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A mathematical equation of water drive physical simulation of pressure-sensitive fractured reservoirs was established based on
previous research results. In this study, the similarity criteria of water drive physical simulation of pressure-sensitive fractured
reservoirs were derived according to the similarity theory. First of all, based on the three-dimensional differential equation of
rock mechanics, a dimensionless analysis was conducted to determine the similarity relationship between the displacement of oil
by water of pressure-sensitive fractured reservoirs, the similarity criterion was obtained, and the similarity criteria were formed.
Secondly, according to the similarity criterion, the similar relationship between the stress-strain fields of the real object and the
simulated object was worked out. Thirdly, the finite element software COMSOL Multiphysics was applied to model and
calculate the multifield coupling process in the percolation of pressure-sensitive fractured reservoirs, verifying the correctness of
the established similarity criteria and similarity relationship. The verifying results shows that the similarity between the physical
model and the actual model can be realized by magnifying the geometric size N times in a certain direction and adjusting the
load and boundary conditions according to the similarity principle, which can be used for the design of the pressure-sensitive
fractured reservoir simulation model for a physical indoor test.

1. Introduction

The reservoir simulation has two types of approach, numer-
ical reservoir simulation and physical reservoir simulation.
The numerical stimulation predicts the flow of liquids in
the reservoir (oil, gas, and water) through porous media once
the production starts. These real-time simulations are stud-
ied using computer models which calibrate the data based
on numerical equations and predict the behavior of the reser-
voir once the production starts. The other method is physical
reservoir simulation, which is a quantitative 3D model build
by researchers in the laboratory to simulate the actual reser-
voir. Considering reservoir, wellbore, and fluid, the quantita-
tive 3D physical reservoir simulation method is established
based on the similarity criteria. To further find out the varia-
tion pattern of fracture permeability during the water drive
development of pressure-sensitive fractured reservoirs, it is
necessary to carry out three-dimensional quantitative physi-
cal simulation, which is a method of reservoir simulation by

building an indoor physical model to simulate the field
reservoir. Since the reservoir scale is too large, the currently
feasible physical simulation methods are mainly realized by
building indoor physical models. However, the results
obtained from indoor physical experiments cannot be
directly applied to the actual situation, and it is of necessity
to match the indoor experimental results to the actual devel-
opment process of reservoirs through the similarity criteria,
so as to guide the actual development of oil and gas fields.
Similarity criteria refer to a theory that explains all types of
similar phenomena and principles in nature and engineering
science. Similarity criteria, based on the three theorems of
similarity, are used to guide the design of models and the
processing and generalization of related experimental data.
The role of similarity criteria must explain theoretically the
following contents: the nature of similar phenomena, the
application of similar phenomena, and the conditions to
achieve similarity. To answer these questions, analysis and
derivation must be carried out according to the three
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theorems of similarity based on the basic principles of simu-
lation experiments.

In recent years, many scholars have carried out research
on the similarity theory related to the development of all
kinds of reservoirs, achieving many results. Firstly, water
drive sandstone reservoirs are the most typical reservoir
and many researchers established many similarity criteria
for this kind of reservoir, such as Bai and Zhou, Ding et al.,
Gu et al., Kong and Chen, Li, Bai et al., and Zhou [1–6].
For this type of reservoirs, the similarity criteria just need
to take few parameters into consideration, such as the perme-
ability, the porosity, and the characteristic length of the
model. Then, they carried out the corresponding physical
simulation experiments. Shen et al. and Teng et al. [7, 8]
extended the study on similarity criteria to tight gas reser-
voirs, considering the pressure-sensitive characteristics to
some extent by establishing the empirical relationship
between pressure and permeability. On comparison of single
porous media, the dual porous media with fractures are more
complex, because the property and flow in the fracture sys-
tem and the exchange between fracture and matrix need to
be put into consideration. According to the percolation equa-
tion of double media, Shi et al. and Ding et al. [9, 10] estab-
lished the similarity criteria of water drive reservoirs for
carbonate gas reservoirs. As the research goes deep, some
scholars have also studied the similarity criteria for physical
simulation of special types of oil and gas reservoirs such as
thermal recovery of heavy oil [11], polymer flooding [12–
14] and gas hydrate [15, 16], and shale gas [17] and
coalbed-methane [18].

