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As gasoline is the main fuel of small vehicles, the exhaust emissions from its combustion will affect air quality. The focus of gasoline
cleaning is to reduce the sulfur and olefin content in gasoline while maintaining its RON as much as possible. The reduction of RON
will bring great economic losses to enterprises. Therefore, it is very important for petrochemical enterprises to construct a RON loss
model in the gasoline refining process. The model construction, which reduces RON loss during gasoline refining, is the main
question in this paper. By Python and SPSS software, we got two variable filtering methods: the random forest importance
filtering and PCA filtering, and combined with SVR and random forest models, RON of the product and sulfur content were
predicted. The filtering order of the original data by Excel and Python is maximum and minimum removal, 3σ criterion
removal, deletion of too many sites in incomplete data, and filling of empty values in the mean within two hours. Several RON
prediction models were established with the help of Python software, and the variables selected were compared by two filtering
methods: one is the SVR model based on Gaussian, linear, polynomial, and Sigmoid kernel functions; the other is the random
forest model. The sulfur content and RON prediction model was constructed, which use evaluation functions such as MSE, R2,
and RMSE to evaluate and sulfur content as the subject condition. We convert the problem into linear and nonlinear model
variable optimization problems: the linear model is the variable selected by the SVR linear kernel function model and random
forest; the nonlinear model is the combination of variables selected by the random forest model and random forest. Optimizing
for each sample, the optimization method is to find the optimal solution for each variable and use the optimal method for each
variable as the local optimal solution for the sample. The two models are evaluated from the perspectives of optimization degree,
optimization rate, model running speed, etc.

1. Introduction

More than 95% of sulfur and olefins in finished gasoline
come from catalytic cracking gasoline in our country. There-
fore, the catalytic cracking gasoline must be refined to satisfy
the gasoline quality requirements. RON is the most impor-
tant indicator reflecting the combustion performance of gas-
oline and is used as the commercial brand name of gasoline,
such as 89#, 92#, and 95#. Desulfurization and olefin reduc-
tion technology reduced RON of gasoline in modern catalytic
cracking gasoline. However, the reduction of the RON will
bring great economic losses to the enterprise. For 1-unit
reduction for RON, the loss is equivalent to about 150 yuan/-

ton. Taking a 1-million-ton/year catalytic cracking gasoline
refining unit as an example, if the RON loss can be reduced
by 0.3 units, its economic benefit will reach 45 million yuan
[1]. Therefore, the RON loss model in the gasoline refining
process is critical to petrochemical companies. At the same
time, the reduction of RON not only brings huge economic
benefits to petrochemical companies but also brings new
opportunities and challenges to material science, engineering
geology, and other energy disciplines [2–8]. Due to the com-
plexity of the refining process and the diversity of equipment,
by which operating variables (control variables) have a highly
nonlinear and strongly coupled relationship with each other,
there are relatively few variables in the traditional data
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association model, and mechanism modeling needs high
analysis requirements of raw materials. The result cannot
meet the needs of the industry.

According to industrial demand, the less the RON is
reduced, the higher the economic benefits of the company.
With the average loss of RON of existing petrochemical
companies and related references, if the loss of RON can be
controlled at 0.5-1, the economic benefits of enterprises will
be very considerable.

Since the refining process of catalytic cracking gasoline is
continuous, the operating variables are sampled every 3
minutes, the measurement of RON (dependent variable) is
more troublesome, and it cannot be matched only twice a
week. However, according to the actual situation, it can be
considered that the measured value of RON is the compre-
hensive effect of the manipulated variable within two hours
before the measurement time. Then, the average value of
the manipulated variable within two hours of the pretreat-
ment corresponds to the measured value of RON. The estab-
lishment of a model for reducing RON loss involves 7 raw
material properties, 2 spent adsorbent properties, 2 regener-
ated adsorbent properties, 2 product properties, and other
variables, as well as 354 other operating variables (a total of
367 variables) based on the sample data. The method of
dimensionality reduction first and then modeling is often
used in engineering technology applications, which is condu-
cive to ignoring minor factors and discovering and analyzing
the main variables and factors that affect the model.

