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Ice-driven mechanical weathering in cold regions is considered a main factor impacting the stability of rock mass. In this
work, the response surface method (RSM) was employed to evaluate and optimize the multiple frost heaving parameters to
seek the maximum frost heaving force (FHF), in combination with experimental modeling based on a specially designed
frost heaving force measurement system. Three kinds of rocks were prepared with parallel flaws in it having different flaw
width, length, and cementation type, and these factors were used to fit an optimal response of the maximum FHF. The
experimental results reveal five distinguished stages from the frost heaving force curve, and they are inoculation stage,
explosive stage, decline to steady stage, recovery stage, and sudden drop stage. The sensitivity analysis reveals the influential
order of the considered factors to peak FHF, which is the rock lithology, flaw width, flaw cement type, and flaw length. For
low-porosity hard rock, increasing flaw width, flaw length, and flaw cement strength can improve the probability of frost
heaving failure. It is suggested that rock lithology determines the water migration ability and influences the water-ice phase
transformation a lot.

1. Introduction

Freeze-thaw (F-T) weathering frequently occurs in cold
regions. Water from the thawing of snow or sleet penetrates
into rock discontinuities (e.g., bedding planes, interbeds,
cracks, foliation, flaw, and fault), and freeze occurs when the
temperature is below zero. Under freezing conditions, 9% vol-
ume expansion occurs when water becomes ice [1–5], generat-
ing frost heave forces at preexisting cracks or discontinuities.
The frost heave force drives the expansion of the geological dis-
continuities, which leads to the increase of the aperture and
length of the fracture and the deterioration of the rock struc-
ture. The ice-driven mechanical weathering is generally con-
sidered a crucial process that impacts the long-term stability
of rock mass. The rupture of rock bridge has been proved that
it is triggered by ice-driven mechanical weathering [6, 7].
Therefore, it is crucial to investigate the evolution of frost

heaving force in order to improve the understanding ability
to ice-driven mechanical weathering in cold regions.

Nowadays, plenty of field, experimental, and theoreti-
cal studies have addressed the mechanics of frost wedging
[8–10]; however, the temporal and spatial factors that con-
trol the frost heaving process remain elusive [1, 10–12].
Over the last few years, the volumetric expansion and ice
segregation have been identified as two completing theory
responsible for frost weathering [13]. The volumetric
expansion theory argues that ice-induced expansion
increases tensional stress at crack tip and leads to the
increment of crack scale. In contrast, the ice segregation
theory argued that water films exist among mineral inter-
faces; van der Waals and electrostatic forces apply disjoin-
ing pressure to separate ice from substrate [14, 15]. The
ice segregation mechanism and associated disjoining forces
are considered being able to fracture the rock. Commonly,
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these two theories coexist and simultaneously lead to the
fracture of rock. For low-porosity hard rock, the frost
heaving force induced by the expansion of freezing water
is believed to be the principal reason responsible for shat-
tering jointed and low-permeability rocks in cold regions,
as has been proved in many experiments [16–18]. The
critical nucleus size for ice formation has been probed by
Bai et al. [19]. They pointed out that frost force during
water freezes is related to the size of nucleus. As the driv-
ing force to fracture solid objects, many experimental and
theoretical investigations have been carried out to study
the evolution of frost heaving force. Some scholars mea-
sured the frost heaving force by ice extrusion in open
flaws, and it is from 0 to 7MPa. This finding has also
been proved from field investigation [17]. Winkler [18]
pointed out that the frost heaving force by pore water
freezing can reach to tens to hundreds MPa. Akagawa
and Fukuda [20] proposed a theoretical equation to calcu-
late the frost heaving force by segregation freezing theory.
Arosio et al. [21] used thin film pressure sensor to test the
frost heaving force of the preflawed rock samples after
water filling, and the maximum frost heaving force was
up to 5MPa. Davidson et al. [22] measured the maximum
frost heaving force of the saturated crack with a width of
1mm in a transparent material by photoelastic test and
found that the frost heaving force was 1.1MPa. Huang
et al. [23] preformed frost heaving measurement experi-
ments in rock-like material by using a thin film pressure
sensor, and the evolution process of frost heaving force
was discussed.