However, there is currently no similarity theory applied
to the simulated development of pressure-sensitive fractured
reservoirs, making it difficult to solve the problem of cross-
scale modeling of reservoir development, as Figure 1. Because
more coupling fields need to be considered simultaneously,
such as the stress-strain field, the flow pressure field, and
the fracture-matrix permeability field, no similarity criterion
number for this type of reservoir have not been reported
before. Hence, to solve this problem, a method of establishing
the similar model for the stress-strain field of the pressure-
sensitive fractured medium was proposed based on the simi-
larity principle in this study. In other words, a similar model
with magnified thickness was set up to study the percolation
of stress-sensitive fractured anisotropic reservoirs. Since the
dimensions of all directions of the similar model are of the
same order of magnitude, when meshing the elements, the
number of elements in the finite element model can be effec-

tively reduced and the amount of calculation can be reduced
while ensuring the appropriate aspect ratio of the elements.
In this study, the similarity criteria and similarity relation-
ship of the stress-strain field were derived and established,
and the correctness of similarity criteria and similarity rela-
tionship was verified by the finite element software, thereby
laying a solid theoretical foundation for guiding the physical
simulation of multiphysical field coupling in pressure-
sensitive fractured anisotropic reservoirs. This work is aimed
at providing a method to design an experimental model in
the lab to simulate the flow and stress-strain performance
of an actual fractured reservoir precisely.

2. Similarity Criteria of Saturated Fluid Matrix
considering Pressure Dependence

2.1. Stress-Strain Model of Saturated Fluid Matrix. The fluid
percolation model in underground porous media mainly
includes the matrix field flow equation, fracture field flow
equation, and stress field variation equation. According to
the study by Gu et al. [19], the equations were established,
and the equation analysis method was used to deduce the
similarity criteria of pressure-sensitive fractured reservoirs.

2.1.1. Physical Equation. First of all, according to Biot’s elastic
porous medium theory, the effective stress equation of the
medium should be expressed as follows:
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Equation (1) can also be expressed as

σ = Cε + αpI, ð2Þ

where σ = fσx, σy, σz , τyz , τxz , τxygT is the Cauchy stress ten-

sor, ε = fεx, εy, εz , γyz , γxz , γxygT is the strain tensor, α stands
for the Biot coefficient, p is pore pressure of the fluid, and
array I is expressed as f1, 1, 1, 0, 0, 0gT . In Equation (2), all
the coefficients in elastic equation C must be measured in
the percolation state with constant pore pressure.
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Figure 1: A sketch map of the flow in a fractured reservoir with in
situ stress [19].
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2.1.2. Geometric Equation.
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ð4Þ

Equation (4) can be written into the matrix form as fol-
lows:

ε = LU , ð5Þ

where U = ½u, v,w�T is an array about the displacements in
the x, y, and z directions.

2.1.3. Equilibrium Equation.
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Equation (6) can be written into a matrix form as follows:

LTσ + �f = 0 ð7Þ

where f = f f x, f y, f zgT represents an array about the dis-
placements in the x, y, and z directions. Matrix L is a partial
differential operator matrix that can be expressed as
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According to Equations (2), (5), and (8), it can be further
expressed as

LT = CPU − αpIð Þ + �f = 0: ð9Þ

2.1.4. Boundary Conditions

(1) Stress Boundary. On boundary Γ, the boundary condi-
tions of the stress field can be expressed as follows:

pΓx = nxσx + nyτyz + nzτzx + ζxu,

pΓy = nxτxy + nyσy + nzτzy + ζyu,

pΓz = nxτxz + nyτyz + nzσz + ζzu,

8>><
>>: ð10Þ

which can be written into a matrix form

PΓ = nσ + �ZU: ð11Þ

By substituting the stress equation (2) of the matrix into
Equation (11), the following equation can be obtained:

pΓ = n CLU − αpIð Þ + �ZU , ð12Þ

where matrix �Z is a matrix of the elastic boundary limiting
coefficient which can be expressed as

�Z =

ζx 0 0

0 ζy 0

0 0 ζz

2
664

3
775: ð13Þ

In Equation (12), n refers to

n =

nx 0 0 ny 0 nz

0 ny 0 nx nz 0

0 0 nz 0 ny nx

2
664

3
775, ð14Þ

where nx, ny, and nz denote the direction cosines of the outer
boundary in the normal direction.

(2) Displacement Boundary. On boundary Γ, the displace-
ment boundary of the stress field can be expressed as follows:

u = uΓ, v = vΓ,w =wΓ: ð15Þ

By introducing the potential equation ψ, Equation (15)
can be expressed as

u =
∂ψ
∂x

, v =
∂ψ
∂y

,w =
∂ψ
∂z

: ð16Þ

It can be further expressed in the matrix form

U = A�ψ, ð17Þ

where operator A is expressed as

A =
∂
∂x

∂
∂y

∂
∂z

� �T
: ð18Þ

By substituting Equation (17) into Equations (9), (12),
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and (17), the equilibrium equation can be transformed into

LT = n CLAψ − αpIð Þ + �f = 0: ð19Þ

On boundary Γ, the boundary conditions of the stress can
be expressed as follows

pΓ = n CLAψ − αpIð Þ + �ZU: ð20Þ

At this time, the displacement boundary conditions are

UΓ = Aψ: ð21Þ

2.2. Derivation of Similarity Criteria. By analyzing the equa-
tions in the appendix, it was found that to determine the

unique dimensionless potential function Ψ, 43 mutually
independent similarity criteria were needed. Therefore, 43
mutually independent parameters were selected from X, Y ,
Z, P, Px, Py , Pz , Fx, Fy , Fz , UΓ, VΓ, andWΓ and various non-
dimensional coefficients as the similar criteria of the
pressure-sensitive medium, as shown in Table 1.