2. Data Processing

Since most of the variable data of collecting raw data are nor-
mal, some data of each device has problems in some loca-
tions, some variables only contain data of a part time, and
the data of some variables are all empty or part of data is
empty. The quality of the data will directly affect the results
of the research, so the original data must be processed first.
The processing process is as follows:

(1) Converting the 2-D index into 1-D index, various
properties are named: xx property_xx, e.g., raw mate-
rial properties_sulfur content, product properties_
RON, and regenerated adsorbent_coke, wt%. Due to
the lack of Chinese names for data, English names
are uniformly adopted

(2) We constructed a new sheet table named sample
property, constructed a new sheet, and kept the orig-
inal format. Then, the raw materials, products, spent
adsorbent, and regenerated adsorbent were also cop-
ied to the corresponding position of the sample prop-
erty table. After that, splitting the operating variable
table into sample 285 and sample 313, the header of
the new two tables is the second row of the operation
variable table, such as time|S-ZORB.CAL_H2.PV|S-
ZORB.PDI_2102.PV|…, and then, Python was used
for data processing

(3) The data of sample 285 and sample 313 was
imported, by the limit method of the maximum value

of each column to filter, and some samples are
removed that are not in this range. 0 is missing data,
replaced with NA, deleting all columns with NA
values. The average value was taken within two hours
to fill in the missing values. Since the data are of two
hours, the processed data was combined with appen-
dix 1 with the method of mean fill

(4) The 3σ criterion is used to remove irregular values:
suppose that the measured variable is measured with
equal accuracy, the arithmetic mean x of x1, x2,⋯, xn
and residual error were got, and the standard error σ
is calculated according to the Bessel formula. If the
residual error vbð1 ≤ b ≤ nÞ of a certain measured
value xb satisfied jvbj = jxb − xj > 3σ, it is considered
to be a bad value with a gross error value and should
be eliminated [9]. The Bessel formula is as follows:

σ = 1
n − 1〠

n

i=1
v2i

" #1/2
=

∑n
i=1x

2
i − ∑n

i=1xið Þ2/n
h i

n − 1

8<:
9=;

1/2

ð1Þ

3. Analysis

The establishment of a reducing RON loss model includes 7
raw material properties, 2 spent adsorbent properties, 2
regenerated adsorbent properties, 2 product properties, and
another 354 operating variables (a total of 367 variables).
The method of dimensionality reduction first and then
modeling is helpful for ignoring secondary factors, discover-
ing, and analyzing the main variables and factors that affect
the model. The procedure can be divided into five parts:
missing data processing, low variance filtering processing,
correlation analysis, principal component analysis, and
random forest feature selection.

3.1. Missing Data Processing. It can be known that the sample
data values are randomly missing by data analysis; we need to
reduce the dimensionality and filter the operating variables
and process the missing data according to the data obtained
after processing. There are three ways to deal with missing
values: deleting data, data imputation, and no processing.
Data imputation is adding the unknown value to the subjec-
tive estimate value, which will bring errors. The imputation
methods include mean imputation, data imputation, similar
mean imputation, maximum likelihood estimation, and mul-
tiple imputation [10]. The columns of missing value with
more than 50% will be deleted in this paper, the remaining
missing data is processed by mean interpolation, and the
number of columns deleted here is 8 columns.

3.2. Low Variance Filtering Processing. Low variance filtering
is similar to the method of missing value deletion, which
assumes that the column with very small changes in the data
column contains less information. Therefore, all columns
with small variances are removed, and the data needs to be
normalized first because of the correlation between variance
and data range. It is determined to normalize the data, then
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delete the columns with data variance less than 0.1, and the
number of columns deleted here is 34 columns in this paper.

3.3. Correlation Analysis. Correlation analysis studies the
direction and closeness between variables. First, a correlation
matrix can be obtained by calculating the Pearson correlation
coefficient between 359 features; only one variable with a cor-
relation greater than 0.9 is retained. The number of variables
filtered out is 153, the number of repeated filtering variables
is 5, and the number of remaining variables is 177.

