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The intensity and depth of China’s coal mining are increasing, and the risk of coal-gas compound dynamic disaster is prominent,
which seriously restricts the green, safe, and efficient mining of China’s coal resources. How to accurately predict the risk of
disasters is an important basis for disaster prevention and control. In this paper, the Pingdingshan No. 8 coal mine is taken as
the research object, and the grey relational analysis (GRA), principal component analysis (PCA), and BP neural network are
combined to predict the coal-gas compound dynamic disaster. First, the weights of 13 influencing factors are sorted and
screened by grey relational analysis. Next, principal component analysis is carried out on the influencing factors with high
weight value to extract common factors. Then, the common factor is used as the input parameter of BP neural network to
train the previous data. Finally, the coal-gas compound dynamic disaster prediction model based on GRA-PCA-BP neural
network is established. After verification, the model can effectively predict the occurrence of coal-gas compound dynamic
disaster. The prediction results are consistent with the actual situation of the coal mine with high accuracy and
practicality. This work is of great significance to ensure the safe and efficient production of deep mines.

1. Introduction

With the increase of mining intensity and mining depth of
China’s coal resources, when the coal under high ground
stress and high gas pressure is disturbed by mining, the cou-
pling effect of rockburst and coal-gas outburst becomes
intense [1–3]. In particular, after entering deep mining, the
interaction between rockburst and coal-gas outburst
becomes serious, which no longer exists in the form of a sin-
gle disaster. It shows the characteristics of compound disas-
ter. It is called coal-gas compound dynamic disaster [4–6].
In the process of the occurrence of coal-gas compound
dynamic disaster, many factors are intertwined with each
other, which may be used as incentives and strengthen each
other before, during, and after the accident. Compared with
single dynamic disaster, the coupling of two disasters may
make the coal-gas compound dynamic disaster more intense
and violent, resulting in a large number of property losses

and casualties. Coal-gas compound dynamic disaster has
become a major disaster restricting the safe and efficient
mining of coal resources in China. Therefore, how to accu-
rately predict the occurrence of disasters has become a major
scientific issue in the field of coal mine safety under the form
of new disasters.

Compared with rockburst and coal-gas outburst, the
threshold of coal-gas compound dynamic disaster is lower,
and the disaster mechanism is more complex [7–11]. The
previous single disaster prediction method is no longer
applicable, and the prediction difficulty of coal-gas com-
pound dynamic disaster is greatly increased [12]. At present,
the previous research on the prediction of rockburst and
coal-gas outburst is quite fruitful [13–18]. However, the
research on the prediction of coal-gas compound dynamic
disaster is relatively less. Pan [19] put forward three kinds
of integrated forecasting technologies, including multi-
indexes integrated monitoring of drilling cutting method,
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real-time continuous monitoring of coal temperature, and
real-time continuous monitoring of coal charge, and applied
them in Pingdingshan and other mining areas. Luo et al.
[20] used the analytic hierarchy process (AHP) to build a
multiparameter risk assessment model of mine dynamic
disasters and carried out classification early warning for
rockburst, coal-gas outburst, and coal-gas compound
dynamic disaster. The model is verified by some examples,
and it is concluded that the model has strong applicability
to the prediction of dynamic disasters in deep mines. Yuan
[21] and Meng and Zhang [22] proposed that through the
comprehensive detection method, the coal drilling cutting
quantity, the initial gas emission velocity, and the gas
desorption quantity should be used as the sensitive indexes
for the risk assessment, prediction, and effective inspection
of the coal-gas compound dynamic disaster. According to
the multifactor coupling unified catastrophe characteristics
of deep coal-gas dynamic disaster in Pingdingshan mining
area, Yuan [23] proposed the unified prediction theory of
deep coal-gas dynamic disaster based on geological dynamic
zoning and the probability prediction method of pattern rec-
ognition and established the risk evaluation and prediction
technical index system of deep coal-gas dynamic disaster in
Pingdingshan mining area. By analyzing the correlation
between “direction” and “mechanism” of the precursor of
coal-gas compound dynamic disaster, Jiang et al. [24] put
forward the multiparameter monitoring and joint early
warning method of real-time danger. Through the con-
struction of multiparameter joint warning platform, the
test is carried out in many coal mines, and the preliminary
results are obtained. Dou et al. [25] summarized the mon-
itoring and early warning technologies of gas-earing coal
rock dynamic disasters. They include zoning and grading
monitoring and early warning, microseism monitoring
method, electromagnetic radiation, elastic wave CT and
vibration wave CT in the aspect of rock burst monitoring,
drilling gas gushing initial velocity method, R-index
method, and electromagnetic radiation method in the
aspect of coal and gas outburst monitoring. They pointed
out that for the monitoring and early warning of coal-
gas compound dynamic disaster, we should focus on the
establishment of multiparameter normalized dimensionless
monitoring and early warning model and criteria for
dynamic disaster risk, build the monitoring and early
warning index system suitable for coal-gas compound
dynamic disaster, and develop the corresponding monitor-
ing technology and equipment.

