
Research Article
Investigation on the Responses of Overburden Stress and Water
Pressure to Mining under the Reverse Fault

Chengcheng Chu

Department of Earth and Environment, Anhui University of Science and Technology, Huainan, Anhui 232001, China

Correspondence should be addressed to Chengcheng Chu; chu_cheng_cheng@126.com

Received 31 August 2021; Revised 29 September 2021; Accepted 6 October 2021; Published 20 October 2021

Academic Editor: Dan Ma

Copyright © 2021 Chengcheng Chu. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper focuses on the responses of overburden stress and pore water pressure in confined aquifer to mining under the
Ordovician limestone aquifer and the reverse fault. Taking 32 coal seam mining in the first eastern mining area of
Qianyingzi coalmine in China as engineering background, on the basis of the mining hydrogeological and engineering
geological model of the study area, a numerical calculation model considering the fluid-solid interaction is established.
Simulation results indicate that the variation characteristics of pore water pressure in confined aquifer and overburden
stress are affected by both mining effect and geological tectonics and are closely related to the shear failure of the reverse
fault plane caused by mining effect and the failure characteristics of the overburden strata in the stope. According to the
variation of pore water pressure before and after the roof water inrush, the reduction range of pore water pressure can be
used as one of the early warning indicators for water inrush accidents. These new understandings are of reference value to
the mining water inrush under the combined action of reverse faults and confined aquifers and to the establishment of
corresponding forecasting and early warning systems.

1. Introduction

It is a key theoretical problem of coal mine disaster control
and prevention that the variation of overburden stress and
pore water pressure in confined aquifer caused by coal min-
ing. Faults not only destroy the integrity of overlying strata
structure, but also affect the distribution characteristics of
stress field and seepage field. According to statistics, 80%
of water inrush accidents are related to faults. The systematic
research and practice of coal seam mining under aquifer in
China originated in the 1950s, but the research in this field
mainly focuses on coal seam mining under loose aquifer
[1–6]. Different from the coal mining under loose aquifer,
the roof water inrush mechanism and overburden failure
characteristics of coal mining under limestone (Ordovician
limestone and Cambrian limestone) aquifer are often
coupled with faults, which make the geological conditions
of the stope more complex.

Scholars have studied the distribution rule of stress as
mining under the fault and the change rule of water pressure

as mining under aquifer, respectively, and obtained a lot of
valuable research results [7–12]. Compared with the normal
fault, the horizontal stress near the reverse fault is greater,
and the influence of the horizontal stress variation in the
fault zone on the stability of the fault goes up [13, 14]. In
the process of coal mining, with decreasing fault coal pillar,
two sides of the fault present different characteristics of
mining effect [15, 16]. When working face advances from
the footwall to the fault, the vertical stress of the coal body in
front of the working face increases firstly and then decreases.
Without fault, the vertical stress of the coal body in front of
the working face increases gradually and tends to be stable
with the working face advancing [17]. A mining-induced
pore water pressure simulation experiment shows that the
variation of the pore water pressure in a confined aquifer
due to mining is closely related to the mining progress and
periodic roof pressure [18–20]. A fluid-solid coupled numer-
ical simulation indicates that the degree of interconnection
between the bed-separated and vertical fractures, and
increases in hydraulic and seepage rates in overlying strata
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are key factors in predicting potential water inrush when
mining shallow coal seams under an unconsolidated, con-
fined aquifer [21]. Nonlinear properties of rock mass can
change gradually due to the erosion of flowing water during
the water inrush process [6, 22–25]. These research results
have laid an important theoretical foundation for the
research of this paper. However, the current research pay less
attention on the issue of mining under a double threat from
both the fault and roof confined water, especially in the var-
iation of overburden stress and pore water pressure under
these special geological conditions.

In this paper, taking 32 coal seam mining in the first east-
ern mining area of Qianyingzi coalmine in China as engi-
neering background, the responses of overburden stress
and water pressure in confined aquifer to mining under
the Ordovician limestone aquifer and the reverse fault are
studied with using FLAC3D software, which is aimed at
revealing the roof water inrush mechanism of mining under
the Ordovician limestone aquifer and the reverse fault and
establishing the early warning and prediction index of roof

water inrush caused by mining under the combined action
of reverse faults and confined aquifers.