3.4. Principal Component Analysis (PCA). PCA is a method
of reducing the dimensionality of high-dimensional data,
turning multiple variables into a few principal components,
and removing noise at the same time. The purpose of the
method is to use fewer features to explain most of the varia-
tion in the original data and to convert many highly corre-
lated features into mutually independent or uncorrelated
features. The idea is to select several new features that are
more than the original features, which can explain the
variation in most of the data; this is the so-called principal
component [11].

3.4.1. The Principle of PCA. Supposed that we have nth sample
and mth features, which can be denoted byy11, y12,⋯, ynm, it
is more efficient to write them in the matrix form:

Y =

y11 y12 ⋯ y1n

y21 y22 ⋯ y2n

⋮ ⋮ ⋱ ⋮

yn1 yn2 ⋯ ynm

0BBBBB@

1CCCCCA
n×m

, ð2Þ

where yijði = 1,⋯,n, j = 1,⋯,mÞ is the ith eigenvalue of the jth
sample.

The basic implementation steps of PCA can be divided
into data standardization, calculation of covariance matrix,
calculation of eigenvalues and eigenvectors, calculation of
principal component contribution rate and cumulative
contribution rate, calculation of principal component load,
calculation of principal component score, and operating var-
iable weights. Meanwhile, the retention of several principal
components depends on the cumulative contribution rate
of the retained part. In order to ensure that the main infor-
mation is not lost, the cumulative contribution rate of the
retained principal components should be greater than 85%.

3.4.2. Implementation of PCA. The data after processing the
missing data is analyzed by principal components by SPSS
software, and 359-dimensional features are described by 24
principal components. The contribution rate and cumulative
contribution rate of each principal component are shown in
Table 1.

From Table 1, we can see that the cumulative contribu-
tion rate of the first 24 principal components reaches
85.268%, and the feature value of the 24th principal compo-
nent is 1:920 > 1, which almost contains most of the informa-
tion of 359-dimensional features.

As shown in Figure 1, which is made according to the
contribution of the principal components to the feature value
in Table 1, they are the corresponding relationship. We can
see that the advantage of the gravel figure in the gentle curve
can explain the change of the characteristic and draw the
conclusion. In Figure 1, each feature is called a factor, and
there are 359 features, that is, 359 factors. The eigenvalue of
the 24th principal component has a larger decline compared
with the previous eigenvalue, this eigenvalue is smaller, and
the following eigenvalues do not change much, indicating
that adding factors corresponding to the eigenvalue can only
add very little information. Therefore, the first 24 principal
components can cover 359-feature information according
to Figure 1.

3.5. Random Forest Feature Selection. It is necessary to select
features that have a greater impact on the result for modeling,
when the number of features in the data set exceeds 300
dimensions. The feature selection method we choose is
random forest.

The method of random forest to evaluate the importance
of features is considering the contribution of each feature on
each tree, taking the average value, and comparing the contri-
bution of different features. The evaluation indicators of
contribution include the Gini index (Gini) and the error rate
of out-of-bag data (OOB) [12].

In general, the Gini value is used as the criterion for split-
ting nodes in the random forest model. In weighted random
forest (WRF), the weight has two functions: the first is to
select the split point to calculate the Gini value, which can
be denoted as

i Nð Þ = ∑c
i=1 niWið Þ2
∑c

i=1niWi
,

Δi = i NLð Þ − i NRð Þ,
ð3Þ

where N is an unseparated node; NL and NR are the left and
right nodes after separation, respectively; Wi is the class
weight of c samples; ni is the number of various samples
inside the node; and Δi is the reduction in impurity. The
larger the value, the better the separation effect of the point;
the second is that the class weight can be used to determine
its class label in the terminal node; the expression is as
follows:

node class = arg maxi niWið Þ i = 1, 2,⋯, Cð Þ: ð4Þ

The Gini value is used as the evaluation index of the
contribution rate in this paper, the importance score of
the variable is denoted by VIM, and GI denotes the Gini
value. Suppose that X1, X2,⋯, Xm are mth features, calcu-
lating the Gini index score VIMj of each feature, which is
the average change of split impurity for the jth feature in
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Table 1: Contribution rate and cumulative contribution rate of each principal component.

