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As a new alternative energy source, gas hydrate has attracted wide attention all over the world. Since gas hydrate is always
associated with free gas, the evaluation of the gas hydrate and free gas system is an important aspect of hydrate reservoir
exploration and development. In this study, based on identifying gas hydrate and free gas by well logging, the seismic
reflection characteristics of gas hydrate and free gas are determined by an accurate well-to-seismic calibration method. On
account of seismic reflection characteristics, AVO attributes are used to identify gas hydrate and free gas qualitatively. Using
prestack and poststack inversion to get the ratio of P-wave impedance and P-wave-to-S-wave velocities, we determine the
three-dimensional space distribution of gas hydrate and free gas, predict their effective porosity and saturation, and eventually
achieve the meticulous depiction of gas hydrate and free gas in the body, which is necessary in subsequent estimation of gas
hydrate and free gas resources. Results show that according to logging interpretation, gas hydrate of the B-well is located in the
depth range of 1460–1510mbsl and free gas is in 1510–1542mbsl. Moreover, gas hydrate of the A-well is located in the depth
range of 1425–1512mbsl, and no obvious free gas is identified. Gas hydrate is located above free gas and distributed
continuously. In plane form, gas hydrate and free gas both present subelliptical distribution in the NW-SE direction. Gas
hydrate has an effective porosity of 0.30–0.40, an average saturation of 0.33–0.40, and an effective thickness of 3.0–10.5m,
whereas free gas possesses an effective porosity of 0.35–0.40, a saturation of 0.24–0.32, and an effective thickness of 2.0–5.0m.

1. Introduction

Natural gas hydrate is a kind of crystalline compounds com-
posed of natural gas and water under high pressure and low
temperature, which is distributed in deep-water sediments
and the permafrost [1–3]. Gas hydrate is considered one of
the most potential new clean energies to replace coal, oil,
and gas in the 21st century, and it is also a new energy with
abundant reserves that have not been fully exploited [4–6].
Since natural gas hydrate is a kind of clean energy with great
potential and has a positive impact on greenhouse effect and
marine ecosystem, the United States, Canada, Japan, South

Korea, and India are committed to the exploration and devel-
opment of natural gas hydrate [4, 7–13].

There is a great prospect of gas hydrate resources in
China’s vast jurisdictional sea, exclusive economic zone,
and permafrost region [14–16]. The South China Sea has
favorable geological, geomorphic, and geochemical condi-
tions for natural gas hydrate accumulation [17–24]. Regional
marine geological survey and oil and gas exploration show
that the South China Sea is rich in natural gas hydrate
resources [17, 20, 23, 25–29].

Recent studies have shown that gas hydrate and free gas
coexist in the Hydrate Ridge in offshore Oregon [30], the

Hindawi
Geofluids
Volume 2021, Article ID 5514263, 16 pages
https://doi.org/10.1155/2021/5514263

https://orcid.org/0000-0003-2615-5249
https://orcid.org/0000-0002-3872-4827
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5514263


Green Canyon in the Gulf of Mexico [31], the Blake Ridge in
North America [32], and the Nankai Trough in Japan [33].
Researches on gas hydrate reservoirs in the Shenhu area,
South China Sea, have systematically discussed the geologi-
cal and geochemical characteristics of gas hydrate and asso-
ciated free gas [34, 35].

Although the above studies infer the phenomenon and
formation mechanism of gas hydrate and associated free
gas, there is no detailed description of natural gas hydrate
layer and associated free gas layer. Therefore, in this study,
we use an accurate well-to-seismic calibration method to
fine depict gas hydrate and free gas reservoirs and compare
the differences between them, which lays a foundation for
subsequent estimation of gas hydrate and free gas resources.