2. Engineering Geological and Hydrogeological
Conditions of the Research Case

The study area is the first eastern mining area of Qianyingzi
coalmine in China. Qianyingzi coalmine is located in the
southwest of Suzhou City, Anhui Province, and it is a strat-
igraphic type of Huaibei coalfield, belonging to North China
stratigraphic category. The mining depth of 32 coal seam in
the first eastern mining area of Qianyingzi coalmine is
-280~-650m, and the average thickness of 32 coal seam is
3.3m. Drilling in mining area reveals that the strata from
the bottom to the top are Ordovician, Carboniferous, Perm-
ian, Neogene, and Quaternary. As shown in Figure 1, DF200
fault pushes the Ordovician limestone to the top of 32 coal
seam directly, which is a reverse fault in research area. The
dip angle of DF200 fault is about 45 degrees. The roof lithol-
ogy of 32 coal seam is interbed of soft and hard strata.
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Figure 1: Mining hydrogeological and engineering geological model in the study area.
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Figure 2: (a) Comparison of natural flow chart of limestone aquifer and (b) the flow chart of limestone aquifer after pumping 30 minutes.
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Through the group hole unsteady flow pumping test of
boreholes T1, T2, T3, T4, and T5 in the Ordovician lime-
stone aquifer, the natural water level of each borehole and
the water level change data after pumping are obtained.
The flow field evolution is plotted, as shown in Figure 2.
According to the calculation of water inflow and drawdown
of T1 hole, the permeability coefficient K = 2:42m/d, and
the unit water inflow q = 0:53 L/ðs · mÞ. The results of pump-
ing experiments in the Ordovician limestone aquifer show
that the aquifer has a hydraulic connection with the sur-

rounding aquifer and is a medium water-rich aquifer. There-
fore, 32 coal seam mining is threatened by both DF200 fault
and Ordovician limestone aquifer.

3. Fluid-Solid Coupling Numerical Model

Based on the engineering geological and hydrogeological
conditions of the study area, the fluid-solid coupling numer-
ical model is established. The coordinate system is shown in
Figure 3, and the model size is 900m × 10m × 500m. In the
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Figure 3: Coordinate system of numerical model.
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Table 1: Major parameters of rocks in numerical model.

Stratum
Density
(kg/m3)

Bulk modulus
(MPa)

Shear modulus
(MPa)

Internal
friction
angle (°)

Cohesion
(MPa)

Tension
(MPa)

Permeability
(m2/Pa·sec) Porosity

Limestone 2090 22.60 11.10 42.0 6.72 1.58 7:0 × 10−8 0.15

Coal seam 1400 1.04 0.51 25.0 2.00 0.50 2:0 × 10−13 0.10

Mudstone1 2020 8.80 4.30 25.0 5.00 0.90 3:0 × 10−10 0.25

Sandstone1 2436 16.50 10.00 31.4 6.12 1.90 7:0 × 10−10 0.22

Mudstone2 2364 9.00 5.00 33.1 2.75 1.30 3:0 × 10−10 0.25

Sandstone2 2621 16.80 10.00 33.6 7.60 1.76 7:0 × 10−10 0.19

Mudstone3 2537 8.00 7.00 34.8 4.42 1.77 3:0 × 10−10 0.24
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Figure 5: Plastic zone development regularity in mining area.
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numerical model, the gravity stress of the Quaternary loose
layer is loaded by applying uniform load above the model.
The compensation load is 0.5MPa. The calculation formula
is as follows:

σ = γz = 10kN/m3 × 50m = 0:5MPa, ð1Þ

where σ is compressive stress, MPa, γ is unit weight,
KN/m3, and z is Quaternary thickness, m.

