and σ3 when
KΙ = KIC.

As shown in Figure 5, the microcrack whose length is
greater than acr will propagate.

The total number of microcracks that will be actually
activated is given by N =Nc

Ð amax
amin

ρðaÞda, as shown in

Figure 6.

3.2.6. The Numerical Algorithm of the Proposed Model. The
calculation of the rock plastic strain at different times
can be calculated with the semi-implicit return graphical
algorithm [17], shown in Figure 7. The plastic variables
σn+1, ε

p
n+1, κn+1, rn+1, and hn+1 at tn+1 are determined by

integration flow rule and hardening law and Δσtr, σn, κn,
rn = ∂F/∂σjσ=σn , and hn = ∂κ/∂λjλ=λn at time tn. The main
steps are as follows:

(1) Update strain tensor, and calculate the elastic strain
at time tn+1

εn+1 = εn + Δε,
Δσtrn+1 = C−1 : Δε,

ð40Þ

where C is the initial elastic compliance matrix
including the initial damage compliance tensor
caused by freeze-thaw and elastic compliance tensor.

(2) Update stresses and plastic strain and hardening
function κn+1

εpn+1 = εpn + Δλn+1rn,
κn+1 = κnΔλn+1hn

σn+1 = C−1 : εn+1 − εpn+1
� �

Fn+1 = F σn+1, κn+1ð Þ = 0

ð41Þ

where rn = ∂G/∂σjσ=σn and hn = ∂κ/∂κjλ=λn .
Calculate the plastic internal variable Δλn+1:

akn+1 + C−1 : Δσkn+1 + δλkrn = 0, ð42Þ

bkn+1−Δκ
k
n+1 + δλkn+1hn = 0, ð43Þ

Fk
n+1 + Fk

σ : Δσk
n+1 + Fk

κ∙Δκ
k
n+1 = 0, ð44Þ

Δσ

Δκ

" #
= − A kð Þ
h i

~a kð Þ
h i

− δλ kð Þ A kð Þ
h i

~rn½ �, ð45Þ
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Figure 5: Relationship between the microcrack critical length and
axial stress.
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[36] and simulated with the proposed model. The predicted stress-
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where

Ak
h i

=
C 0
0 −I

" #
,

~a kð Þ
h i

=
ak

bk

" #
=

0
0

" #
,

~rn½ � =
rn

hn

" #
::

ð46Þ

δλðkÞ can be obtained with Equation (45)

δλ = Fk

∂F : Ak : ~rn
, ð47Þ

where ½∂F� = Fσ Fκ½ �.

Δλk+1n+1 = Δλkn + δλk: ð48Þ

(3) Update Nn+1 which is the number of microcracks
that begin propagating

At time tn+1, the updated normal stress is σn+1, under
which the critical initiation length ðacrÞn+1 of the microcrack
is calculated by

acrð Þn+1 =
1
π

ffiffiffi
3

p
KIC

2 τ∗ð Þn+1

 !2

, ð49Þ

where

τ∗ð Þn+1 =
1
2

σ1ð Þtrn+1 − σ3
� �

sin 2φ

−μ σ1ð Þtrn+1 + σ3+ σ1ð Þtrn+1 − σ3
� �

cos 2φ
��

" #
,

Nn+1 =Nc

ðamax

acrð Þn+1
ρ að Þda:

ð50Þ

(4) Update the additional damage strain ðεadÞn+1
The additional damage strain matrix of εad can be

expressed as

εad½ � = ε1 ε3 0½ �: ð51Þ

Update the length of wing crack ln+1

KW
I = 2a τð Þn+1 cos φffiffiffiffiffiffiffiffiffiffi

πln+1
p − σ3ð Þn+1

ffiffiffiffiffiffiffiffiffiffi
πln+1

p
, ð52Þ

where KW
I = KIC.

Update the additional strain

ε1ð Þn+1 =Nn+1

ðamax

acrð Þn+1
ρ að Þda

ðπ/2
0

ρ αð Þ sin αdα ⋅
8λa cos2α

E

× 2 τ∗ð Þn+1 cos α
π

	
ln ln+1

a
− σ3

ln+1
a

− 1
� �


,

ε3ð Þn+1 =Nn+1

ðamax

acrð Þn+1
ρ að Þda

ðπ/2
0

ρ αð Þ sin αdα ⋅
a2

E

×

16 τ∗ð Þn+1γ cos2α
π

ln ln+1
a

+ σ3π
ln+1ð Þ2
a2

− 1
 !