Component
Initial eigenvalue Extract the sum of squares and load

Total Variance (%) Cumulative (%) Total Variance (%) Cumulative (%)

1 113.571 31.547 31.547 113.571 31.547 31.547

2 39.590 10.997 42.545 39.590 10.997 42.545

3 23.930 6.647 49.192 23.930 6.647 49.192

4 20.292 5.637 54.829 20.292 5.637 54.829

5 14.529 4.036 58.865 14.529 4.036 58.865

6 12.305 3.418 62.283 12.305 3.418 62.283

7 9.904 2.751 65.034 9.904 2.751 65.034

8 8.488 2.358 67.391 8.488 2.358 67.391

9 7.390 2.053 69.444 7.390 2.053 69.444

10 6.783 1.884 71.328 6.783 1.884 71.328

11 6.418 1.783 73.111 6.418 1.783 73.111

12 5.282 1.467 74.579 5.282 1.467 74.579

13 4.993 1.387 75.966 4.993 1.387 75.966

14 4.446 1.235 77.201 4.446 1.235 77.201

15 4.255 1.182 78.382 4.255 1.182 78.382

16 3.735 1.038 79.420 3.735 1.038 79.420

17 3.305 0.918 80.338 3.305 0.918 80.338

18 3.245 0.901 81.239 3.245 0.901 81.239

19 2.909 0.808 82.048 2.909 0.808 82.048

20 2.743 0.762 82.810 2.743 0.762 82.810

21 2.546 0.707 83.517 2.546 0.707 83.517

22 2.368 0.658 84.175 2.368 0.658 84.175

23 2.015 0.560 84.734 2.015 0.560 84.734

24 1.920 0.533 85.268 1.920 0.533 85.268
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Figure 1: The figure of gravel.
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all decision trees of random forest, the formula of the Gini
index is as follows:

GIm = 1 − 〠
Kj j

k=1
p2mk, ð5Þ

where k are kth categories and pmk represents the propor-
tion of category k in node m. The importance of Xj on the
node m, which is the change of the Gini index before and
after the branch of node m, can be denoted by

VIMGini
jm = GIm −GIl −GIr , ð6Þ

Table 2: Operating variable weight of PCA.

No. Operating variable Weight No. Operating variable Weight

1 S-ZORB.FT_9102.PV 0.0420 10 S-ZORB.PT_7103.DACA 0.0407

2 S-ZORB.FT_1204.TOTAL 0.0417 11 S-ZORB.PC_2902.DACA 0.0406

3 S-ZORB.PDT_2001.DACA 0.0416 12 S-ZORB.PDT_2605.DACA 0.0400

4 S-ZORB.SIS_PDT_2103B.PV 0.0409 13 S-ZORB.FC_2801.PV 0.0395

5 S-ZORB.TE_7102.DACA 0.0408 14 S-ZORB.TE_3112.DACA 0.0370

6 S-ZORB.SIS_LT_1001.PV 0.0408 15 S-ZORB.SIS_TEX_3103B.PV 0.0364

7 S-ZORB.SIS_PT_2703 0.0408 16 S-ZORB.PC_1603.PV 0.0360

8 S-ZORB.PT_7510.DACA 0.0408 17 S-ZORB.AT-0003.DACA.PV 0.0360

9 S-ZORB.PT_7107.DACA 0.0407 18 S-ZORB.CAL.SPEED.PV 0.0357

Table 3: Filtered variables of PCA.