It can be seen that although relevant scholars have
made some meaningful researches on the prediction of
coal-gas compound dynamic disaster, most of them are
still in the qualitative stage, and the application of quanti-
tative mathematical methods in the prediction of coal-gas
compound dynamic disaster is rarely reported. Therefore,
combined with the application of mathematical method
in the prediction of coal-gas outburst and rockburst
[26–29], a method predicting the coal-gas compound
dynamic disaster based on the GRA-PCA-BP model is
put forward, and the model is verified, and good results
are achieved.

2. Occurrence Law and Influencing Factors of
Coal-Gas Compound Dynamic Disaster

2.1. Occurrence Law of Coal-Gas Compound Dynamic
Disaster. Coal-gas compound dynamic disaster is an atypical
dynamic disaster induced by mining activities. With the
increase of mining depth and complex geological structure,
a considerable number of mines are facing the double danger
of coal-gas outburst and rockburst. Coal-gas compound
dynamic disaster will occur under specific conditions. Based
on the field investigation records and extensive literature
review of coal-gas compound dynamic disaster in multitime
period for multicoal mines, the occurrence laws and destruc-
tive characteristics of coal-gas compound dynamic disaster
are summarized as follows:

(1) Compared with coal-gas outburst and rockburst,
when coal-gas compound dynamic disaster occurs,
the critical value of main controlling factors is lower,
and the intensity and damage degree of disasters are
obviously higher. Compared with the coal-gas out-
burst disaster, the gas pressure of coal-gas com-
pound dynamic disaster is lower, and the coal
strength is higher. Compared with rockburst disas-
ter, when coal-gas compound dynamic disaster
occurs, the gas pressure is higher, and the strength
of coal seam roof strength is lower

(2) The damage type of coal-gas compound dynamic
disaster is obviously different from coal-gas outburst
and rockburst, which shows new disaster character-
istics. The damage type of coal-gas compound
dynamic disaster includes part of the damage char-
acteristics of coal-gas outburst and rockburst disas-
ter. When the coal-gas compound dynamic disaster
occurs, the impact power is stronger, and gas emis-
sion is higher

2.2. Analysis of Factors Influencing Coal-Gas Compound
Dynamic Disaster. To explore the influencing factors of
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Figure 1: Error back propagation of three-layer network structure.
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coal-gas compound dynamic disaster, we need to under-
stand the occurrence and development process of the disas-
ter. Under the influence of mining disturbance, the coal-rock
composite structure in critical state begins to deform and

lose stability and release elastic strain energy. A large
amount of gas expansion energy is accumulated in the pores
of coal mass in coal-rock composite structure. The release of
gas expansion energy has tensile damage to coal mass. Coal

Table 3: Partial correlation coefficient and correlation degree.