The Mohr-Coulomb yield criterion is adopted in the
numerical simulation. The front and back boundary, the left
and right boundary, and the bottom boundary of the model
are fixed, and the upper boundary is free. The boundary
around the model is regarded as impervious boundary, and
the excavated surrounding rock boundary is free pervious
boundary. For most hard rock masses, the lateral pressure
coefficient (λ) is between 0.25 and 0.43, so the horizontal
stress is about one-third to one-fifth of the vertical stress.
However, the existence of faults will interfere with the

regional stress field, resulting in great differences between
the local stress field and the regional stress field, and the lat-
eral pressure coefficient of the local stress field around the
reverse fault is greater than 1. Combined with the regional
geological data, the lateral pressure coefficient in the numer-
ical model is 1.65. According to the field pumping test data,
the water pressure at the bottom interface of the Ordovician
limestone aquifer is 6.5MPa, and the pore water pressure
before excavation is hydrostatic pressure. Moreover, the
fault is generally weak in water yield and poor in water con-
ductivity. The plane diagram of the numerical model is
shown in Figure 4. The rock parameters in the numerical
model are based on the physical and mechanical properties
of the drilled rock, as shown in Table 1.

Considering the boundary effect, the cutting hole is
200m away from the right boundary of the model. In the
numerical model, coal seam thickness is 5m, the mining
length of each step is 40m, and the mining plan is a full
mining height. The numerical model stops mining at the
eleventh step, when the roof water-conducting fracture zone

6 × 107

5 × 107

4 × 107

3 × 107

2 × 107

Ve
rt

ic
al

 st
re

ss
 (P

a)

1 × 107

0

0 100 200 300 400 500
X axis (m)

600 700 800 900 1000

Before mining
A�er mining

(a) Z = 7:5m (XDF200 = 109m)

2.5 × 107

2.0 × 107

1.5 × 107

1.0 × 107

5.0 × 106

0.0

Ve
rt

ic
al

 st
re

ss
 (P

a)

0 100 200 300 400 500
X axis (m)

600 700 800 900 1000

Before mining
A�er mining

(b) Z = 100m (XDF200 = 219m)

2.0 × 106

–2.0 × 106

4.0 × 106

6.0 × 106

8.0 × 106

1.0 × 107

1.2 × 107

1.4 × 107

1.6 × 107

0.0

Ve
rt

ic
al

 st
re

ss
 (P

a)

0 100 200 300 400 500
X axis (m)

600 700 800 900 1000

Before mining
A�er mining

(c) Z = 200m (XDF200 = 338m)

2.0 × 106

4.0 × 106

6.0 × 106

8.0 × 106

1.0 × 107

0.0

Ve
rt

ic
al

 st
re

ss
 (P

a)

0 100 200 300 400 500
X axis (m)

600 700 800 900 1000

Before mining
A�er mining

(d) Z = 300m (XDF200 = 458m)

Figure 6: Distribution characteristics of vertical stress.
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communicates with confined aquifer, and water inrush acci-
dent occurs. At this moment, the horizontal distance of the
goaf is 440m, and the mining range is x = 260 ~ 700m.
The horizontal range of the Ordovician limestone aquifer
is 0~100m at the bottom of the model and 0~695m at the
top of the model. In the process of the numerical calculation,
the model will calculate the balance of stress field and seep-
age field at each mining step until water inrush occurs.

4. Analysis of Simulation Results

4.1. Development Characteristics of Plastic Zone. After model
mining, the rock stratum above the goaf is subject to tensile
failure and shear failure, and the plastic zone gradually
develops upward with the increase of mining distance, as
shown in Figure 5. In the mining process, after the tenth
mining step, shear failure occurs near the fault zone with a
horizontal height of 200~235m in the footwall of DF200
fault. Compared with the rock height in the numerical
model, this level is near the soft hard rock contact surface
of mudstone 3 and sandstone 2. At this time, the plastic zone
near the fault zone is not connected with the fracture zone
above the goaf. After the eleventh mining step, the plastic
zone further develops and the two parts of fractures are con-
nected. Therefore, the roof water inrush accident occurs at
the eleventh mining step.

According to the drilling data of the trial mining work-
ing face in the first eastern mining area, when the working
face is pushed 120m, the measured height of water flowing
fractured zone is 42.50m. As shown in Figure 5(a), at the
third step of mining, the scope of goaf is 120m, and the
maximum height of plastic zone is 45m. Therefore, the
development height of plastic zone in the stope obtained
by numerical simulation is close to the actual development
height.