As is known, frost heaving force is affected by many fac-
tors, such as geometry of the flaws [24, 25], rock saturation
degree [26], thermodynamic parameters [27, 28], rock
mechanical parameters [29, 30], and freezing direction [16].
Therefore, the relationship between frost heaving force and
those parameters needs to be deeply studied in order to reveal
the ice-driven mechanical weathering mechanism. After
detailed literature review, it is found that studies about mul-
tiple factors influencing frost heaving force are not well
understood. Especially, there are few reports about experi-
mental investigation on frost heaving force evolution. As a

result, the primary purpose of this study is to reveal the
impact of flaw (cavity) geometric shape and rock physical
properties on frost heaving force evolution. A response sur-
face optimization algorithm is employed to evaluate multiple
factors impacting the frost heaving force.

2. Frost Heaving Force Measurement

2.1. Rock Material Descriptions. The tested rock materials
were obtained from a high-altitude alpine mining of the
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Figure 1: Description of the rock mass structural characteristics in the eastern open pit slope of Beizhan iron mine. Obvious rock bridge
structure can be observed from the outcrop.
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Figure 3: The vacuum saturation apparatus for the preflawed
samples.
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Figure 4: The frost heaving force measurement system developed in this work.
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Figure 5: Evolution of frost heaving force for typical experimental cases. (a) Evolution stages division, taking case 6 for example. (b) Frost
heaving force curves for typical marble samples. (d) Frost heaving force curves for typical granite samples.
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Hejing Beizhan open pit slope in Xinjiang, northwest China
(Figure 1(a)). The mining area is 123 kilometers away from
Jingxiang County in the direction of 327°, and 84 kilometers
away from Barongtai Town in Hejing County, as shown in
Figure 1(a).The mine is located near the Tianshan Ridge on
the north slope of Boluo Huoluo Mountain. The mountain
is close to the east and west, and the overall terrain is high
in the south and low in the north, with an elevation of
3160~4575m and a relative elevation of 700~1000m. The
orebody is located at an altitude of 3450~3723m. The mining
area belongs to the continental temperate semiarid climate
and is in the cold climate area, with mountain snow all year
round and slope area snow from October to the next July
(Figure 1(b)). The average temperature from January to April
and from September to December is below zero, with the
lowest temperature reaching -40°C.

According to the method recommended by the ISRM, all
tested rocks had a core diameter of 50mm, a surface parallel
of ±0.1mm, and a nominal length of 100mm. In order to
mimic the open-typed natural fractures and ensure that the
effects of rock lithology are reduced on the experimental
results, three preflaws were prepared using a water-jet system
(Figure 2) within each cylindrical rock core. The mixture of
high-pressure water with garnet abrasive from a 0.75mm,

1.5mm, and 2mm diameter nozzle produced a defect with
an aperture of 1mm, 2mm, and 3mm, respectively. The geo-
metric morphology of the treble-flaw sample is a combina-
tion of three horizontal flaws with a length of 12mm,
24mm, and 36mm. For rock with the same lithology, the
flaw width is set to be 1mm, 2mm, and 3mm, respectively.
To simulate the fill characteristics of natural fractures in the
open pit slope, three fill types of no cementation, argillaceous
cementation, and iron cementation were considered in this
work.

2.2. Experimental Device and Method. After the preparation
of preflawed samples, the rock samples were treated with vac-
uum saturation treatment for 24 hours with vacuum satura-
tion apparatus (Figure 3) and then treated with freeze-thaw
cycle. A specially self-developed frost heaving measurement
system is used to monitor the evolution of frost heaving force,
as shown in Figure 4. The system is composed of an ultralow
temperature freezer, a film pressure sensor, a frost heaving
force recording software, a date acquisition card, and a
temperature-humility controller. The membrane pressure
sensor is the core component of the system. Its model is the
FSR402 made by Interlink Electronics. The size of the sensor
is 5mm in diameter and 38mm in length. The sensor is a
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Figure 6: The solving steps of response surface method to maximum the frost heaving force.

Table 1: The considered factors influencing frost heaving force and their levels for the RSM model.