Correlation coefficient
Number t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13
1 0.9046 0.7433 0.7433 0.7433 0.9032 0.8876 0.9272 0.9975 0.9713 0.8737 0.8737 0.8955 0.8912

2 0.9116 0.7433 0.7405 0.7433 0.8842 0.8876 0.9272 0.9975 0.9354 0.8737 0.8489 0.9704 0.8696

11 0.9161 1 0.7433 0.7433 0.9032 0.9255 0.8566 0.8904 0.7433 0.9493 0.7433 0.8447 0.9503

12 0.9161 1 0.7433 0.7433 0.9032 0.9255 0.8566 0.8904 0.7433 0.9493 0.7433 0.8605 0.8199

20 0.8863 0.7433 0.7433 0.7433 0.9032 0.9723 0.9272 0.8904 0.7433 0.86 0.7433 0.9177 0.8749

21 0.9028 0.5915 0.7433 0.7433 0.8842 0.9179 0.9272 0.9325 0.9185 0.9153 0.9779 0.8996 0.8912

29 0.9064 0.7433 0.7433 0.9434 0.9032 0.9585 0.9272 0.9552 0.8863 0.8737 0.9893 0.909 0.8643

30 0.83 1 1 0.765 0.8077 0.8627 0.7376 0.8182 0.8637 0.6388 0.8329 0.9061 0.9053

38 0.8955 0.7433 0.7433 0.7433 0.9032 0.8959 0.9272 0.9437 0.8022 0.9808 0.9178 0.9208 0.8592

39 0.7361 0.7433 0.4035 0.5389 0.8077 0.7681 0.7894 0.84 1 0.8329 1 0.7557 0.8885

Correlation degree

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13
0.8804 0.8317 0.7346 0.7556 0.8717 0.8923 0.8712 0.8988 0.8197 0.8717 0.8117 0.8531 0.9077

Correlation degree ranking

4 9 13 12 6 3 7 2 10 5 11 8 1

Table 1: Partial initial data of coal-gas compound dynamic disaster in No. 8 coal mine.

Number t1/m t2 t3 t4 t5 t6 t7 t8/m t9/m t10/
° t11 t12/mmHg t13 Disaster or not

1 535 0 0 0 0.5 1.47 3 5.4 0.8 11 0.06 11.23 0.32 1

2 554 0 0.08 0 1 1.47 3 5.4 0.7 11 0.05 15.47 0.28 1

11 566 1 0 0 0.5 1.78 2 3.5 0 16 0 7.93 0.57 1

12 566 1 0 0 0.5 1.78 2 3.5 0 16 0 9.00 0.81 1

20 484 0 0 0 0.5 2.13 3 3.5 0 10 0 12.56 0.29 1

21 530 3 0 0 1 1.72 3 4.3 0.65 24 0.11 11.48 0.67 1

29 540 0 0 0.13 0.5 2.03 3 4.7 1.2 11 0.10 12.05 0.27 1

30 457 0 0 0.14 0.5 1.07 4 3.5 0.4 31 0.06 5.09 0.15 0

38 510 0 0 0 0.5 1.54 3 4.5 1.5 20 0.13 12.74 0.26 1

39 800 1 0.17 0.39 0.5 2.03 3 3.0 0 11 0 15.89 0.18 0

Note: In the column “Disaster or not”, the “1” represents that the disaster occurs, and the “0” represents the disaster does not occur.

Table 2: Partial dimensionless data of coal-gas compound dynamic disaster in No. 8 coal mine.

Number t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 Disaster or not

1 0.9397 0 0 0 0.9331 0.8567 1.0455 1.3431 1.237 0.7863 0.7863 0.8955 0.8746 1

2 0.9731 0 2.7259 0 1.8661 0.8567 1.0455 1.3431 1.0824 0.7863 0.6553 1.2336 0.7653 1

11 0.9942 1.3529 0 0 0.9331 1.0374 0.697 0.8705 0 1.1437 0 0.6323 1.5579 1

12 0.9942 1.3529 0 0 0.9331 1.0374 0.697 0.8705 0 1.1437 0 0.7177 2.2139 1

20 0.8501 0 0 0 0.9331 1.2414 1.0455 0.8705 0 0.7148 0 1.0015 0.7926 1

21 0.9309 4.0588 0 0 1.8661 1.0024 1.0455 1.0695 1.005 1.7156 1.4416 0.9154 1.8313 1