3. Similarity Criteria of Saturated Fluid
Fracture considering Pressure Dependence

According to the study conducted by Gu et al. [19], fracture
aperture can be calculated based on Equation (22),

To nondimensionalize Equation (22), the following scales
were introduced:

Length scale: df denotes the unit length of fracture aper-

ture, dn−0 is the unit length of fracture aperture at the initial
moment, dn max represents the unit length of maximum nor-
mal fracture aperture, dn−sd is the unit length of fracture aper-
ture caused by shear expansion, and ucs is the unit length of
the ultimate shear expansion, with ½L� being the dimension.

Stress scale: σn ′ is the actual unit normal stress, σn
denotes the total unit normal stress, σs represents the unit
shear stress, σs0 is the initial unit shear stress, σs−peak is the
unit peak shear stress, and σc denotes the unit shear strength,
with ½L−1MT2� being the dimension.

Rigidity scale: the initial unit normal rigidity Kn0 was
expressed as Kn0, the unit normal rigidity Kn was expressed
as Kn, and the unit tangential rigidity Ks was expressed as
Ks, with ½L−2MT2� being the dimension,

Tan denotes the direction cosine of the unit shear expan-
sion angle, which is dimensionless.

The parameters were nondimensionalized as follows:

Dn−0 = dn−0/dn−0 is the dimensionless fracture aperture.
Dn−0 = dn−0/dn−0 denotes the initial dimensionless frac-

ture aperture.
Dn max = dn max/dn max is the maximum dimensionless

normal fracture aperture.
Dn−sd = dn−sd/dn−sd refers to the dimensionless fracture

aperture caused by shear expansion.
Ucs = μcs/μcs is the limit of dimensionless shear

expansion.

∑n′ = σ′n/σ′n denotes the actual dimensionless normal
stress.

∑n = σn/σn is the total dimensionless normal stress.
∑s = σs/σs is the dimensionless shear stress.
∑s−peak = σs−peak/σs−peak is the peak dimensionless shear

stress.
∑s0 = σs0/σs0 is the initial dimensionless shear stress.
∑c = σc/σc is the dimensionless shear strength.
K′n0 = Kn0/Kn0 denotes the initial dimensionless normal

rigidity.
K′n = Kn/Kn refers to the dimensionless normal rigidity.

df = dn−0 −
dn max

1 + Kn0 ⋅ dn maxð Þ/σnð Þ +min dn−sd , ucsð Þ, ð22aÞ

σn′ =

σs0 ≤ σs ≤ σc σn,

σc ≤ σs ≤ σs−peak
σn − dn−sd
Kn σnð Þ ,

σs−peak = σs
σn − dn−sd
Kn σnð Þ ,

8>>>>>><
>>>>>>:

ð22bÞ

dn−sd =

σs0 ≤ σs ≤ σc 0,

σc ≤ σs ≤ σs−peak
σs − σcð Þ ⋅ tan ψð Þ

Ks
,

σs−peak = σs
σs−peak − σc
� �

⋅ tan ψð Þ
Ks

+
σn − σn−peak
� �
Kn σnð Þ ⋅ tan ψð Þð Þ :

8>>>>>><
>>>>>>:
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Figure 2: Similarity criteria model of physical simulation of water drive fractured reservoirs.
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K′s = Ks/Ks is the dimensionless tangential rigidity.
T ′ = tan ðψÞ/Tan is dimensionless.

By substituting the above dimensionless parameters into
Equation (40), dimensionless Equation (23) was obtained.

When the shear stress is in different ranges, the similarity
criterion number can be different. Therefore, the similarity
criterion number can be represented as follows:

When ∑s0 ≤∑s ≤∑c, 6 similarity criteria were needed.

df , dn−0, dn max,
σn

Kn0 · dn max
, dn−sd , μcs: ð24Þ

When ∑c ≤ ∑s ≤ ∑s−peak , 9 similarity criteria were
needed.

df , dn−0, dn max, Kn0 · dn max, σn,
Kn

dn−sd
, σs0, σc,

Ks

Tan
: ð25Þ

When ∑s−peak =∑s, 11 similarity criteria were needed.

Table 2: Physical parameters of prototype and model.