Influential factors Coded symbol
Levels

Unit
Minimum (-1) Mean (0) Maximum (+1)

Width (FW) A 1 2 3 mm

Length (FL) B 12 24 36 mm

Cement type (CT) C 0 1 2 /

Rock lithology (RL) D -1 0 1 /
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rugged polymer thick film (PTF) device whose resistance
decreases as the force applied to the sensor surface increases.
The driving force is 0.2N, the force sensitive range is
0.2N~20N, and the working temperature performance is
cold -40°C with high temperature of 85°C. The recording fre-
quency of the data acquisition system is 5Hz, and the range
of the temperature recorder is -200°C~80°C. It is equipped
with a waterproof metal probe with the accuracy of ±0.2°C,
and the data acquisition frequency is 1/60Hz. According to
the temperature change of the open pit slope, the saturated
samples are put into the refrigerator unit and −30° C; then
the samples are collected in the refrigerator and allowed to
thaw. By doing so, a freeze-thaw cycle and frost heave force
are achieved to monitor at the same time.

2.3. Testing Procedure. The detailed testing procedures are
summarized as below:

(1) Firstly, the temperature of the digital control ultralow
temperature refrigerator was set to be -30°C in
advance, the waterproof treatment is carried out on
the film sensor, and then its working state was
checked again. The saturated rock samples with exist-
ing cracks were taken out from the vacuum saturator

(2) The frost heaving force test system was connected,
and the temperature test system at the crack of the
rock sample was installed. A syringe is then used to
inject purified water into the crack and placed in
the fridge while the monitoring system is activated.
The frost heave force of three defects was tested in
the same sample

(3) The evolution process of frost heaving force in F-T
cycle was recorded. We continuously observe the
FHF curve and measurement changes until the frost
heaving force reaches the minimum value. The defec-
tive sample was then taken out of the ambient cham-
ber and placed in air, and the FHF during the melting
process was recorded at room temperature of 20°C
until the frost heaving force reached zero

(4) The above experimental steps were repeated, and all
samples were tested to obtain the frost heaving force
evolution curves and also the peak FHF stress.

2.4. Frost Heaving Force Evolution Analysis. During a freeze-
thaw cycle, typical FHF evolution curve is shown in
Figure 5(a). FHF evolution for typical samples of sandstone,
marble, and granite samples is shown in Figures 5(b)–5(d). It
can be shown that five typical stages can be divided from the
change of FHF; the evolution characteristic is described below:

(1) Inoculation stage of frost heaving force. At this stage,
the temperature gradually drops below zero, but
there is no frost heave force inside the crack.
Although the temperature drops below zero, the
water itself also stores a certain amount of heat, and
at this stage, the defective water continues to give
off heat until the temperature drops to about -5°C.
When freezing occurs, the opening portion of the

crack freezes first and then forms a frozen surface.
The defect is in a closed system due to the ice jam
effect. Although the volume expansion rate of water
to ice is 9%, the frost heave force does not occur at
this stage

(2) Sudden growth stage. With the decrease of tempera-
ture, the freezing degree of the sample increases,
and the water-ice phase transition occurs constantly,
which leads to the expansion of the volume in the
crack. Due to the boundary limit of defect wall, the
frost heave force of defect increases continuously. It
can be seen from Figure 5(a) that the maximum frost
heave force of cracks (granite, FW = 2mm, FL = 24
mm, and no cementation) reaches 5.85MPa

(3) Decline to steady stage. At this stage, the temperature
continues to drop, but the frost heave force does not
continue to increase. On the contrary, the frost heave
force decreases and gradually stabilizes. This is
because when the frost heaving force exceeds the

Table 2: Design of the Box-Behnken design table for frost heaving
force measurement.

Run A-FW (mm) B-FL (mm) C-CT (/) D-RL (/) FHF (MPa)

1 2 24 1 0 11.17

2 1 24 1 1 4.73

3 1 36 1 0 8.62

4 2 36 0 0 12.31

5 3 24 1 1 6.62

6 2 24 0 1 5.85

7 2 24 1 0 11.17

8 2 24 1 0 11.17

9 1 24 0 0 8.11

10 3 36 1 0 14.11

11 3 24 1 -1 5.01

12 2 12 1 1 7.45

13 2 12 0 0 5.08

14 2 24 2 1 13.32

15 2 12 1 -1 1.96

16 2 36 1 -1 2.67

17 2 36 1 1 13.77

18 2 36 2 0 15.62

19 1 24 2 0 10.34

20 3 24 2 0 16.08

21 3 24 0 0 13.72

22 2 24 1 0 11.17

23 1 12 1 0 9.31

24 2 24 0 -1 6.61

25 2 24 2 -1 7.68

26 2 12 2 0 12.37

27 3 12 1 0 12.07

28 2 24 1 0 11.17

29 1 24 1 -1 3.28
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tensile strength of the rock matrix, the crack tip is
damaged, resulting in the dissipation of the frost heav-
ing force. At this stage, new cracks appear at the crack
tip and the rock structure deteriorates accordingly