−8 cos φ ln+1
a

− 1
� �

σ3γ + τ∗ð Þn+1
� �

2
666664

3
777775:

ð53Þ

(5) Update the stress

σ∗n+1 = σn+1 − C−1 : εadð Þn+1 ð54Þ

4. Verification of the Proposed Model

In order to verify the proposed model, the experiment by
Tan et al. [36] is taken for an example. The rock type is
granite, which is obtained from Galongla mountain in
Tibet of China, where a highway tunnel passes through
the mountain and it is very cold in winter. The tested
samples are prepared as cylinders with 50mm in diameter
and 100mm high. The compression tests with confining
pressure 5MPa and 10MPa on the rock sample are done
with a multifunction rock mechanics test machine, and
the corresponding stress-strain curves are shown in
Figures 8 and 9. The calculation parameters are shown
in Table 1.

The characteristic length ac of the microcrack under 0,
50, and 100 freeze-thaw cycles is solved to be 0.1mm,
0.41mm and 1.64mm, respectively, with Equation (13).
According to the proposed model, the complete stress-
strain curve of the rock under compression with confining
pressure σ3 = 5MPa/10MPa is shown in Figures 8 and 9.

Table 1: The calculation parameters.

E (GPa) v e c (MPa) a1 (MPa) a2 (MPa-1) a3 ac (m) amin (m) amax (m)

36.71 0.2 0.0067 27.43 5e9 1e-8 100 1e-4 1e-7 0.0012
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It can be seen that the simulated stress-strain curves agree
well with the tested ones especially when σ3 = 10MPa.
Meanwhile, with the increasing freeze-thaw cycles, both
the climax strength and slope of the stress-strain curve
decrease; that is to say, the rock compressive strength
and elastic modulus both decrease. It indicates that the
freeze-thaw cycles have much effect on the rock mechani-
cal behavior.

5. Conclusions

(1) Based on the fracture mechanics, the calculation
method of the microcrack propagation length
induced by the freeze-thaw cycles is proposed. Mean-
while, the variation of the frost heaving pressure with
time during one freeze-thaw cycle is also calculated

(2) In the framework of the fracture and damage
mechanics, the total strain of the rock under com-
pression after freeze-thaw cycles can be decomposed
into the initial damage strain, elastic strain, plastic
strain, and additional damage strain. And their calcu-
lation methods are discussed in detail. Finally, a con-
stitutive model for a rock based on the deformation
and propagation of microcracks under compression
after freeze-thaw cycles is established

(3) By utilizing the semi-implicit algorithm, the stress-
strain relationship of the proposed model is calcu-
lated. The comparison of the theoretical results of
the proposed method and test ones shows that they
agree well with each other. Overall, the proposed
method provides a new way to simulate the mechan-
ical behavior of a rock under compression after
freeze-thaw cycles

Data Availability

All data generated or analyzed during this study are included
in this manuscript.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This study is supported by the National Key Research and
Development Plan of China (2019YFC1509701).

References

[1] T. C. Powers, “Freezing effect in concrete. Durability of con-
crete,” in ACI SP47, pp. 1–11, American Concrete Institute,
Detroit, Michigan, 1975.

[2] R. Altindag, I. S. Alyildiz, and T. Onargan, “Mechanical prop-
erty degradation of ignimbrite subjected to recurrent freeze-
thaw cycles,” International Journal of Rock Mechanics and
Mining Sciences, vol. 41, no. 6, pp. 1023–1028, 2004.

[3] A. Momeni, Y. Abdilor, G. R. Khanlari, M. Heidari, and A. A.
Sepahi, “The effect of freeze-thaw cycles on physical and
mechanical properties of granitoid hard rocks,” Bulletin of
Engineering Geology and the Environment, vol. 75, pp. 1649–
1656, 2016.

[4] D. T. Nicholson and F. H. Nicholson, “Physical deterioration
of sedimentary rocks subjected to experimental freeze-thaw
weathering,” Earth Surface Processes and Landforms, vol. 25,
no. 12, pp. 1295–1307, 2000.

[5] J. Zhang, H. W. Deng, J. R. Deng, and B. Ke, “Development of
energy-based brittleness index for sandstone subjected to
freeze-thaw cycles and impact loads,” IEEE Access, vol. 6,
pp. 48522–48530, 2018.