2. Geological Setting

The Shenhu area is geographically located in the northern
slope area of the South China Sea and structurally situated
in the Baiyun sag, Zhuer depression, and Peal River Mouth
Basin (Figure 1(a)). Its seafloor topography is relatively flat,
with an average slope of 3°. There are many types of land-
forms in the Shenhu area, including sea knolls, sea valleys,
erosion slots, and gullies [34, 36]. The water depth is
between 1000 and 1700mbsl, and the Shenhu area is divided

into two parts, the north and south, with the water depth of
1350mbsl as the boundary (Figure 1(b)). In the north part,
the terrain is relatively steep, and there are 17 nearly
north-south trending submarine trenches from west to east,
which are arranged alternately with seamounts. In the south
part, the terrain is flat and gradually becomes abyssal plain
to the south. The A-B ore body is taken as the interested
object in this study, which is located in the submarine can-
yon systems in the northern slope of the Baiyun sag
(Figure 1(c)). The A-well and B-well are situated at the top
of the eastern ridges, with water depths of 1309.75mbsl
and 1259.00mbsl, total drilling depths of ~222mbsf and
~230 mbsf, and geothermal gradients of 5.46°C/100m and
4.43°C/100m, respectively [3].

During the Cenozoic, the Pearl River Mouth Basin expe-
rienced several regional tectonic activities, including Shenhu
movement, Zhuqiong movement, Nanhai movement,
Baiyun movement, and Dongsha movement (Figure 2).
The Cenozoic structural evolution of the Baiyun sag is char-
acterized by two periods, i.e., rifting stage and depression
stage. From the Paleocene to the early Oligocene, a half-
graben or graben depression was formed, with the continen-
tal strata of the Shenhu formation in the Paleocene, Wench-
ang formation in the Eocene, and Enping formation in the
lower Oligocene deposited. In the late Oligocene, it became
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Figure 1: Regional geological background of the Shenhu area in the north of South China Sea.
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Figure 2: Comprehensive stratigraphic histogram of the Pearl River Mouth Basin.
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Figure 3: Intersection plate of different elastic parameters.
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a depression stage and deposited neritic facies strata of the
Zhuhai formation. Subsequently, in the Miocene and Plio-
cene, it deposited neritic facies strata. There is an obvious
unconformity between the lower Oligocene and the upper Oli-
gocene. From the bottom to top, the Shenhu area develops
successively continental facies, transitional facies, and marine
facies strata, showing a trend of transgression [37].

3. Methods

3.1. Logging Identification Method of Natural Gas Hydrate
and Free Gas. Logging response characteristics are the basis
of identifying natural gas hydrate and free gas. Besides ana-
lyzing the response pattern of each logging curve, we adopt
the curve overlap method to qualitatively identify natural
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Figure 4: Correlation plate of physical properties and elastic parameters for gas hydrate and free gas.
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Figure 5: Comprehensive log interpretation graphs of the A-well and B-well.
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gas hydrate and free gas. According to the overlap
method, when gas was saturated in the reservoir, interval
transit time increases, whereas density porosity and neu-
tron porosity decrease. Through reasonable standardiza-
tion, interval transit time and density porosity can
overlap with neutron porosity in the water layer but sepa-
rate in the gas layer [3].

3.2. Sensitivity Analysis of Gas Hydrate and Free Gas
Elasticity Parameters. Elastic parameters are the link
between well logging and seismic data, the sensitivity analy-
sis of which is the basis of the seismic prediction method.
Only when the elastic parameters of gas hydrate and free
gas have a certain range, elastic inversion constrained by well
logging is feasible [38].

(a)

(b)

Figure 6: Logging curves and synthetic seismic records of the A-well and B-well.
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Through the intersection analysis of different elastic
parameters, it can be found that gas hydrate is characterized
by high P-wave impedance (P‐imp > 3000 g/cm3 · m/s),
while free gas has an obvious characteristic of low P-wave
impedance (P‐imp < 3000 g/cm3 · m/s) (Figure 3).

Therefore, P-wave impedance is one of the most sensi-
tive elastic parameters for gas hydrate and free gas. Through
P-wave impedance data, gas hydrate and free gas could be
identified accurately.