29 0.9485 0 0 1.1178 0.9331 1.1831 1.0455 1.169 1.8555 0.7863 1.31 0.9609 0.738 1

30 0.8027 0 0 1.2037 0.9331 0.6236 1.3939 0.8705 0.6185 2.216 0.7863 0.4059 0.41 0

38 0.8958 0 0 0 0.9331 0.8975 1.0455 1.1192 2.3193 1.4297 1.7037 1.0159 0.7106 1

39 1.4052 1.3529 5.7926 3.3533 0.9331 1.1831 1.0455 0.7461 0 0.7863 0 1.2671 0.492 0
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mass failure will further promote the release of elastic energy
of coal mass and rock mass. At this time, the overall failure
and instability of coal-rock composite structure induce the
occurrence of coal-gas compound dynamic disaster. Com-
bined with the influencing factors of coal-gas outburst disas-
ter and rockburst disaster and the occurrence and
development process of coal-gas compound dynamic disas-
ter, the preliminary analysis is made to obtain the 13 influ-
ence factors of coal-gas compound dynamic disaster, which
is buried depth (t1), fault number (t2), variation coefficient
of coal thickness (t3), variation coefficient of coal seam dip
angle (t4), soft stratification change (t5), surrounding rock
combination (t6), type of coal mass failure (t7), coal thick-
ness (t8), soft stratification thickness (t9), coal seam dip
angle (t10), wrinkle coefficient (t11), initial velocity of gas
emission (t12), and firmness coefficient (t13).

3. Principles of the GRA-PCA-BP Model

3.1. Grey Relational Analysis (GRA). Grey relational analysis
is a method of quantitative description and comparison of
the development and change situation of a system. By deter-
mining the geometric similarity between the reference data
column and several comparison data columns, we can judge
whether they are closely related, reflecting the degree of cor-
relation between the curves. The grey relational analysis
method has several characteristics: it does not need huge
data. It can find the corresponding statistical law even in
the case of less data. It has no requirement for whether the
sample obeys the classical probability distribution function.
It will not cause the problem that the qualitative analysis
results and quantitative analysis results are inconsistent.
The rules and relations of the studied system will not be mis-
interpreted [30–32].

This method can be used to analyze the correlation
degree between each influencing factor and the result when
selecting the prediction index of coal-gas compound
dynamic disaster. By evaluating the importance of each
influencing factor, the main factors affecting the occurrence
of coal-gas compound dynamic disaster are screened out
from many parameters, and the interference of secondary
factors on the prediction process and result is abandoned,
which can improve the accuracy of the results and lay a good
foundation for the operation of the model.

The specific implementation steps of grey relational
analysis are as follows:

(1) Suppose the parent sequence is Y0, and each
influencing factors be the comparison subfactors
sequence Yi ði = 1, 2,⋯, nÞ. The observed values of
the parent factors are as follows:

Y0 = y0 1ð Þ, y0 2ð Þ,⋯, y0 nð Þf g ð1Þ

The observed values of the subfactors are as follows:

Y i = yi 1ð Þ, yi 2ð Þ,⋯, yi nð Þf g: ð2Þ

(2) The original data of each sequence are dimensionless
processed. Supposing that X0, Xi ði = 1, 2,⋯,mÞ are
the observed values of parent factor and subfactor,
respectively, after dimensionless treatment, then
(the average method is used to process the data)

x0 kð Þ = y0 kð Þ
1/n∑n

t=1y0 tð Þ , xi kð Þ = yi kð Þ
1/n∑n

t=1yi tð Þ
ð3Þ

(3) After dimensionless processing of original data, the
correlation coefficient ζ between x0 and xi ði = 1, 2,
3,⋯, nÞ at point k is

ζi kð Þ =
min

i
min
k

∣ x0 kð Þ − xi kð Þ∣+ρ max
i

max
k

∣ x0 kð Þ − xi kð Þ ∣
∣x0 kð Þ − xi kð Þ∣+ρ max

i
max
k

∣ x0 kð Þ − xi kð Þ ∣
ð4Þ

In formula (4), the formula ΔiðkÞ = jx0ðkÞ − xiðkÞj, ði =
1, 2, 3,⋯,nÞ is called the absolute difference between x0 and
xi at point k. The formula min

i
min
k

∣x0ðkÞ − xiðkÞ∣ and the

formula max
i

max
k

∣x0ðkÞ − xiðkÞ∣ are two-level minimum dif-

ference and two-level maximum difference, respectively. The
coefficient ρ is the resolution coefficient, generally ρ = 0:5.