Pressure control

Original formation pressure (p) 10MPa 10MPa 1

Pressure at the inlet 15MPa 10MPa 1

Pressure at the outlet 5MPa 5MPa 1

Displacement differential pressure 10MPa 1000 pa 1000

Properties of porous medium host material

Young’s modulus 5.8GPa 5.8 GPa 1

Poisson’s ratio 0.3 0.3 1

Porosity 0.18 0.18 1

Permeability 1mD 1mD 1

Properties of the fluid

Compressibility of the fluid 4e-10 Pa-1 4e-10 Pa-1 1

Density 1000 kg/m3 1000 kg/m3 1

Dynamic viscosity 1e-7 Pa s 1e-7 Pa s 1

Boundary load
Boundary load (in 6 directions) 20 MPa 10.01 MPa

Differential pressure of boundary load 10 MPa 0.01 MPa 1

Model size Model size (length\width\height) 400 m\400 m\50 m 0.4 m\0.4 m\0.05 m 1000

Properties of porous medium fractured material

Load-free width of fracture 1.5 mm 1.5 mm/31.62 31.62

Initial width of fracture 1 mm 1 mm/31.62 31.62

Permeability of fracture [1 mm]2/12 [1 mm]2/(12∗1000) 1000

Change of fracture width 0.01 mm 0.01 mm/31.62 31.62

Df =Dn−0 −
Dn max

1 + Kn0 ⋅Dn maxð Þ/∑n′
� � +min Dn−sd , ucsð Þ, ð23aÞ

Σn′ =

Σs0 ≤ Σs ≤ Σc Σn,

Ξc ≤ Σs ≤ Σs−peak
Σn −Dn−sd

K ′n Σnð Þ
,

Σs−peak = Σs
Σn −Dn−sd

K ′n Σnð Þ
,

8>>>>>><
>>>>>>:

ð23bÞ

Dn−sd =

Σs0 ≤ Σs ≤ Σc 0

Σc ≤ Σs ≤ Σs−peak
Σs − Σcð Þ ⋅ T ′

K ′s
,

Σs−peak = Σs

Σs−peak − Σc

� �
⋅ T ′

K ′s
+

Σn − Σn−peak
� �
K ′n Σnð Þ ⋅ T ′
� � :

8>>>>>>>><
>>>>>>>>:

ð23cÞ
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df , dn−0, dn max, Kn0 · dn max, σn,
Kn

dn−sd
,

σs−peak, σc,
Ks

Tan
, σn−peak, Kn · Tan:

ð26Þ

To satisfy the whole range, that is, when ∑s0 ≤∑s ≤
∑s−peak , 12 similarity criteria were needed.

df , dn−0, dn max, Kn0, σn, Kn, dn−sdσs−peak, σc, Ks, σn−peak, Tan
ð27Þ

Based on the study conducted by Liu et al. [20], in this
study, the equation analysis method was applied to deduce
and establish the similarity criterion of physical simulation
of pressure-sensitive fractured anisotropic reservoirs. This

similarity criterion includes a total of 55 similarity criteria
number, namely, 43 similarity criteria number of pressure-
sensitive saturated fluid matrix and 12 similarity criteria of
pressure-sensitive saturated fluid fractures, realizing the
omnidirectional similarity of percolation in pressure-
sensitive fractured anisotropic reservoirs. Since the equation
analysis method was applied for derivation, complete corre-
spondence between microscopic and macroscopic perspec-
tives can be achieved. Hence, this similarity criterion is
applicable to design the physical simulation of pressure-
sensitive fractured anisotropic reservoirs.

4. Verification by the Finite Element Model

Under the assumption of multistratum structure, for the
stress-sensitive fractured strata, the prototype and the simi-
larity model with 100 times reduced thickness were
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established using the finite element software COMSOL Mul-
tiphysics to verify the correctness of the similarity criterion
and similarity relationship.

4.1. Modeling Assumptions. The percolation of stress-
sensitive fractured reservoirs is a coupling process that
involves multiple physical fields, including the matrix perco-
lation field, fracture percolation field, and stress field. There-
fore, it is necessary to establish a numerical model which
comprehensively considers all kinds of physical fields and
tries to work out the coupled solution. Since the actual situa-
tion is too complicated, the following assumptions were
appropriately introduced to simplify the situation:

(1) The experimental materials are isotropic materials

(2) The percolation of the fluid follows Darcy’s law

(3) The rock skeleton is compressible

(4) There is a linear relationship between the stress and
strain in the matrix

(5) With slight deformation, the fluid is weakly
compressible

(6) The crack wall is rough and there is no secondary fill-
ing or cementation

(7) There is no displacement at the boundary

4.2. Selection of the Prototype and Model and Parameter
Setting. Firstly, a geometric model was established as shown
as Figure 2. In this model, we created three cracks, of which
one connected the inlet of the fluid, one was located in the
middle of the medium, and the other one was connected to
the outlet of the fluid.
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4.3. Grid Generation. To guarantee consistent grid size of
the model and avoid the grid scale effect caused by the
difference in calculation accuracy, when establishing the
model and dividing the grid, the grid scale was maintained
at the same order of magnitude, namely, 1-10m. Figure 3
shows the grid generation of the prototype and the model.
Among them, the prototype has 44914 grids and the model
has 987 grids.