(4) FHF recovery stage. When the frost heaving force
reaches a steady state, the rock samples are taken
out of the ultralow temperature refrigerator. The ice
in the crack begins to melt, the frost heaving force

increases with the increasing temperature, the second
frost heaving occurs, and the curve of the frost heav-
ing force shows the peak value. After the ice lens is
formed, the frost heave force increases sharply in a
short time. The crack tip damage results in the
decrease of frost heave force. The second frost heave
force is less than the first value, indicating that there
is frost heave damage inside the crack

Table 3: Comparison of statistical models to choose the best RSM model for frost heaving force.

Source Sum of squares df Mean square F value P value Prob > F Fitness of the model

Mean vs. total 2620.291 1 2620.291

Linear vs. mean 172.7944 4 43.1986 4.175242 0.0105

2FI vs. linear 16.39158 6 2.731929 0.212032 0.9682

Quadratic vs. 2FI 169.3645 4 42.34113 9.4758 0.0006 Suggested

Cubic vs. quadratic 47.08083 8 5.885104 2.281641 0.1653 Aliased

Residual 15.47598 6 2.579329

Total 3041.398 29 104.8758

Table 4: Statistical approach to select the RSM model for frost heaving force.

Source Sum of squares df Mean square F value P value Prob > F Significant

Model 358.5505 14 25.61075 5.731599 0.0012 Yes

A-FW 44.9307 1 44.9307 10.05534 0.0068 Yes

B-FL 29.64163 1 29.64163 6.633696 0.0220 Yes

C-CT 38.41341 1 38.41341 8.59679 0.0109 Yes

D-RL 59.80868 1 59.80868 13.38498 0.0026 Yes

AB 1.863225 1 1.863225 0.416983 0.5289

AC 0.004225 1 0.004225 0.000946 0.9759

AD 0.0064 1 0.0064 0.001432 0.9703

BC 3.9601 1 3.9601 0.886257 0.3625

BD 7.868025 1 7.868025 1.760837 0.2058

CD 2.6896 1 2.6896 0.601923 0.4508

A2 3.588091 1 3.588091 0.803003 0.3853

B2 0.690416 1 0.690416 0.154513 0.7002

C2 15.23388 1 15.23388 3.40929 0.0861

D2 130.4771 1 130.4771 29.20034 <0.0001
Residual 62.55681 14 4.468343

Lack of fit 62.55681 10 6.255681

Pure error 0 4 0

Cor total 421.1073 28

Table 5: Evaluation of different models to fit response value using statistical approach.

Source Std. Dev. R squared
Adjusted Predicted

Press Fitness of the model
R squared R squared

Linear 3.216578 0.410333 0.312056 0.092253 382.259

2FI 3.589501 0.449258 0.143291 -0.75435 738.7709

Quadratic 2.113846 0.851447 0.702894 0.144334 360.3272 Suggested

Cubic 1.606029 0.963249 0.828497 -4.2921 2228.54 Aliased
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(5) Sudden drop stage. At this time, all the ice inside the
crack melts and the frost heaving force caused by the
secondary frost heaving dissipates gradually. Thus,
the rock frost heave failure caused by frost heave
force is terminated. The evolution process of frost
heaving force is summarized, and it is found that
the peak value of initial frost heaving force is the
maximum strength that can be sustained when the
crack is damaged. As a result, the initial peak value
of frost heaving force can be used to characterize
the frost heaving resistance of fractured rock mass.

3. Multiple Parameter Evaluation for Frost
Heaving Force

3.1. Box-Behnken Design. To reveal the influence of geological
discontinues on frost heaving force, in this work, four factors
of flawwidth, flaw length, flaw cement type, and rock lithology
are investigated. Response surface method (RSM) is adopted
to design the physical experiments, the studies’ factors con-
sider three levels, and the analysis step of this method is shown
in Figure 6. Table 1 lists the considered factors that influences
the frost heaving force. To the factor of cement type, coded
method is used here, symbol of “0” indicates none filling, “1”
indicates argillaceous cementation, and “2” indicates calcite
cementation. To the factor of rock lithology, symbol of “-1”
indicates sandstone, “0” indicates marble, and “1” indicates
granite. By using the Box-Behnken design approach, a total
of 29 runs are generated, including 5 repetitive cases, as listed
in Table 2. As analyzed above, two peaks of FHF exist on the
frost heaving force evolution curve, and the first peak value
is larger than the second value. The peak FHF is a critical index
to predict the fracturing of rock mass, and it is usually used to
predict natural disasters related to freeze-thaw cycles. Here,
the first peak frost heaving force is viewed as a response value,
it is listed in the last column of Table 2.