(4) Calculation of the grey relational degree ri value

ri =
1
n
〠
n

k=1
ζi kð Þ ð5Þ

3.2. Principal Component Analysis (PCA). Principal compo-
nent analysis (PCA) is a statistical technique to extract com-
mon factors from variable groups. This technique can find
out the hidden representative factors among many variables
and classify the same essential variables into one new factor
to effectively reduce the number of variables. This intelligent
optimization algorithm has unique advantages in local and
global optimization and robust performance.

The advantages of principal component analysis are very
suitable for the prediction of coal-gas compound dynamic
disaster. The number of factors initially screened by GRA
is large, and the correlation between the factors is high.
There may be multicollinearity among the factors, which
makes the model estimation distorted or difficult to estimate
accurately due to the accurate correlation or high correlation

Table 4: Kaiser-Meyer-Olkin and Bartlett tests.

Kaiser-Meyer-Olkin 0.543

Bartlett sphericity test

Approximate chi-square 91.012

Degree of freedom 28

Significance 0
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between the factors, thus affecting the accuracy of BP neural
network prediction. PCA simplification of influencing fac-
tors can effectively avoid the occurrence of this problem
and can further reduce the dimension of influencing factors
by obtaining new common factors [33–35].

The specific implementation steps of principal compo-
nent analysis are as follows:

(1) Standardized collection of original index data

There are p-dimensional random vector x =
ðx1, x2,⋯, xpÞT , n samples xi = ðxi1, xi2,⋯, xipÞT , i = 1, 2,⋯
, n, n > p, constructing a sample matrix, performing the fol-
lowing standardized transformations on the sample matrix
elements:

Characteristic value

0 1 2 3

Component number

4 5 6 7 8 9

0.2331153393
0.256247695

0.579477244
0.714847521

0.983081915
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1.371412369

2.550907697
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Figure 2: Gravel diagram.

Table 5: Total variance explained.

Total variance explained
Initial eigenvalue Extract the sum of squares of the load

Common factor Total Variance percentage Cumulative percentage Total Variance percentage Cumulative percentage

1 2.551 31.886 31.886 2.551 31.886 31.886

2 1.371 17.143 49.029 1.371 17.143 49.029

3 1.311 16.386 65.415 1.311 16.386 65.415

4 0.983 12.289 77.703 0.983 12.289 77.703

5 0.715 8.936 86.639

6 0.579 7.243 93.882

7 0.256 3.203 97.086

8 0.233 2.914 100

Table 6: Composition matrix.

Component
F1 F2 F3 F4

Buried depth t1ð Þ 0.576 0.009 -0.661 -0.05

Change of soft stratification t9ð Þ 0.202 0.286 0.617 0.518

Surrounding rock combination t6ð Þ -0.214 0.235 -0.49 0.762

Coal failure type t7ð Þ 0.844 -0.198 0.145 0.119

Coal thickness t8ð Þ 0.104 0.717 0.346 -0.19

Coal seam dip angle t10ð Þ -0.098 -0.816 0.328 0.17

Initial velocity of gas emission t12ð Þ 0.892 0.082 -0.022 -0.133

Coal firmness coefficient t13ð Þ -0.778 0.095 -0.057 -0.183
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Zij =
xij − �xj

sj
, i = 1, 2,⋯, n ; j = 1, 2,⋯, p, ð6Þ

where �xj =∑n
i=1xij/n, s2j =∑n

i=1ðxij − �xjÞ2/n − 1. The nor-
malized matrix Z is obtained.