4.2. Distribution Characteristics of Overburden Stress after
Full Mining. The abscissa of the DF200 fault is recorded as
XDF200. XDF200 varies at different horizontal heights. Accord-
ing to model coordinate system (Figure 2) and goaf range, if
XDF200 < 260m, it indicates that the fault is located in front
of the goaf. If 260m < XDF200 < 695m, the fault lies above
the goaf. As shown in Figure 6, distribution characteristics
of vertical stress in mining area can be summarized as
follows.

(1) After the model is fully mined, when the fault lies in
front of the goaf, there are two stress concentration
points in front of the goaf, which are located at fault
position and stopping mining position, respectively,
as shown in Figures 6(a) and 6(b). In this case, the
vertical stress distribution of overlying rock over
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Figure 8: Variations of confined aquifer pore water pressure with mining distances (unit: Pa).
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the goaf is near to U-shape. While the fault lies above
the goaf, the stress concentration is only at the fault,
and the vertical stress distribution of overlying rock
at this horizontal height is similar to W-shape, as
shown in Figures 6(c) and 6(d)

(2) For the overburden rock strata far from the coal
seam, taking the horizontal height of z = 100m, z =
200m, and z = 300m as examples, the vertical stress
value of the lower wall of the fault is obviously larger
than that of the upper wall of the fault. This is
because the fault has a barrier effect on stress trans-
fer, which is consistent with previous research
results. However, for the strata near the coal seam,
taking the horizontal height of z = 7:5m as an exam-
ple, the vertical stress value of the upper wall of the
fault is larger than that of the lower wall of the fault.
This is mainly affected by the water pressure of the
confined aquifer

Different from the decrease of vertical stress above the
goaf after model mining, the horizontal stress of the stope
increased. It can be seen from Figure 7 that the variation
of horizontal stress above the goaf gradually decreases with
the decrease of rock stratum buried depth. This shows that
with the increase of the vertical distance between rock
stratum and coal seam, the influence of mining effect on
the variation of horizontal stress decreases gradually. When
the vertical distance between rock stratum and coal seam is

far, the distribution characteristics of horizontal stress are
mainly affected by geological structure. Based on the varia-
tion characteristics of vertical stress and horizontal stress
in the stope, it can be seen that the variation of vertical stress
and horizontal stress from the front of the goaf to lower wall
of DF200 fault is significantly greater than that of the upper
wall of the fault, indicating that the fault plays a barrier role
in the transmission of stress.

4.3. Variations of Pore Water Pressure in Confined Aquifer.
As shown in Figure 8, the confined aquifer water pressure
maintains the layered distribution characteristics in the
early stage of mining and increases gradually with the
advancing of working face. After the sixth mining step, a high
water pressure area forms at the height range of 25~125m
near the fault zone in confined aquifer. Compared with
5~6.5MPa before model mining, the pore water pressure in
this area increases to 8~9MPa after the sixth step of mining
and even 10~18MPa after the eleventh step. After the ninth
mining step, a low water pressure zone forms in confined
aquifer at the height range of 275~325m near the fault zone.
The pore water pressure in the area is 3~4MPa before min-
ing, which decreases to 2~2.5MPa after the ninth step of
mining. With the advancing of working face, the scope of
low water pressure area is further expanded.

As shown in Figure 8, after full mining, the range of low
water pressure area is extended to 160~340m, and the vari-
ation of water pressure is 0.5~1.5MPa. In this area, the range
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Figure 9: Contour of pore water pressure variation after full mining (unit: Pa).

Table 2: Coordinates of pore water pressure monitoring points.

Pore water pressure
monitoring point

x coordinate (m) y coordinate (m) z coordinate (m)
x coordinate of the fault

at this level (m)

A 156 5 48 157.20

B 364 5 223 365.76

C 516 5 350 517.11

D 575 5 400 576.70

E 50 5 223 365.76

F 200 5 223 365.76
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of 165~240m is the core low water pressure area, and the
reduction of water pressure in this area is 1~1.5Mpa. In the
process of model mining, six pore water pressure monitoring
points are set. Their positions and coordinates are shown in
Figure 9 and Table 2, respectively. Among them, point A,
point B, point C, and point D are pore water pressure moni-
toring points at different horizontal heights near the fault
zone, and point B, point E, and point F are three pore water
pressure monitoring points with different horizontal distance
from the fault at the same horizontal height. As shown in
Figure 10, the variation laws of pore water pressure at moni-
toring points with mining steps can be summarized as
follows.