4.4. Data Input. Calculated according to the similarity crite-
rion, the parameters of the prototype and the model were
set as shown in Table 2 to verify the similarity of the model.
In this study, the similarity parameters were mainly gained
by changing the parameters relatively easy to control, e.g.,

model size, physical properties of the model, and the proper-
ties of the material.

5. Verification of the Calculation Results

Through finite element calculation, the spatial distributions
of the pressure field, effective stress, and fracture displace-
ment of the prototype and the model were obtained as shown
in Figures 4–6.

By analyzing Figures 4 and 5, it is found that when the
finite element calculation error is ignored, the model has a
x direction normal strain similar to that of the prototype.
In other words, the amplitude, spatial distribution, and time
history of the x direction strain fields of the prototype and the
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model are consistent, which agrees with the proportional
relationship (on the corresponding measuring points, the
model’s stress in the x and y directions is 1/1000 of that of
the prototype) theoretically deduced in Equation (24).

As shown in Figure 6, when the finite element calculation
error is ignored, the fracture displacement of the model and
the prototype has similar spatial distributions, which is con-
sistent with the proportional relationship (on the corre-
sponding measuring points, the model’s stress in the x
direction is 1/1000 of that of the prototype).

Figures 7 and 8 show the pressure distributions and spa-
tial distributions of displacement of the prototype and the
model on the red line. It can be concluded that the model
and the prototype are similar, which conforms to the similar-
ity criterion.

6. Discussion

This study provides a method to design the physical model
for fractured reservoir pressure-sensitive simulation. The

researchers can build a quantitative 3Dmodel in the lab to sim-
ulate the actual reservoir. Many new coupling mechanisms can
be detected by the physical method. However, the disadvan-
tages of the similarity criteria cannot be ignored. The materials
of porous medium to build the physical model seem very hard
to get. Because the materials of the matrix need to meet the
requirements of many aspects of the similarity criteria, such
as Young’s modulus, Poisson’s ratio, porosity, and permeabil-
ity. If the materials have some aspects of cannot meet, other
parameters such as the model size must be adjusted in design
of physical simulation to fit the similarity criteria.

7. Summary and Conclusions

In this study, the main conclusions of the cross-scale similar-
ity modeling of the stress-sensitive fractured medium are as
follows:

(1) According to the differential equations of stress-strain
and fracture percolation, the similarity criterion and
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similarity relationship obtained by dimensionless
analysis is able to concurrently simulate the time his-
tory and spatial distribution of physical quantities of
stress-strain and fluid pressure field

(2) To achieve the similarity of physical quantities
related to the stress-strain field and the pressure field,
it is only necessary to accordingly adjust the material
size, percolation properties, load, and boundary con-
ditions. The similarity between the physical model
and the field size model can be realized by magnifying
the geometric size N times in a certain direction and
adjusting the load and boundary conditions accord-
ing to the similarity principle

(3) In this paper, the equation analysis method was
applied to derive a similarity criterion of pressure-
sensitive fractured anisotropic reservoirs from above-
mentioned researches. Besides, the correctness of this
similarity criterion and similarity relationship was
verified by the finite element software, thereby laying
a foundation for guiding the study of relevant physi-
cal simulation

Appendix

To derive the similarity criteria of percolation of pressure-
sensitive fractured reservoirs, the displacement potential
function φðx, y, zÞ was introduced, and the dimensionless
method was used to nondimensionalize the percolation
equation of the unknown function that only contained the
displacement potential function ψðx, y, zÞ.

(1) Equilibrium equations

Equilibrium equation in the x direction

c11
∂3ψ
∂x3

+ c26
∂3ψ
∂y3

+ c35
∂3ψ
∂z3

+ 3c16
∂3ψ
∂x2∂y

+ 3c15
∂3ψ
∂x2∂z

+ c12 + 2c66ð Þ ∂3ψ
∂x2∂y

+ c13 + 2c55ð Þ ∂3ψ
∂x∂z2

+ c25 + 2c46ð Þ ∂3ψ
∂y2∂z

+ c36 + 2c45ð Þ ∂3ψ
∂y∂z2

+ 2 c14 + 2c56ð Þ ∂3ψ
∂x∂y∂z

− α
∂p
∂x

+ f y = 0

ðA:1Þ
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Equilibrium equation in the y direction