(2) The correlation coefficient matrix of standardized
matrix Z is calculated

R = rij
� �

p
xp = ZTZ

n − 1 , ð7Þ

where rij =∑zkj · zkj/n − 1, i, j = 1, 2,⋯, p:

(3) The characteristic equation jR − λIpj = 0 is used to
solve the sample correlation matrix R. Then, p char-
acteristic roots are obtained to determine the princi-
pal component. Through equation ∑m

j=1λj/∑
p
j=1λj ≥ t

(t < 1), the value of m is determined, which makes
the utilization of information more than t. For each
λj, j = 1, 2,⋯,m, the equation Rb = λ jb is solved to
get the unit eigenvector boj

(4) The standardized index variables are transformed
into main components

Uij = zTi b
o
j , j = 1, 2,⋯,m ð8Þ

U1 is the first principal component, U2 is the second
principal component, ..., and Up is the p principal
component.

3.3. BP Neural Network. BP neural network is a kind of mul-
tilayer feedforward neural network trained according to the
error back propagation algorithm, which is the most widely
used neural network [36, 37]. The topological structure of
BP neural network model is composed of three layers: input
layer, hidden layer, and output layer. Gradient shrinkage
technique is used to calculate the solution weight by iterative
operation. The addition of hidden nodes makes the adjust-
able parameters increase and approach the accurate value.
There is no uniform regulation on the number of neurons
in the implied layer, which is generally determined by
empirical formula. The empirical formula for determining
the number of neurons N in the hidden layer is as follows:

N =
ffiffiffiffiffiffiffiffiffiffiffiffi
n ×m

p
, ð9Þ

N =
ffiffiffiffiffiffiffiffiffiffiffiffi
n ×m

p
+ a, ð10Þ

N =m n + 1ð Þ, ð11Þ
N = 2m + 1, ð12Þ

where n is the number of input layer nodes, m is the
number of output layer nodes, and a is a constant between
1 and 10. From the input layer to the hidden layer and from

the hidden layer to the output layer, the actual output value
is obtained. When the output layer error exceeds the error
tolerance range, it will be back propagation. By modifying
the weights of the neural nodes, the mean square error of
the expected output and the actual output is minimized.
Therefore, the results meet the requirements. The structure
diagram is shown in Figure 1.

3.4. GRA-PCA-BP Model. In the GRA-PCA-BP model,
firstly, the influencing factors with high weight are screened
by grey relational analysis. Secondly, the influencing factors

Table 7: Some common factor data after calculation.

Number X1 X2 X3 X4

1 1.60969737 0.74749536 0.339417928 0.812900035

2 2.204036798 1.03198924 0.891851959 1.269598519

11 0.457772706 0.272297774 0.084938237 0.966876527

12 0.02353326 0.341611389 0.045670799 0.835486048

20 1.592037485 0.557492709 0.025542212 1.189012618

21 0.915941684 0.186560304 1.004711086 1.439935842

29 1.691453877 0.691818614 0.119806084 1.110542908

30 1.610308877 -0.967254621 0.937421456 1.166563328

38 1.724334178 0.065505757 0.48872312 1.012079589

39 2.375037821 0.394508286 -0.321069244 1.172335713
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Figure 3: BP neural network model.
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are integrated into representative common factors through
principal component analysis, and the number of factors is
further reduced. Finally, the common factor data is
substituted into the input layer of BP neural network, and
the training of prediction model is started to obtain a model
that can accurately predict whether disasters occur. Grey
relational analysis eliminates irrelevant or small influence
factors. Principal component analysis eliminates multicolli-
nearity between independent variables and further reduces
the dimension of input data. The BP neural network has
good predictability. The combination of the three methods
can make full use of the advantages and avoid the disadvan-
tages and can accurately and quickly predict the coal-gas
compound dynamic disaster.