[6] S. R. Wang, Y. L. Chen, J. Ni, M. D. Zhang, and H. Zhang,
“Influence of freeze-thaw cycles on engineering properties of
tonalite: examples from China,” Advances in Civil Engineering,
vol. 2019, Article ID 3418134, 12 pages, 2019.

[7] H. Tounsi, A. Rouabhi, E. Jahangir, and F. Guerin, “Mechani-
cal behavior of frozen metapelite: laboratory investigation and
constitutive modeling,” Cold Regions Science and Technology,
vol. 175, 2020.

[8] Z. C. Tang, L. Li, X. C.Wang, and J. P. Zou, “Influence of cyclic
freezing-thawing treatment on shear behaviors of granite frac-
ture under dried and saturated conditions,” Cold Regions Sci-
ence and Technology, vol. 181, p. 103192, 2021.

[9] K. M. Neaupane and T. Yamabe, “A fully coupled thermo-
hydro-mechanical nonlinear model for a frozen medium,”
Computers and Geotechnics, vol. 28, no. 8, pp. 613–637, 2001.

[10] G. E. Exadaktylos, “Freezing–thawing model for soils and
rocks,” Journal of Materials in Civil Engineering, vol. 18,
no. 2, pp. 241–249, 2006.

[11] Y. S. Kang, Q. S. Liu, and S. B. Huang, “A fully coupled
thermo-hydro-mechanical model for rock mass under free-
zing/thawing condition,” Cold Regions Science and Technology,
vol. 95, pp. 19–26, 2013.

[12] D. Y. Wu, Y. M. Lai, and M. Zhang, “Thermo-hydro-salt-
mechanical coupled model for saturated porous media based
on crystallization kinetics,” Cold Regions Science and Technol-
ogy, vol. 133, pp. 94–107, 2017.

[13] S. B. Huang, Q. S. Liu, A. Cheng, Y. Z. Liu, and G. F. Liu, “A
fully coupled thermo-hydro-mechanical model including the
determination of coupling parameters for freezing rock,”
International Journal of Rock Mechanics and Mining Sciences,
vol. 103, pp. 205–214, 2018.

[14] S. Y. Dong and X. Yu, “Microstructure-based random finite
element method simulation of frost heave: theory and imple-
mentation,” Transportation Research Record, vol. 2672,
no. 52, pp. 347–357, 2018.

[15] Z. Wang, Z. D. Zhu, and S. Zhu, “Thermo-mechanical-water
migration coupled plastic constitutive model of rock subjected
to freeze-thaw,” Cold Regions Science and Technology, vol. 161,
pp. 71–80, 2019.

[16] W. Fang, N. Jiang, and X. D. Luo, “Establishment of damage
statistical constitutive model of loaded rock and method for
determining its parameters under freeze-thaw condition,”
Cold Regions Science and Technology, vol. 160, pp. 31–38,
2019.

[17] J. C. Simo and R. L. Taylor, “A return mapping algorithm
for plane stress elastoplasticity,” International Journal for
Numerical Methods in Engineering, vol. 22, no. 3, pp. 649–
670, 1986.

10 Geofluids



[18] B. Moran, M. Ortiz, and F. Shih, “Formulation of implicit finite
element methods for multiplicative finite deformation plastic-
ity,” International Journal for Numerical Methods in Engineer-
ing, vol. 29, no. 3, pp. 483–514, 1990.

[19] A. Saad, S. Guédon, and F. Martineau, “Alteration microstruc-
turale de roches sedimentaires par des cycles de gel- degel :
etude experimentale de parametres d'etat et de transfert,”
Comptes Rendus Geoscience, vol. 342, no. 3, pp. 197–203, 2010.

[20] N. Matsuoka, “Mechanisms of rock breakdown by frost action:
an experimental approach,” Cold Regions Science and Technol-
ogy, vol. 17, no. 3, pp. 253–270, 1990.

[21] M. Mutluturk, R. Altindag, and G. Turk, “A decay function
model for the integrity loss of rock when subjected to recurrent
cycles of freezing-thawing and heating-cooling,” International
Journal of Rock Mechanics and Mining Sciences, vol. 41, no. 2,
pp. 237–244, 2004.

[22] H. Yavuz, R. Altindag, S. Sarac, I. Ugur, and N. Sengun, “Esti-
mating the index properties of deteriorated carbonate rocks
due to freeze- thaw and thermal shock weathering,” Interna-
tional Journal of Rock Mechanics and Mining Sciences,
vol. 43, no. 5, pp. 767–775, 2006.