3.2. RSM Model Analysis. As the experimental designed in
Table 2, the RSM method is used to analyze the relationship
between the response value and the four considered factors.
In order to choose an appropriate RSM model, linear model,
mean model, two-factor model interaction model (2FI), qua-
dratic model, and cubic model are selected for judgment.
According to the statistical method in Table 3, the best poly-
nomial fitting equation is determined to predict the response
values of FHF. Table 4 lists comparison of those selected
models, and it shows that the P value of the quadratic func-
tion and 2FI function is less than 0.05, and the two models
are suggested.

If the model has the highest polynomial, the other addi-
tional terms are significant, and the model is not aliased [31,
32], we select it as the appropriate model. If there is an alias,
we will not select the cube model. Aliasing phenomenon
reduces the number of experiments. When this occurs, the
effects of several groups are combined into a single group, with
the most significant effects in the group being used to repre-
sent the effects of the group. Essentially, it is important to note
that the selected model should not have an alias characteristic.
In order to further choose the best model, statistical approach

is used, as shown in Table 5. It is also important to note that
the selected model should have the maximum “predicted R
squared” and “adjusted R squared” at the same time [33].
From the results of Table 5, the fully quadratic model is finally
selected to build the maximum frost heaving force response
surface in the subsequent optimization process.

Using the ANOVA analysis, the response value of FHF
obtained by the quadratic model is listed in Table 6. The result
shows that the model F value is 5.73m implying that the
model is very significant. The change of P value is 0.2% less
than that of a “model F value,” this large value could occur
due to noise. The variations of the four considered factors
are all significant as the “Prob > F” is less than 0.05 for the
quadratic model. In this case, the model P value of the studied
factors is <0.0068, 0.022, 0.0109, and 0.0026, indicating that
the considered factors of flaw width, flaw length, cementation,
and rock lithology are all significant model terms. The smaller
the P value pro, the more sensitive the factor is to the response
surface. The influential order of the four factors is D-rock
lithology > A-flaw width > C-Cement type > B-flaw length.
The final equations for the frost heaving force in terms of
actual factors are

FHF = +0:4250 + 3:5125A + 0:20889B + 0:64917C
− 1:4725D + 0:0569AB + 0:0325A × C + 0:04A ×D

− 0:8325B × C + 0:11687B ×D + 0:85C ×D

− 0:7437A2 + 1:532C2 − 4:485D2:

ð1Þ

Table 6: The optimal solutions to obtain the maximum frost
heaving force considering the four factors.

Case
FW
(mm)

FL
(mm)

CT
(/)

RL
(/)

Peak FHF
(MPa)