There is a strong difference in P-wave impedance values
between gas hydrate and free gas. Using the constrained
sparse spike inversion (CSSI) method in the software Jason,
under the control of the gas hydrate-bearing zone and bot-
tom simulating reflector (BSR), the entire logging data for
the hydrate ore body in the study area was used to com-
plete the poststacking CSSI processing and obtain the P
-wave impedance, which revealed the distinct distribution
of the GHBZ and underlying free gas. The top of gas
hydrate is determined by strong amplitude reflection con-
sistent with the polarity of the seafloor, and the bottom is
identified by BSR.

3.3. Correlation Analysis of Physical Properties and Elasticity
Parameters for Gas Hydrate and Free Gas. Through analyzing
the correlation between physical properties and elasticity
parameters of gas hydrate and free gas, it could be found that
there is a good correlation between effective porosity and P
-wave impedance, whereas saturation and P-S wave velocity
ratio have a good relationship (Figure 4). The fitting relation-
ship is as follows:

Effective porosity = −0:43 × ln P‐wave impedanceð Þ
+ 3:85 R2 = 0:82

� �
,

Free gas saturation = 0:84 × P‐Swave velocity ratioð Þ2
− 3:84 × P‐Swave velocity ratioð Þ
+ 4:52 R2 = 0:77

� �
,

Gas hydrate saturation = −0:29 × P‐Swave velocity ratioð Þ2
+ 1:47 × P‐Swave velocity ratioð Þ
− 1:42 R2 = 0:77

� �
:
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Figure 7: Well-tie AVO intercept and gradient cross section of the A-well and B-well: (a) AVO intercept; (b) AVO gradient.
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Using the above formulae, the spatial distribution of effec-
tive porosity, free gas saturation, and gas hydrate saturation of
the A-B ore body could be well predicted based on the P-wave
impedance and P-S wave velocity ratio.

4. Results

4.1. Logging Interpretation of Gas Hydrate and Free Gas.
Applying the overlap method to the A-well and B-well, it
can be found that the resistivity curve of the B-well is charac-
terized by high value in the depth of 1460–1525mbsl but
medium value in the depth of 1525–1542mbsl (Figure 5(a)).
Its interval transit time, density porosity, and neutron porosity
curves overlap each other in the depth of 1460–1510mbsl but

separate obviously in the depth of 1510–1542mbsl. Thus, the
depth range of 1460–1510mbsl in the B-well presents the
response characteristics of gas hydrate, i.e., high resistivity
and the overlap of interval transit time, density porosity, and
neutron porosity. In contrast, in the 1510–1542mbsl of the
B-well, the response characteristics of free gas are character-
ized by medium-high resistivity, the separation of neutron
porosity, and interval transit time with density porosity.

In addition, the depth range of 1425–1510mbsl in the A-
well shows the response characteristics of gas hydrate, i.e.,
high resistivity and the overlap of interval transit time, den-
sity porosity, and neutron porosity (Figure 5(b)). However,
no obvious free gas is identified on the well logs of the A-
well, perhaps due to limited logging depth.
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Figure 8: Root-mean-square attribute distribution of AVO intercept and gradient in the A-B ore body: (a) root-mean-square attribute of
AVO intercept for gas hydrate; (b) root-mean-square attribute of AVO intercept for free gas; (c) root-mean-square attribute of AVO
gradient for gas hydrate; (d) root-mean-square attribute of AVO gradient for free gas.
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4.2. Seismic Reflection Characteristics of Gas Hydrate and
Free Gas. According to logging curves and synthetic seis-
mic records, it could be found that gas hydrate shows high
P-wave impedance, and there is a positive reflection coef-
ficient interface between the top of gas hydrate and the
overlying strata with low P-wave impedance. In the seis-
mic section, the corresponding seismic wave at the top
of gas hydrate is characterized by strong wave peak, which
indicates that the seismic section belongs to a normal polarity
section. If the bottom of gas hydrate is in direct contact with
the underlying free gas with low P-wave impedance, a negative
reflection coefficient interface will appear, and the correspond-
ing seismic wave in the seismic section will show a strong
trough. On the contrary, if the bottom of gas hydrate does
not contact with free gas directly, the reflection intensity of
seismic wave is weak.