c16
∂3ψ
∂x3

+ c22
∂3ψ
∂y3

+ c34
∂3ψ
∂z3

+ 3c26
∂3ψ
∂x∂y2

+ 3c24
∂3ψ
∂y2∂z

+ c12 + 2c66ð Þ ∂3ψ
∂x2∂y

+ c14 + 2c56ð Þ ∂3ψ
∂x2∂z

+ c36 + 2c45ð Þ ∂3ψ
∂x∂z2

+ c23 + 2c44ð Þ ∂3ψ
∂y∂z2

+ 2 c25 + 2c46ð Þ ∂3ψ
∂x∂y∂z

− α
∂p
∂x

+ f y = 0

ðA:2Þ

Equilibrium equation in the z direction

c15
∂3ψ
∂x3

+ c24
∂3ψ
∂y3

+ c33
∂3ψ
∂z3

+ 3c35
∂3ψ
∂x∂z2

+ 3c34
∂3ψ
∂y∂z2

+ c13 + 2c55ð Þ ∂3ψ
∂x2∂z

+ c14 + 2c56ð Þ ∂3ψ
∂x2∂y

+ c25 + 2c46ð Þ ∂3ψ
∂x∂y2

+ c23 + 2c44ð Þ ∂3ψ
∂y∂z2

+ 2 c36 + 2c45ð Þ ∂3ψ
∂x∂y∂z

− α
∂p
∂x

+ f z = 0

ðA:3Þ

(2) Boundary conditions

Stress boundary equation in the x direction

nx

 
c11

∂2ψ
∂x2

+ c12
∂2ψ
∂y2

+ c13
∂2ψ
∂z2

+ c14
2∂2ψ
∂y∂z

+ c15
2∂2ψ
∂x∂z

+ c16
2∂2ψ
∂x∂y

!
+ ny

 
c14

∂2ψ
∂x2

+ c24
∂2ψ
∂y2

+ c34
∂2ψ
∂z2

+ c44
2∂2ψ
∂y∂z

+ c45
2∂2ψ
∂x∂z

+ c46
2∂2ψ
∂x∂y

!
+ nz

 
c16

∂2ψ
∂x2

+ c26
∂2ψ
∂y2

+ c36
∂2ψ
∂z2

+ c46
2∂2ψ
∂y∂z

+ c56
2∂2ψ
∂x∂z

+ c66
2∂2ψ
∂x∂y

!

− nxαp + ζx
∂ψ
∂x

= Px

ðA:4Þ

Stress boundary equation in the y direction

ny

 
c12

∂2ψ
∂x2

+ c22
∂2ψ
∂y2

+ c23
∂2ψ
∂z2

+ c24
2∂2ψ
∂y∂z

+ c25
2∂2ψ
∂x∂z

+ c26
2∂2ψ
∂x∂y

!
+ nx

 
c14

∂2ψ
∂x2

+ c24
∂2ψ
∂y2

+ c34
∂2ψ
∂z2

+ c44
2∂2ψ
∂y∂z

+ c45
2∂2ψ
∂x∂z

+ c46
2∂2ψ
∂x∂y

!
+ nz

 
c15

∂2ψ
∂x2

+ c25
∂2ψ
∂y2

+ c35
∂2ψ
∂z2

+ c45
2∂2ψ
∂y∂z

+ c55
2∂2ψ
∂x∂z

+ c56
2∂2ψ
∂x∂y

!

− nyαp + ζy
∂ψ
∂y

= Py

ðA:5Þ

Stress boundary equation in the z direction

nz

 
c13

∂2ψ
∂x2

+ c23
∂2ψ
∂y2

+ c33
∂2ψ
∂z2

+ c34
2∂2ψ
∂y∂z

+ c35
2∂2ψ
∂x∂z

+ c36
2∂2ψ
∂x∂y

!
+ nx

 
c15

∂2ψ
∂x2

+ c25
∂2ψ
∂y2

+ c35
∂2ψ
∂z2

+ c45
2∂2ψ
∂y∂z

+ c55
2∂2ψ
∂x∂z

+ c56
2∂2ψ
∂x∂y

!
+ ny

 
c16

∂2ψ
∂x2

+ c26
∂2ψ
∂y2

+ c36
∂2ψ
∂z2

+ c46
2∂2ψ
∂y∂z

+ c56
2∂2ψ
∂x∂z

+ c66
2∂2ψ
∂x∂y

!

− nzαp + ζz
∂ψ
∂z

= Pz

ðA:6Þ

The displacement boundary conditions in the x, y, and z
directions are as follows:

uΓ =
∂ψ
∂x

, ðA:7Þ

vΓ =
∂ψ
∂y

, ðA:8Þ

wΓ =
∂ψ
∂z

: ðA:9Þ

To nondimensionalize Equations (A.1)–(A.9), the fol-
lowing scales were introduced: A is the unit length in the x
direction, B is the unit length in the y direction, and C is
the unit length in the z direction, with ½L� being the dimen-
sion. ψo is the unit potential equation, with ½L2� being the
dimension. f x0, f y0, and f z0 refer to the unit physical

strength, with ½ML−2 T−2� being the dimension. P0 denotes
the unit pressure, with ½L−1MT2� being the dimension. px0,
py0, and pz0 represent the unit boundary stress, with ½ML−2

T−2� being the dimension.
Substituting the above unit parameters into Equations

(A.1)–(A.9), the following dimensionless equations were
gained:

Dimensionless basic equations of elasticity:
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(1) Equilibrium equations