[23] M. Hori and H. Morihiro, “Micromechanical analysis on dete-
rioration due to freezing and thawing in porous brittle mate-
rials,” International Journal of Engineering Science, vol. 36,
no. 4, pp. 511–522, 1998.

[24] R. K. Abu al-Rub and G. Z. Voyiadjis, “On the coupling of
anisotropic damage and plasticity models for ductile mate-
rials,” International Journal of Solids and Structures, vol. 40,
no. 11, pp. 2611–2643, 2003.

[25] K. Maleki and A. Pouya, “Numerical simulation of damage-
permeability relationship in brittle geomaterials,” Computers
and Geotechnics, vol. 37, no. 5, pp. 619–628, 2010.

[26] G. P. Davidson and J. F. Nye, “A photoelastic study of ice pres-
sure in rock cracks,” Cold Regions Science and Technology,
vol. 11, no. 2, pp. 141–153, 1985.

[27] G. R. Irwin, J. A. Kies, and H. L. Smith, “Fracture strengths rel-
ative to onset and arrest of crack propagation,” Proceedings-
American society for testing and materials, vol. 58, pp. 640–
660, 1958.

[28] J. Walder and B. Hallet, “A theoretical model of the fracture of
rock during freezing,” Geological society of America Bulletin,
vol. 96, no. 3, pp. 336–346, 1985.

[29] M. Mikkola and J. Hartikainen, “Computational aspects of soil
freezing problem,” in In Fifth World Congress on Computa-
tional Mechanics, Vienna, Austria, 2002.

[30] S. W. Yu and X. Q. Feng, “A micromechanics-based damage
model for microcrack-weakened brittle solids,” Mechanics of
Materials, vol. 20, no. 1, pp. 59–76, 1995.

[31] M. F. Ashby and S. D. Hallam, “The failure of brittle solids
containing small cracks under compressive stress states,” Acta
Metallurgica, vol. 34, no. 3, pp. 497–510, 1986.

[32] H. Martin and Sadd, “Elasticity,” in Theory, Application, and
Numerics, Academic Press, 2005.

[33] H. Horii and S. Nemat-Nasser, “Compression-induced micro-
crack growth in brittle solids: axial splitting and shear failure,”
Journal of Geophysical Research, vol. 90, no. B4, pp. 3105–
3125, 1985.

[34] S. Li and E. Z. Lajtai, “Modeling the stress-strain diagram for
brittle rock loaded in compression,” Mechanics of Materials,
vol. 30, no. 3, pp. 243–251, 1998.

[35] R. I. Borja, K. M. Sama, and P. F. Sanz, “On the numerical inte-
gration of three-invariant elastoplastic constitutive models,”
Computer Methods in Applied Mechanics and Engineering,
vol. 192, no. 9-10, pp. 1227–1258, 2003.

[36] X. J. Tan, W. Chen, J. Yang, and J. Cao, “Laboratory investiga-
tions on the mechanical properties degradation of granite
under freeze-thaw cycles,” Cold Regions Science and Technol-
ogy, vol. 68, no. 3, pp. 130–138, 2011.

[37] C. Arson and J. M. Pereira, “Influence of damage on pore size
distribution and permeability of rocks,” International Journal
for Numerical and Analytical Methods in Geomechanics,
vol. 37, no. 8, pp. 810–831, 2013.

[38] F. S. Rostásy, R. Weib, and G. Wiedemann, “Changes of pore
structure of cement mortars due to temperature,” Cement
and Concrete Research, vol. 10, no. 2, pp. 157–164, 1980.

11Geofluids


	A Damage Constitutive Model for a Rock under Compression after Freeze-Thaw Cycles Based on the Micromechanics
	1. Introduction
	2. Propagation of One Single Microcrack under Frost Heaving Pressure
	2.1. The Relationship between the Microcrack Propagation Length and Ice Pressure in One Single Microcrack
	2.2. The Frost Heaving Pressure

	3. Establishment of the Rock Constitutive Model under Compression after Freeze-Thaw Cycles
	3.1. Establishment of the Rock Constitutive Model
	3.2. Strain Decomposition
	3.2.1. Initial Damage Strain Induced by Freeze-Thaw Cycles
	3.2.2. Elastic Strain
	3.2.3. Additional Damage Strain due to Compression
	3.2.4. The Plastic Strain due to Compression
	3.2.5. The Number of the Microcracks in a Rock
	3.2.6. The Numerical Algorithm of the Proposed Model


	4. Verification of the Proposed Model
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