4. Case Analysis

4.1. Grey Relational Analysis of Influencing Factors. The
influencing factors of 13 kinds of coal-gas compound
dynamic disasters were analyzed. In this paper, we need to
compare the 13 factors with whether the occurrence of com-
pound disasters and calculate the correlation degree, so the
parent sequence Y0 is whether the occurrence of compound
disasters. The 46 groups of data of Pingdingshan No. 8 coal
mine are selected and analyzed by the SPSS software. Some
initial data are shown in Table 1, some dimensionless data
are shown in Table 2, and correlation coefficient and corre-
lation degree are shown in Table 3.

Through the process of grey relational analysis, the order
of 13 factors affecting the strength of coal-gas compound
dynamic disaster is obtained: coal firmness coefficient ðt13Þ
>coal thickness ðt8Þ>surrounding rock combination ðt6Þ
>buried depth ðt1Þ>coal seam dip angle ðt10Þ>change of soft
stratification ðt5Þ>coal failure type ðt7Þ>initial velocity of gas
emission ðt12Þ>number of faults ðt2Þ>thickness of soft strat-
ification ðt9Þ>wrinkle coefficient ðt11Þ>variation coefficient
of coal seam dip angle ðt4Þ>variation coefficient of coal

thickness ðt3Þ. Some of the influencing factors with a small
degree of relevance (less than 0.85) are deduced, and the first
eight influencing factors are kept.

4.2. Using PCA to Simplify the Main Influencing Factors. The
first eight retained factors were simplified by PCA using the
SPSS software. After the process of inspection, extraction,
and calculation, four common factor data were finally
obtained. The following are the specific steps.

KMO (Kaiser-Meyer-Olkin) and Bartlett test results are
shown in Table 4. KMO test statistics show whether the par-
tial correlation between variables is strong enough. Bartlett
sphericity test is used to judge whether the correlation
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matrix is the identity matrix. It can be seen from Table 4 that
the value of KMO test statistic is 0.543, which indicates that
the degree of information overlap among the variables is
acceptable and can be used for principal component analy-
sis. In Bartlett’s sphericity test, the value of significance is
0, which indicates that the hypothesis that each variable is
independent is rejected and there is a strong correlation
between variables.

Figure 2 is the gravel diagram, and Table 5 shows the
explanation of total variance. The horizontal axis of the
gravel diagram is the number of each common factor, and
the vertical axis represents the size of its characteristic value.
The diagram can intuitively get the importance of each
common factor. The detailed information of each common
factor is listed on the left side of the total variance expla-
nation table, and the information of extracting the com-
mon factor is on the right side. It can be seen from
Figure 2 and Table 5 that the eigenvalues of the first four
common factors are close to or greater than 1, and the
sum of the variance percentages reaches 77.7%, that is,
the first four common factors can represent eight influenc-
ing factors.

Table 6 is the component matrix, and Table 7 shows part
of the calculated common factor data. Component matrix,
also known as factor load matrix, is the coefficient of the fac-
tor expression of each original variable, which expresses the
influence degree of the extracted common factor on the orig-
inal variable. Through the factor load matrix, we can get the
linear combination of the original index variables, such as
X1 = a11 × F1 + a12 × F1 + a13 × F1+⋯+a18 × F1, where X1
is the common factor data 1. a11、a12、a13 ⋯ a18 are the
factor loads on the same line as component F1. F1 is the
extracted component.

4.3. Construction of BP Neural Network. As shown in
Figure 3, this paper uses the MATLAB software to build
a neural network model, repeatedly trains and verifies
the common factor data, and finally obtains a model that
can effectively predict coal-gas compound dynamic
disaster.

The MATLAB software includes input layer, hidden
layer, and output layer. The common factor data in
Table 7 takes the output type of numerical matrix as the
input data of BP neural network, and the output type of
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numerical matrix is taken as the output data of BP neural
network in the column of “Disaster or not” in Table 1.

The 32 sets (70%) of data are randomly selected as the
training set. The 7 sets (15%) of data are selected as the val-
idation set. The other 7 sets (15%) of data are selected as the
test set. For the number of neurons in the hidden layer, for-
mula (9) is used for calculation, a = 8. Thus, the prediction
model structure is set as a 3-layer 4-10-1 structure.