① Dimensionless equilibrium equation in the x direction

c11
f x0

ψ0
A3

∂3Ψ
∂X3 +

c26
f x0

ψ0
B3

∂3Ψ
∂Y3 +

c35
f x0

ψ0
C3

∂3Ψ
∂Z3 +

3c16
f x0

ψ0
A2B

∂3Ψ
∂X2∂Y

+
3c15
f x0

ψ0
A2C

∂3Ψ
∂X2∂Z

+
c12 + 2c66ð Þ

f x0

ψ0
AB2

∂3Ψ
∂X∂Y2

+
c13 + 2c55ð Þ

f x0

ψ0
AC2

∂3Ψ
∂X∂Z2 +

c25 + 2c46ð Þ
f x0

ψ0
B2C

∂3Ψ
∂Y2∂Z

+
c36 + 2c45ð Þ

f x0

ψ0
BC2

∂3Ψ
∂Y∂Z2 +

2 c14 + 2c56ð Þ
f x0

ψ0
ABC

∂3Ψ
∂X∂Y∂Z

− α
p0
f x0

∂P
∂X

+ Fx = 0

ðA:10Þ

② Dimensionless equilibrium equation in the y direction

c16
f y0

ψ0
A3

∂3Ψ
∂X3 + c22

f y0

ψ0
B3

∂3Ψ
∂Y3 + c34

f y0

ψ0
C3

∂3Ψ
∂Z3

+
3c26
f y0

ψ0
AB2

∂3Ψ
∂X∂Y2 +

3c24
f y0

ψ0
B2C

∂3Ψ
∂X2∂Z

+
c12 + 2c66ð Þ

f y0

ψ0
A2B

∂3Ψ
∂X2∂Y

+
c14 + 2c56ð Þ

f y0

� ψ0
A2C

∂3Ψ
∂X2∂Z

+
c36 + 2c45ð Þ

f y0

ψ0
AC2

∂3Ψ
∂X∂Z2

+
c23 + 2c44ð Þ

f y0

ψ0
BC2

∂3Ψ
∂Y∂Z2 +

2 c25 + 2c46ð Þ
f y0

� ψ0
ABC

∂3Ψ
∂X∂Y∂Z

− α
p0
f y0B

∂P
∂Y

+ Fy = 0

ðA:11Þ

③ Dimensionless equilibrium equation in the z direction

c15
f z0

ψ0
A3

∂3Ψ
∂X3 +

c24
f z0

ψ0
B3

∂3Ψ
∂Y3 +

c33
f z0

ψ0
C3

∂3Ψ
∂Z3

+
3c35
f z0

ψ0
AC2

∂3Ψ
∂X∂Z2 +

3c34
f z0

ψ0
BC2

∂3Ψ
∂Y∂Z2

+
c13 + 2c55ð Þ

f z0

ψ0
A2C

∂3Ψ
∂X2∂Y

+
c14 + 2c56ð Þ

f z0

� ψ0
A2B

∂3Ψ
∂X2∂Y

+
c25 + 2c46ð Þ

f z0

ψ0
AB2

∂3Ψ
∂X∂Y2

+
c23 + 2c44ð Þ

f z0

ψ0
BC2

∂3Ψ
∂Y∂Z2 +

2 c36 + 2c45ð Þ
f z0

� ψ0
ABC

∂3Ψ
∂X∂Y∂Z

− α
p0
f z0C

∂P
∂Z

+ Fz = 0

ðA:12Þ

(2) Dimensionless boundary conditions

① Dimensionless boundary stress in the x direction

nx

 
c11
px0

ψ0
A2

∂2Ψ
∂X2 +

c26
px0

ψ0
B2

∂2Ψ
∂Y2 +

c35
px0

ψ0
C2

∂2Ψ
∂Z2

+
2c14
px0

ψ0
BC

∂2Ψ
∂Y∂Z

+
2c15
px0

ψ0
AC

∂2Ψ
∂X∂Z

+
2c16
px0

ψ0
AB

∂2Ψ
∂X∂Y

!

+ ny

 
c14
px0

ψ0
A2

∂2Ψ
∂X2 +

c24
px0

ψ0
B2

∂2Ψ
∂Y2 +

c34
px0

ψ0
C2

∂2Ψ
∂Z2

+
2c44
px0

ψ0
BC

∂2Ψ
∂Y∂Z

+
2c45
px0

ψ0
AC

∂2Ψ
∂X∂Z

+
2c46
px0

ψ0
AB

∂2Ψ
∂X∂Y

!

+ nz

 
c16
px0

ψ0
A2

∂2Ψ
∂X2 +

c26
px0

ψ0
B2

∂2Ψ
∂Y2 +

c36
px0

ψ0
C2

∂2Ψ
∂Z2

+
2c46
px0

ψ0
BC

∂2Ψ
∂Y∂Z

+
2c56
px0

ψ0
AC

∂2Ψ
∂X∂Z

+
2c66
px0

ψ0
AB

∂2Ψ
∂X∂Y

!