Desirability

1 2.17 35.93 1.96 0.55 16.0968 1

2 2.91 24.26 2 0.37 16.2271 1

3 2.93 25.66 1.98 0.14 16.1325 1

4 2.56 32.09 1.88 0.57 16.1639 1

5 2.71 33.3 2 0.56 17.0619 1

6 3 24.37 1.98 0.43 16.1486 1

7 2.6 32.47 1.88 0.35 16.307 1

8 2.85 30.01 1.88 0.43 16.3856 1

9 3 34.99 1.78 0.1 16.1632 1

10 2.71 31 1.86 0.31 16.1921 1

11 2.96 34.49 1.74 0.31 16.4357 1

12 2.91 27.49 1.99 0.22 16.5089 1

13 2.99 33.58 1.93 0.04 16.3928 1

14 2.83 24.61 2 0.2 16.0967 1

15 2.79 31.25 1.96 0.04 16.096 1

16 2.5 33.86 1.93 0.68 16.3282 1

17 2.39 34.77 1.93 0.36 16.3462 1

18 2.96 27.92 1.98 0.29 16.6224 1

19 2.5 34.56 1.89 0.51 16.416 1

20 2.65 34.56 1.98 0.39 16.999 1
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In order to reflect the reliability of the response model to
fit the FHF, Figure 7(a) plots the relationship between the stu-
dentized residuals and the normal probability. It can be seen
that all the testing points in the “Normal Plot of Residuals”
are along the straight line. This result indicates that the resid-
uals are normally distributed, and the model is significant
accordingly. To illustrate whether the generated equation of
the gradient response surface accurately predicts the actual
values, Figure 7(b) shows the difference between the predicted
value and the actual measurement value for frost heaving
force. The predicted FHF and actual FHF distribute evenly at
both sides of the “Predicted versus Actual” curve, implying
that generated frost heaving force gradient response surface
models provide such reliable predicted values for frost heaving
force.

After fitting of the FHF using the quadratic function, all
the experimental design results are generated using RSM
analysis. Figure 8 shows the 3D response surface and 2D
response contour for the four considered factors, and the
response surface represents all the 29 run cases in Table 2.
The influential trend of FW, FL, CT, and RL to FHF can be
observed from the response surface. Figure 8(a) plots the
impact of the factor flaw width and flaw length on frost heav-
ing force. It can be seen that frost heaving force increases
with increasing flaw width and flaw length, and the impact
of flaw width is much obvious than flaw length. With the
increases of flaw width and length, the volume of ice
increases, and frost heaving force resulting from the expan-
sion of water-ice transformation increases with increasing
flaw volume. Figure 8(b) plots the impact of the factor flaw
width and cement type on frost heaving force. It shows that
strong cement characteristics of the flaws would result in
the generation of high frost heaving force. Figure 8(c) plots
the impact of the factor flaw width and rock lithology on frost
heaving force. Nonlinear changes can be observed from the
results, for rock lithology changes from sandstone to granite,
frost heaving force first increases, and then decreases. The
impact of rock lithology on frost heaving force is complex,
other factors should be introduced at the same time. This

result reflects that water migration into the rock matrix is
closely related to rock lithology, and the associated meso-
scopic structure of rock influences the damage propagation
caused by the frost heaving force. As shown in Figure 8(d),
the impact of cement type and rock lithology on frost heaving
force is studied. Similar result can be drawn that frost heaving
force becomes larger for flaw with strong cementation. The
effect of rock lithology on frost heaving force evolution pre-
sents complex pattern, and this is attributed to the water
migration ability depending on the mesoscopic structure of
rock matrix.

3.3. Maximum Frost Heaving Force Prediction. The maxi-
mum frost heaving force (FHF) is impacted by flaw geomet-
ric parameter and also the rock physical properties. The
higher the FHF, the higher the rock structural deterioration
degree is. Rock failure owing to frost heaving impacts the sta-
bility of rock constructions; therefore, predicting the maxi-
mum frost heaving force is crucial in cold regions. The
RSM numerical optimization algorithm is used to find the
variable set of the four factors resulting in the maximum
FHF value. Through RSM numerical optimization, a total
of 55 optimal solutions were obtained. The desired value is
between 0.842 and 1.00. We choose the solution with the
maximum expected value for analysis. Figure 9 shows the
relationship between the studied factors and the desirability
values. From the optimization result, it shows that the
buildup of frost heaving force with flaws is impacted by mul-
tiple factors, and those factors interact to determine the
value of frost heaving force. When the desirability value
equals to 1, the crack width and length are not the largest,
it is shown that a smaller width usually matches with a short
length, and a larger width matches with a smaller length.
This is to say, the frost heaving force is simultaneous deter-
mined by the width and length. As shown in Figure 9, it
shows that strong cementation could lead to relatively larger
frost heaving force. The iron cementation characteristic
filled into the flaw results in relatively large frost heaving
force. The optimization result of rock lithology shows that
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Figure 8: Continued.
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the granite samples are prone to generate high frost heaving
force. Among the 55 optimal solutions, Table 6 lists the top
20 combinations to predict frost heaving force when the
desirability is 1.