No. Variable No. Variable

1 Raw material properties_sulfur content (μg/g) 16 S-ZORB.TE_7102.DACA

2 Raw material properties_RON 17 S-ZORB.SIS_LT_1001.PV

3 Raw material properties_saturated hydrocarbon (v%) 18 S-ZORB.SIS_PT_2703

4 Raw material properties_olefin (v%) 19 S-ZORB.PT_7510.DACA

5 Raw material properties_aromatics (v%) 20 S-ZORB.PT_7107.DACA

6 Raw material properties_bromine value 21 S-ZORB.PT_7103.DACA

7 Raw material properties_density, 20°C 22 S-ZORB.PC_2902.DACA

8 Spent adsorbent properties_coke (wt%) 23 S-ZORB.PDT_2605.DACA

9 Spent adsorbent properties_S (wt%′) 24 S-ZORB.FC_2801.PV

10 Spent adsorbent properties_coke (wt) 25 S-ZORB.TE_3112.DACA

11 Spent adsorbent properties_S (wt%) 26 S-ZORB.SIS_TEX_3103B.PV

12 S-ZORB.FT_9102.PV 27 S-ZORB.PC_1603.PV

13 S-ZORB.FT_1204.TOTAL 28 S-ZORB.AT-0003.DACA.PV

14 S-ZORB.PDT_2001.DACA 29 S-ZORB.CAL.SPEED.PV

15 S-ZORB.SIS_PDT_2103B.PV

Table 4: Operating variable feature importance of random forest.

No. Operating variable Feature importance No. Operating variable Feature importance

1 S-ZORB.TC_2801.PV 0.002204 10 S-ZORB.PC_5101.PV 0.000973

2 S-ZORB.CAL_H2.PV 0.002075 11 S-ZORB.TE_7106.DACA 0.000964

3 S-ZORB.FC_1203.PV 0.001812 12 S-ZORB.AT_1001.DACA 0.000912

4 S-ZORB.TE_1106.DACA 0.001408 13 S-ZORB.FC_1102.PV 0.000878

5 S-ZORB.PDC_2702.DACA 0.001348 14 S-ZORB.FT_2502.DACA 0.000827

6 S-ZORB.SIS_TEX_3103B.PV 0.001344 15 S-ZORB.TE_5006.DACA 0.000804

7 S-ZORB.PC_2902.DACA 0.001028 16 S-ZORB.TC_2607.PV 0.000740

8 S-ZORB.LT_3801.DACA 0.000990 17 S-ZORB.ZT_2634.DACA 0.000717

9 S-ZORB.FT_1003.PV 0.000974 18 S-ZORB.PT_1501.PV 0.000675
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where GIl and GIr represent the Gini indices of the two
new nodes after branching, respectively.

If the node of feature Xj in decision tree i belongs to setM,
then the importance of Xj in the ith tree is

VIMGini
ij = 〠

m∈M
VIMGini

jm : ð7Þ

Assuming there are n trees in the random forest, then

VIMGini
j = 〠

n

i=1
VIMGini

ij : ð8Þ

Normalize the importance score:

VIMj =
VIMGini

j

∑c
i=1VIMi

: ð9Þ

Return the importance of features through the random
forest in Sklearn.

The operating variable weights and filtered variable
obtained by PCA, operating variables, and filtered variable
of RF are shown in Tables 2–5. The conclusion is that the

Table 5: Filtered variables of random forest (RF).

No. Filtered variable of RF No. Filtered variable of RF

1 Raw material properties_sulfur content (μg/g) 16 S-ZORB.PDC_2702.DACA

2 Raw material properties_RON 17 S-ZORB.SIS_TEX_3103B.PV

3 Raw material properties_saturated hydrocarbon (v%) 18 S-ZORB.PC_2902.DACA

4 Raw material properties_olefin (v%) 19 S-ZORB.LT_3801.DACA

5 Raw material properties_aromatics (v%) 20 S-ZORB.FT_1003.PV

6 Raw material properties_bromine value 21 S-ZORB.PC_5101.PV

7 Raw material properties_density, 20°C 22 S-ZORB.TE_7106.DACA

8 Spent adsorbent properties_coke (wt%) 23 S-ZORB.AT_1001.DACA

9 Spent adsorbent properties_S (wt%′) 24 S-ZORB.FC_1102.PV

10 Spent adsorbent properties_coke (wt) 25 S-ZORB.FT_2502.DACA

11 Spent adsorbent properties_S (wt%) 26 S-ZORB.TE_5002.DACA

12 S-ZORB.TC_2801.PV 27 S-ZORB.TE_5005.DACA

13 S-ZORB.CAL_H2.PV 28 S-ZORB.ZT_2634.DACA

14 S-ZORB.FC_1203.PV 29 S-ZORB.PT_1501.PV

15 S-ZORB.TE_1106.DACA

Hyperplane

Support vectors (class‑1)

Support vectors (class 1)Margin

Figure 2: The figure of SVM.