− nxα
p0
px0

P + ζx
1

px0A
∂Ψ
∂X

= Px

ðA:13Þ

② Dimensionless boundary stress in the y direction

ny

 
c12
py0

ψ0
A2

∂2Ψ
∂X2 +

c22
py0

ψ0
B2

∂2Ψ
∂Y2 +

c23
py0

ψ0
C2

∂2Ψ
∂Z2

+
2c24
py0

ψ0
BC

∂2Ψ
∂Y∂Z

+
2c25
py0

ψ0
AC

∂2Ψ
∂X∂Z

+
2c26
py0

ψ0
AB

∂2Ψ
∂X∂Y

!

+ nx

 
c14
py0

ψ0
A2

∂2Ψ
∂X2 +

c24
py0

ψ0
B2

∂2Ψ
∂Y2 +

c34
py0

ψ0
C2

∂2Ψ
∂Z2

+
2c44
py0

ψ0
BC

∂2Ψ
∂Y∂Z

+
2c45
py0

ψ0
AC

∂2Ψ
∂X∂Z

+
2c46
py0

ψ0
AB

∂2Ψ
∂X∂Y

!

+ nz

 
c15
py0

ψ0
A2

∂2Ψ
∂X2 +

c25
py0

ψ0
B2

∂2Ψ
∂Y2 +

c35
py0

ψ0
C2

∂2Ψ
∂Z2

+
2c45
py0

ψ0
BC

∂2Ψ
∂Y∂Z

+
2c55
py0

ψ0
AC

∂2Ψ
∂X∂Z

+
2c56
py0

ψ0
AB

∂2Ψ
∂X∂Y

!

− nyα
p0
py0

P + ζy
1

py0B
∂Ψ
∂Y

= Py

ðA:14Þ

③ Dimensionless boundary stress in the z direction

nz

 
c13
pz0

ψ0
A2

∂2Ψ
∂X2 +

c23
pz0

ψ0
B2

∂2Ψ
∂Y2 +

c33
pz0

ψ0
C2

∂2Ψ
∂Z2
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+
2c34
pz0

ψ0
BC

∂2Ψ
∂Y∂Z

+
2c35
pz0

ψ0
AC

∂2Ψ
∂X∂Z

+
2c36
pz0

ψ0
AB

∂2Ψ
∂X∂Y

!

+ nx

 
c15
pz0

ψ0
A2

∂2Ψ
∂X2 +

c25
pz0

ψ0
B2

∂2Ψ
∂Y2 +

c35
pz0

ψ0
C2

∂2Ψ
∂Z2

+
2c45
pz0

ψ0
BC

∂2Ψ
∂Y∂Z

+
2c55
pz0

ψ0
AC

∂2Ψ
∂X∂Z

+
2c56
pz0

ψ0
AB

∂2Ψ
∂X∂Y

!

+ ny

 
c16
pz0

ψ0
A2

∂2Ψ
∂X2 +

c26
pz0

ψ0
B2

∂2Ψ
∂Y2 +

c36
pz0

ψ0
C2

∂2Ψ
∂Z2

+
2c46
pz0

ψ0
BC

∂2Ψ
∂Y∂Z

+
2c56
pz0

ψ0
AC

∂2Ψ
∂X∂Z

+
2c66
pz0

ψ0
AB

∂2Ψ
∂X∂Y

!

− nzα
p0
pz0

P + ζz
1

pz0C
∂Ψ
∂Z

= Pz

ðA:15Þ

Zero-dimension displacement boundaries in the x, y, and
z directions are expressed as follows:

UΓ =
∂Ψ
∂X

ψ0u0
A

,

VΓ =
∂Ψ
∂X

ψ0v0
B

,

WΓ =
∂Ψ
∂X

ψ0u0
C

,

ðA:16Þ

where Ψ = ψ/ψ0 denotes the zero-dimension potential
equation.

X = x/A, Y = y/B, andZ = z/C refer to the zero-
dimension lengths in the x, y, and z directions, respectively.

P = p/p0 represents the zero-dimension pressure.
Px = px/px0, Py = py/py0, and Pz = pz/pz0 stand for the

zero-dimension boundary stress.
Fx = f x/f x0, Fy = f y/f y0, and Fz = f z/f z0 denote the zero-

dimension physical strength.
UΓ = u/A, VΓ = v/B, andWΓ =w/C refer to the zero-

dimension displacement.
Based on the above derivation, the similar criteria for

pressure-sensitive medium were obtained. For instance, X,
Y , Z, P, Px, Py, Pz , Fx, Fy, Fz , UΓ, VΓ, and WΓ are also
parameters of the potential functionΨ. According to the sec-
ond similarity principle, if two models have the same similar-
ity criterion and the same number of coefficients, their
potential functions are also the same.
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