(1) The pore water pressure of the monitoring point at the
bottom of the confined aquifer (point A) increases
obviously with the increase of mining distance. The
pore water pressure of the upper monitoring point

of the confined aquifer (point D) has no significant
change in the process of model mining. The pore
water pressure of the monitoring point in the water
pressure core reduction area in the confined aquifer
(point B) begins to decrease after the plastic zone is
generated near the fault zone. When the water inrush
accident occurs, the pore water pressure of point B
further decreases and the reduction range is greater
than that before the water inrush. The pore water pres-
sure of point C, which is in the water pressure reduc-
tion area but outside the core reduction area,
continues to increase when plastic failure occurs near
the fault and decrease at the moment of water inrush

(2) Taking the 223m horizontal height as an example,
the pore water pressure of point E continues to
increase with the increase of mining distance due
to far from the fault, and the pore water pressure of
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Figure 10: Variations of pore water pressure at monitoring points with mining steps.
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point B and point F begins to decrease after the plas-
tic failure of the fault due to close to the fault. It indi-
cates that near the shear failure area of the fault
caused by mining effect, the closer to the fault, the
greater the decrease of pore water pressure at the
same horizontal height

4.4. Effect of Overburden Failure Characteristics on Pore
Water Pressure Distribution. According to the development
characteristics of the plastic zone in the stope and the varia-
tion law of overburden stress and pore water pressure in
confined aquifer, it can be seen that the essence of roof water
inrush caused by coal mining in the study area is in the foot-
wall of the reverse fault, and the interface of hard rock and
soft rock near the fault zone is fractured and has low
strength, which is conducive to the development and expan-
sion of cracks, and is vulnerable to shear failure. When the
plastic zone near the fault zone is connected with the water
conducting fracture zone of the coal seam roof, the roof
water inrush accident occurs.

Mining in the working face causes shear failure along the
reverse fault plane in the range of about 90m. In the fault
shear failure area, the permeability increases, resulting in
the formation of a pressure reduction area in the confined
aquifer. In the early stage of the formation of the water pres-
sure reduction zone, the plastic zone near the fault zone is
not connected with the water conducting fracture zone of
the coal seam roof, and the roof water inrush has not yet
occurred. At this moment, the scope of the water pressure
reduction zone is small. With the advancing of the working
face, the plastic zone near the fault zone develops continu-
ously, and the scope of the water pressure reduction area
expands. At the moment of water inrush, the pore water
pressure value in the water pressure reduction area further
decreases, and the reduction range is larger than that before
water inrush. The core area of water pressure reduction is
formed in a certain area close to the fault, and the drop of
water pressure is large in this area. Therefore, the reduction
range of pore water pressure can be used as an early warning
index for water inrush accidents.

5. Conclusions

Based on the analysis of engineering geological and hydro-
geological conditions, the mining hydrogeological and engi-
neering geological model of the study area is established
firstly. Then, a numerical model considering the coupling
effect of seepage field and stress field is established by using
the FLAC3D software. Numerical simulation shows that the
variation characteristics of pore water pressure in confined
aquifer and overburden stress are affected by both mining
effect and geological tectonics and are closely related to the
shear failure of the reverse fault plane caused by mining
effect and the failure characteristics of the overburden strata
in the stope.

Due to the blocking effect of the fault, the stress varia-
tion of the lower wall of the fault is obviously greater than
that of the upper wall of the fault near the fault zone. With
the decrease of burial depth, the variation of the stress and

pore water pressure in confined aquifer decreases gradually,
which indicates that with the increase of vertical distance
between rock and coal seam, the influence of mining effect
on overburden stress and pore water pressure decreases
gradually.

The pore water pressure decreases near the fault shear
fracture zone and forms a water pressure reduction zone
in confined aquifer. With the working face advancing,
the plastic zone continues to develop, and the range of
the water pressure reduction zone expands until roof water
inrush. At the instant of water inrush, the decrease of pore
water pressure is further increased. Therefore, the reduction
range of pore water pressure can be used as one of the early
warning indicators for water inrush accidents. These new
understandings are of reference value to the mining water
inrush under the combined action of reverse faults and
confined aquifers and to the establishment of corresponding
forecasting and early warning systems.
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