Table 6: SVR+PCA model score.

Kernel function
Model score

MSE R2 MAE RMSE

Linear 0.0497 0.9425 0.1691 0.2230

Polynomial 0.3390 0.6081 0.4189 0.5822

Gauss 0.0751 0.9132 0.2076 0.2740

Sigmoid 12.9687 -15.1201 2.1734 3.7375

Table 7: SVR+RF model score.

Kernel function
Model score

MSE R2 MAE RMSE

Linear 0.0530 0.9387 0.1758 0.2302

Polynomial 0.1539 0.8221 0.2910 0.3923

Gauss 0.0987 0.8859 0.2374 0.3141

Sigmoid 1.3112 -0.5160 0.8102 1.1451

Table 8: PCA+RF model score.

Model
Model score

MSE R2 MAE RMSE

PCA and RF 0.0406 0.9620 0.1480 0.2014

Table 9: RF model score.

Model
Model score

MSE R2 MAE RMSE

RF 0.0407 0.9619 0.1520 0.2016
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operating variables are selected differently, which leads to dif-
ferent final weights. The first ten variables selected by two
methods are the same and different from the eleventh. How-
ever, according to industrial demand, the variables selected
by the random forest have a more important and direct
impact on RON loss. The reliability of the calculation results
can also be seen in the subsequent model calculations.

4. Establishing Model

The establishment of a model for reducing RON loss predic-
tion is based on the processing of the original data, filtering,
and extracting of data by dimensionality reduction. With
various theoretical models or mathematical methods for data
analysis, then get the final prediction model results. Since the
RON loss is calculated by the RON of raw material minus the
RON of the product, it is more accurate to calculate the RON
after predicting the RON of the product. There are two types
of selected variables: the partial linear variables obtained by
the PCA and partial nonlinear variables obtained by the RF.
By combining two variables and different models, the best
combination of variables and models can be obtained. There-
fore, the filtered features and model selection play a decisive
role in the final establishment of the RON loss prediction
model.

4.1. Regression Model of Support Vector Machine (SVR). The
support vector machine, denoted by SVM, is mainly applied
in pattern recognition, classification, and regression analysis.
As shown in Figure 2, 2-D data points of red and blue can be
separated by a straight line, which is called a linearly separa-
ble problem in the pattern recognition; the black solid line is

the dividing line, also known as the “decision surface.” Each
decision surface corresponds to a linear classifier [13]. SVM
can be expressed as

minw,b
1
2w

Tw + C ⋅ 〠
N

n=1
max 1 − yn wTzn + b

� �
, 0

� �
: ð10Þ

A general procedure for finding a decision function
according to the given training sample fðx1, y1Þ,⋯,ðxn, ynÞg
⊂ ðX × YÞ when applying SVM for regression is denoted by
SVR, where xi ∈ X = Rn, yi ∈ Y = Rn, i = 1,⋯, n; the decision
function can be expressed as

f xð Þ =wx + b, ð11Þ

where ω and b are undetermined model parameters,
which can be obtained by fitting the data of f ðxÞ and y. In
order to solve ω and b, the above problem is transformed into
an optimization problem:

min 1
2 ωk k2 + C〠

l

i=1
ξi + ξ∗i
� � !

s:t:
f xið Þ − yi ≤ ϵ + ξi,

yi − f xið Þ ≤ ϵ + bξ i,
(

 ξi ≥ 0, bξ i ≥ 0, i = 1, 2,⋯, n:

ð12Þ

Usually, equation (11) is not solved directly, by which the
dual problem is introduced:

After obtaining αi, if 0 < αi < C, then ξi = 0, so

w = yi + ε − 〠
l

i

α∗i − αið ÞxTi x: ð14Þ

f ðxÞ can be expressed as

f xð Þ = 〠
n

i=1
α∗i − αið Þk x, xið Þ + b, ð15Þ

where kðx, xiÞ is a kernel function; the linear kernel function
formula is as follows:

κ x, xið Þ = xTi x: ð16Þ

The polynomial kernel function

κ x, xið Þ = xTi x + λ
� �d , λ ≥ 0: ð17Þ

The Gauss kernel function

κ x, xið Þ = exp −
x − xik k2
2σ2

� �
: ð18Þ

maxα,α∗ 〠
n

i

yi α
∗
i − αið Þ − ε α∗i + αið Þ − 1

2〠
n

i

〠
n

j

α∗i − αið Þ α∗j − αj

� �
xTi xj

s:t:
〠
l

i

α∗i − αið Þ = 0,

0 ≤ αi, α∗i ≤ C, i = 12,⋯, n:

8>><>>:
ð13Þ
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The Sigmoid kernel function

κ x, xið Þ = tanh βxTi x + θ
� �

β > 0, θ < 0ð Þ: ð19Þ

4.2. Random Forest Model. Random forest is a relatively new
machine learning model ensemble method, which is also
called the nonlinear tree-based model [14, 15]. It is composed
of a decision tree and bagging. The principle of random forest
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Figure 3: Fitting figure of PCA variable random forest model.
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Figure 4: Fitting figure random forest variable random forest model.
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is to build a forest in a random way, which is a kind of cluster
classification model. The decision trees that make up the ran-
dom forest are not related to each other. After the random
forest model is constructed, new samples are input into the
model to be judged by decision trees.

We choose different errors to measure the deviation
between the RON of the predicted product and the RON of
the true value in the model; the selected errors are as follows
[16, 17].

MSE (Mean Square Error) is used to measure the devia-
tion between the RON of the predicted product and the
RON of the true value in the model; MSE is close to 0, which
means that the predictive ability of the model is better; on the
contrary, it means that the predictive ability of the model is
worse. We can use the following formula to calculate MSE:

MSE = SSE
n

= 1
n
〠
m

i=1
wi yi − y∧ið Þ2: ð20Þ

The interval of R2_score is [0,1], R2_score = 1, which
means that the predictive ability of the model is better. The
formula of R2_score is as follows:

R2 = 1 −
∑m

i=1 y∧ ið Þ − y ið Þ� �2� �
/m

∑m
i=1 y ið Þ − �y
� �2� �

/m
= 1 − MSE ŷ, yð Þ

Var yð Þ : ð21Þ

MAE is the average value of absolute errors, which can
better reflect the actual situation of predicted value errors.
The formula is as follows:

MAE X, hð Þ = 1
m
〠
m

i=1
h xið Þ − yij j: ð22Þ

RMSE is the square root of MSE, which can be calculated
by the following formula:

RMSE =
ffiffiffiffiffiffiffiffiffiffi
MSE

p
=

ffiffiffiffiffiffiffiffi
SSE
n

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
m

i=1
wi yi − y∧ið Þ2

s
: ð23Þ

5. Results and Conclusion

The problem of predicting the loss of RON is transformed
into the problem of product RON, where the loss of RON
equals RON of raw material minus RON of the product.
According to the indicators in Tables 2 and 4, the following
four models were established: the prediction model of prod-
uct RON based on PCA and SVR [18–21], the prediction
model of product RON based on RF and SVR, the prediction
model product RON based on PCA and RF, and the predic-
tion model product RON based on RF [22, 23].

The indicators of each model are shown in Tables 6–9.
We can see that the evaluation indicators of random for-

est are in the forefront according to Tables 6–9. Compared
with MSE, R2 of SVR+PCA and SVR+RF does not perform
well in random forest. Therefore, the various evaluation indi-
cators obtained by random forest to measure the range of

RON reduction is more illustrative in the industry and more
convenient in practice.

The variables selected by PCA and the variables selected
by the random forest are similar in performance on the ran-
dom forest model. The comparison between their respective
predictions and the original values is as Figures 3 and 4.

We can get the conclusion that the PCA variable random
forest model and the random forest variable random forest
model have similar fitting results according to Figures 3
and 4, but the random forest variables are more in line with
industrial needs and close to the variables required in the tra-
ditional octane number prediction formula. The variables
selected by random forest establish a random forest model
to predict the loss of octane number (RON) according to
Figure 4.
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