The top of gas hydrate in the B-well is characterized by
strong wave peak, whereas the bottom shows strong wave

trough, indicating that gas hydrate is in direct contact with
free gas (Figure 6(a)). In addition, the top of gas hydrate in
the A-well is characterized by strong wave peak, but the seis-
mic wave amplitude at the bottom of gas hydrate is relatively
weak (Figure 6(b)). It is shown that gas hydrate does not
contact with free gas directly in the A-well, so a transition
zone may exist between gas hydrate and free gas. Gas
hydrates, free gas, and water coexist in the transition zone.
The gas hydrates in this area are in a critically stable state
and thus will dissociate once the temperature slightly
increases or the pressure slightly decreases [39].

4.3. AVO Attribute Analysis of Gas Hydrate and Free Gas.
According to well-to-seismic calibration, there are obvious
anomaly areas in both intercept and gradient cross sections,
showing a feature of bright points (Figure 7). In view of this
feature, root-mean-square attribute values of intercept and
gradient are extracted. The high-value areas represent the
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favorable distribution zones of gas hydrate and free gas,
which are nearly elliptical in the NW-SE direction
(Figure 8).

4.4. Seismic Inversion of Gas Hydrate and Free Gas

4.4.1. P-wave Velocity. The well-tie P-wave velocity cross
section of the A-well and B-well shows that gas hydrate pos-
sesses a high velocity of 1800–2000m/s (Figure 9). On the
contrary, the underlying free gas has abnormal low velocity
of 1400–1600m/s.
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Figure 14: Well-tie effective porosity cross section of the A-well and B-well.
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4.4.2. P-wave Impedance. According to seismic inversion, it
could be found that gas hydrate is located above free gas
and distributed continuously (Figure 10). The underlying
free gas is especially enriched at the boundary of gas hydrate.
The inversion results are in good agreement with the actual
logging data, which just proves the previous interpretation of
logging data.

4.4.3. Thickness and Spatial Distribution. Based on the distri-
bution characteristics of P-wave impedance, gas hydrate and
free gas are three-dimensionally carved to obtain the spatial
distribution of the geologic body and calculate its thickness
and volume. In plane form, gas hydrate shows nearly ellipti-
cal distribution in the NW-SE direction, and its thickness

gradually thinned from the middle to the edge (Figure 11).
Free gas has similar distribution characteristics with gas
hydrate; that is, the distribution range, morphological fea-
ture, and thickness change are basically consistent with gas
hydrate (Figure 12).

In space, three-dimensional carving technology is used
to find out separate free gas reservoirs and quantitatively
describe the surface structure, thickness, and volume of each
free gas reservoir, so as to determine the most favorable free
gas reservoir for exploitation. It is found that among all the
free gas reservoirs, the free gas reservoir located directly
below gas hydrate possesses the largest development scale,
which is more than 40 times larger than other free gas reser-
voirs (Figure 13).
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Figure 15: Plane distribution of effective porosity for gas hydrate and free gas in the A-B ore body.
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4.4.4. Effective Porosity. The effective porosity distribution of
the A-B ore body changes with P-wave impedance. In the
section, the effective porosity of gas hydrate is mainly
between 0.30 and 0.40, whereas the effective porosity of free
gas is higher than that of gas hydrate, ranging from 0.35 to
0.40 and with small change and weak heterogeneity
(Figure 14). These results are consistent with those predicted
by logging interpretation (Figure 5).