During the model training, the parameters are set as fol-
lows: the maximum number of network training is set to
1000 times, the training accuracy is set to 0.0001, and the
learning rate is set to 0.01.

Figure 4 shows the performance of the neural network.
The ordinate is the mean square error, and the abscissa is
the number of iterations. It can be seen from the figure that
after training the neural network using the Levenberg-
Marquardt method, the number of iterations of the neural
network is very small, and the network training is completed
in only 10 steps. And the best verification of the neural net-
work is obtained when the number of iteration steps is 4.
The square error value is 0.04572.

Figure 5 shows the visualization of gradient, Mu factor,
and generalization ability transformation in the network
training process. It can be seen from the figure that the
actual gradient of the network is 0.036, and the actual value
of the damping factor Mu in the Levenberg-Marquardt algo-
rithm used by the network is 1e-4. Validation checks indicate
the generalization ability check standard of the network. If
the training error cannot be reduced for 6 consecutive times,
the training task will be ended.

Figure 6 shows the error histogram. In the figure, the
abscissa represents the median of the error interval, and
the ordinate represents the number of samples located in
the error interval. From this figure, the error between the
output value of the neural network and the original target
value of the sample can be obtained.

Figure 7 shows the fitting results of the linear regression
analysis of the test set, training set, and validation set. From
the figure, the regression fitting situation of the data can be
obtained. The regression R value measures the correlation
between the output and the target. An R value of 1 indicates
a close relationship, and 0 indicates a random relationship.
The overall R value of the three sets is 0.90224, indicating
that the regression fitting effect is good.

4.4. Test of GRA-PCA-BP Model. The last three groups of
data are selected to input the model for prediction, testing
whether the model constructed in this paper meets the target
requirements. The prediction results are shown in Table 8.
From the prediction results, it can be seen that the predic-
tion results of GRA-PCA-BP model are completely consis-

tent with the actual situation, which indicates that this
method is feasible to predict the risk of coal-gas compound
dynamic disaster and has good promotion value in practice.

5. Conclusion

The prediction of coal-gas compound dynamic disaster is of
great significance for the safe and efficient mining of coal
mine. Firstly, the grey relational analysis method is used to
eliminate irrelevant or small influential factors, and then,
the principal component analysis method is used to elimi-
nate the multicollinearity between the independent vari-
ables. Moreover, the input data dimension is further
reduced. Combined with the good prediction effect of BP
neural network, the coal-gas compound dynamic disaster
prediction model based on GRA-PCA-BP is finally obtained.
The model has high prediction accuracy and convenient
operation.

Model verification of the disaster case of Pingdingshan
No. 8 mine shows that the coal-gas compound dynamic
disaster prediction model based on GRA-PCA-BP neural
network has high accuracy and practicability, which pro-
vides a new method for the disaster prediction of the coal
mines with coal-gas compound dynamic disaster risk, and
provides a theoretical basis for the safe and efficient mining
of coal resources in deep mining areas in China.

To the best of our knowledge, this is the first work using
mathematical methods to predict coal-gas compound
dynamic disaster. But only relying on the limited data of
Pingdingshan No. 8 mine for research, the accuracy still
needs to be verified by using more data of the coal mine.
Meanwhile, the model used in this article is relatively simple.
It is necessary to continue to study more accurate mathe-
matical models to accurately predict coal-gas compound
dynamic disaster. This is our focus in the future.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Additional Points

Bullet Points. (1) The influencing factors of coal-gas com-
pound dynamic disaster were analyzed. (2) A prediction
model of coal-gas compound dynamic disaster based on
GRA-PCA-BP was established. (3) The prediction model is
verified by the case study of Pingdingshan No. 8 coal mine.

Table 8: Prediction results of common factor test set of coal-gas compound dynamic disaster.

Number X1 X2 X3 X4 Forecast results Expected results

44 1.399042495 0.785939655 -0.11810208 1.141111803 1 1

45 1.190427325 0.760470516 -0.219058963 1.091743892 1 1

46 2.44822473 -0.227521877 0.287181263 1.03121518 0 0
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