3.4. Discussions. In cold regions, especially the high-altitude
cold region, the rock mass is always subjected to cyclic
freeze-thaw weathering. Under freeze conditions, the frost
heaving force with rock discontinuity would accelerate the
damage of rock structure and result in the stability of rock
mass. The measurement of frost heaving force is necessary
to evaluate and predict the rock deterioration degree. Several
studies were performed to measure the frost heaving force
within rock cracks, and most of the investigations are
focused on a single factor [18, 21–23]; the multiple factors
impacting the evolution of frost heaving force are not well
understood. For the four factors studied in this work, it
shows that the flaw width is the most sensitive factor to frost
heaving force, and flaw length is the least sensitive factor.
Frost heaving force is actually a kind of tensile stress; frac-
turing occurs if the frost heaving exceeds rock tensile
strength [34]. Vertical to the crack propagation path, the
increasing flaw width is prone to lead to flaw damage and
degradation. When the crack presents as cement state, the
filled material has different responses to water migration
and water-ice transformation, and this would result in the
difference of frost heaving force accumulation and releases.
The testing results show that strong cement material can
lead to relatively high frost heaving force, vice versa. Rock
lithology is a determining factor influencing the evolution
of frost heaving forces. Previous studies show that rock
porosity and strength characteristics influence the frost
heaving process [35]. For soft rock, altered rock, or high-
porosity rocks, during water-ice transformation, water seep-
ages flow into micropores, and freezing leads to the occur-

rence of the expansion of pore water crystal; internal frost
heave pressure occurs in pores, and the porosity gradually
increases after freezing. However, for hard rock with low
porosity and relatively high strength, the existence of micro-
cracks contributes a lot to frost heaving. During water-ice
transformation, moisture penetrates into the defects, ice lens
forms, and frost heaving appears on the defect surface; the
ice lens grows as water continuously penetrates into the
defects. In this work, the sandstone is a typical high-
porosity rock, and the pores have obvious influence on frost
heaving. For marble, the water is hard to penetrate into rock
matrix, ice lens is difficult to form during freezing process,
and rock damage degree is the least. However, for the gran-
ite, it is a kind of medium-low grain rock, microcracks exist
at the mineral interfaces, water is easily penetrated into rock
matrix compared to marble, and a lot of ice lens forms. As
proved by other studies that the mesoscopic structural char-
acteristics of rock control its macroscopic mechanical
responses [33, 36–41], this work further proves this finding.
The basic reason causing the difference of frost heaving force
evolution is the mesoscopic structures. The testing results
also indicate that the frost heaving force is relatively small
for sandstone than marble and granite. In this work, artifi-
cially prepared flaws were used to measure frost heaving
force; in the further studies, frost heaving measurement
should be done within the original cracks; in addition, the
frost heaving force after multiple freeze-thaw cycles should
be studied; moreover, the freeze-thaw loading is a kind of
fatigue loading, and cyclic F-T would have strong effect on
the determination of rock structure and its stability.
Although the cyclic mechanical behaviors of rock subjected
to mechanical loading have been widely [42–45], the investi-
gations about the coupling F-T and mechanical loads on
rock geomechanical behaviors are not well understood and
should be deeply investigated in the further studies.
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4. Conclusions

This paper conducts real-time frost heaving force measure-
ment for different rocks with various flaw geometric shape
and cementation type. A specially designed frost heaving
force measurement system is employed to monitor the evolu-
tion of frost heaving force. Main conclusions can be summa-
rized below:

(1) Multistage frost heaving force evolution is
observed, and the peak frost heaving force occurs
twice during a freeze-thaw cycle. After formation
of ice lens, frost heaving force sharply increases
within a short time. Damage in the flaw tips leads
to the decreasing of frost heaving force. The sec-
ondary frost heaving force is less than the first
value, indicating that frost heaving damage occurs
within the cracks

(2) By the RSM evaluation, the influential order of the
studied factors to frost heaving degradation is firstly
obtained; rock lithology is the most sensitive factor
to the maximum frost heaving force. The influential
order is rock lithology > flaw width > flaw cement
type > flaw length

(3) It is not the case that the larger the ice lens volume,
the larger the frost heaving force. The influence of
flaw width and length to the maximum frost heaving
force is not independent but interactive. Rock lithol-
ogy determines the water migration ability and influ-
ences the water-ice phase transformation

(4) For low-pore hard rock, increasing flaw width, flaw
length, and flaw cement strength can improve the
possibility to frost heaving failure. For rock mass
construction in cold regions, the rock mass subjected
to low-stress disturbance would decrease the crack
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Figure 9: Optimal combinations to maximize the frost heaving force. (a–d) Plots of the optimal factors of flaw width, flaw length, flaw cement
type, and rock lithology, respectively.

11Geofluids



scale, and this could sustain the long-term stability of
rock mass.
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