In the plane, the effective porosity of gas hydrate is
between 0.31 and 0.35 and increases from the middle to
the surrounding, so it has obvious high value at the bound-

ary of the A-B ore body (Figure 15(a)). In addition, the effec-
tive porosity of the B-well is higher than that of the A-well.
On the whole, the effective porosity of free gas has little
change in plane distribution, and its value is between 0.34
and 0.37 (Figure 15(b)). Different from gas hydrate, the
effective porosity of free gas in the northern A-well area is
slightly better than that in the southern B-well area.

4.4.5. Saturation. The saturation of the A-B ore body varies
with the P-wave-to-S-wave velocity ratio. In the longitudinal
section, the saturation of gas hydrate shows a trend of low
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Figure 17: Plane distribution of average saturation for gas hydrate and free gas in the A-B ore body.
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Figure 18: Plane distribution of average effective thickness for gas hydrate and free gas in the A-B ore body.
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value in the upper part and high value in the lower part,
mainly in the range of 0.30–0.50, while the free gas satura-
tion is generally low, as low as 0.20 (Figure 16).

In the plane, the average saturation of gas hydrate is dis-
tributed in the range of 0.33–0.40, with a small variation
range (Figure 17(a)). The value of gas hydrate saturation in
the southern B-well area is slightly larger than that in the
northern A-well area. On the whole, the saturation of free
gas is smaller than that of gas hydrate, which primarily
ranges from 0.24 to 0.32 with little change (Figure 17(b)).
There is a NW-trending low saturation zone through the
B-well, which divides the A-B ore body into two distinct free
gas area.

4.4.6. Average Effective Thickness. Based on the above study,
the average effective thicknesses of gas hydrate and free gas
could be calculated according to the thickness, effective
porosity, and saturation. It can be seen in the plane that
the average effective thicknesses are consistent with the
trend of gas hydrate reservoir thicknesses (Figure 18). The
average effective thicknesses in the north are better than
those in the south, and the low values are primarily distrib-
uted at the boundary of the A-B ore body. The average effec-
tive thickness of gas hydrate primarily varies from 3.0m to
10.5m (Figure 18(a)), and that of free gas is mainly between
2.0m and 5.0m (Figure 18(b)).

5. Conclusions

Through evaluating the gas hydrate and free gas system of
the A-B ore body in the Shenhu area, the following conclu-
sions are obtained.

(1) According to logging interpretation, gas hydrate of
the B-well is located in the depth range of 1460–
1510mbsl and free gas is in 1510–1542mbsl. More-
over, gas hydrate of the A-well is located in the depth
range of 1425–1512mbsl, and no obvious free gas is
identified, due to limited logging depth

(2) Through the intersection analysis of elastic parame-
ters, gas hydrate has the characteristics of high P
-wave impedance, while free gas is characterized by
low P-wave impedance. P-wave impedance is one
of the most sensitive elastic parameters for gas
hydrate and free gas

(3) Based on the correlation analysis of physical and
elastic parameters, the effective porosity has a good
correlation with P-wave impedance and so has satu-
ration with the P-wave-to-S-wave velocity ratio.
Therefore, according to the ratio of P-wave imped-
ance and P-wave-to-S-wave velocity ratio, the effec-
tive porosity and saturation of hydrate and free gas
can be calculated, finally predicting the spatial distri-
bution of physical parameters

(4) According to logging curves and seismic synthetic
record, gas hydrate in the B-well is in direct contact
with free gas, while a transition zone may exist

between gas hydrate and free gas in the A-well.
According to well-to-seismic calibration, the anom-
aly areas of root-mean-square attribute values in
intercept and gradient cross sections represent the
favorable distribution zones of gas hydrate and free
gas

(5) Gas hydrate has an effective porosity of 0.30–0.40, an
average saturation of 0.33–0.40, and an effective
thickness of 3.0–10.5m, whereas free gas possesses
an effective porosity of 0.35–0.40, a saturation of
0.24–0.32, and an effective thickness of 2.0–5.0m
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