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Due to the limitation in the prediction of the foundation pit settlement, this paper proposed a new methodology which takes
advantage of the grey Verhulst model and a genetic algorithm. In the previous study, excavation times are often the only factor
to predict the settlement, which is mainly because the correspondence between real-time excavation depth and the excavation
time is hard to determine. To solve this issue, the supporting times are precisely recorded and the excavation depth rate can
be obtained through the excavation time length and excavation depth between two adjacent supports. After the
correspondence between real-time excavation depth and the excavation time is obtained, the internal friction angle, cohesion,
bulk density, Poisson’s ratio, void ratio, water level changes, permeability coefficient, number of supports, and excavation
depth, which can influence the settlement, are taken to be considered in this study. For the application of the methodology,
the settlement monitoring point of D4, which is near the bridge pier of the highway, is studied in this paper. The predicted
values of the BP neural network, GA-BP neural network, BP neural network optimized by the grey Verhulst model, and GA-
BP neural network optimized by the grey Verhulst model are detailed compared with the measured values. And the
evaluation indexes of RMSE, MAE, MSE, MAPE, and R2 are calculated for these models. The results show that the grey
Verhulst model can greatly improve the consistency between predicted values and measured values, while the accuracy and
resolution is still low. The genetic algorithm (GA) can greatly improve the accuracy of the predicted values, while the GA-BP
neural network shows low reflection to the fluctuation of measured values. The GA-BP neural network optimized by the grey
Verhulst model, which has taken the advantages of GA and the grey Verhulst model, has extremely high accuracy and well
consistency with the measured values.

1. Introduction

In recent years, China’s engineering construction has devel-
oped rapidly, especially for deep foundation pit projects,
caused by the need of large-scale public facilities and lots of
exploitation of underground spaces [1–9]. However, the set-
tlement of the foundation pit is affected by many factors,
such as the excavation rate, the real-time excavation depth,
changes in groundwater level, internal friction angle, soil
weight, and number of supports [10–14]. Thus, the predic-
tion of the foundation pit settlements and deformation is dif-
ficult and inaccurate [15]. Contributing to this situation are
engineering accidents constantly occurring in many fields,
such as building collapse, road or bridge cracks, excessive set-
tlement of deep foundation pits, and pipeline bursts, accom-

panied by huge casualties and economic losses [16–22]. So, it
is of great significance to accurately predict settlement values
of foundation pits [23]. Compared to the settlement of the
top of foundation pit, the settlement around the foundation
pit is more complex and difficult to accurately predict, while
traditional finite element methods, such as Midas, Plaxis, and
Flac, have difficulty in achieving good results for the
complexity of foundation pits [24–26]. With the rapid devel-
opment of urbanization, more and more foundation pits are
in the interior of the city, which means that the influence of
the foundation pit settlement is increased, such as road
cracking, uneven settlement of pile foundation of highway,
and collapse of buildings.

Nowadays, lots of methods to forecast the foundation pit
settlement have been established. In 2011, a new neural
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network model was proposed by Ismail and Jeng, whose the
features of SPT data along the excavation depth direction of
the pile are set as the input samples to calculate the load-
settlement curve for predicting the subsequent settlement
[27]. Ghorbani and Niavol developed a new model to predict
the settlement of the foundation pit under the circumstance
of dynamic-static [28]. Lv et al. proposed a newmodel, which
is based on grey theory and BP neural network to calculate
the settlement around a foundation pit [29]. The results
showed that two models have good application in engineer-
ing project, while the error of the models is still high and time
factor is still the only input factor to be considered. Eid and
Shehada proposed a method to the initial elastic settlement
for the rock foundations [30]. Xu et al. presented the hybrid
GA/SIMPLS to study the deformation law of the foundation
pit [31]. Guo et al. conducted a new multivariable grey self-
memory coupled prediction model, with high resolution pre-
diction results of deep foundation pit [32]. Shahin established
a model, which is based on the recurrent neural networks, to
simulate the settlement response for bored piles under axial
loading [33]. Doherty et al. studied an international project,
which evaluated the responsiveness of geotechnical engineer-
ing, to analyze prediction of foundation settlement under the
load of the undrained system [34]. Nejad and Jaksa estab-
lished the ANN and CPT data to simulate the load settle-
ment, while whole load-settlement relationship is obtained
[35]. Cao et al. proposed a new neural network, which is an
ensemble-based parameter sensitivity analysis paradigm, to
study the impact of different parameters on the settlement.
The result shows that the settlement is affected by many fac-
tors [36]. Su et al. put forward a settlement monitoring
method on the basis of the Kalman filter, and the settlement
is studied by forward modeling. The results show that it can
predict the deformation of the following stage by analyzing
the data of the prior stage [37]. Dai et al. filtered the observed
that the noise and unmonitored data of the space and time
domain are interpolated. The deformation of the dam was
predicted through a Kalman filter recursive algorithm. The
results demonstrate that the spatiotemporal noise of defor-
mation can be effectively filtered out, and the deformation
of the dam can be predicted well [38]. The wavelet packet
transform and least-square support vector machines are
combined, which are proposed by Zhang et al., to increase
the accuracy and application in estimation of the ground sub-
sidence under tunnel project [39]. Zhang et al. developed an
optimized grey discrete Verhulst model-BP neural network
to forecast the settlement of foundation pits [40].

Previous studies demonstrated that the relationship
between the settlement and excavation time is characterized
as an “S” curve, when the conditions are satisfied with linear
loading [41, 42]. Meanwhile, the grey Verhulst model is com-
monly adopted to predict the settlement caused by the “S”
characteristics [43–45]. In fact, the grey Verhulst model is
more suitable for the prediction of the settlement of founda-
tion pits where the amount of monitoring data is lacking and
there are small settlement fluctuations in the short term [32,
40, 46]. It is mainly because the grey Verhulst model lacked
the ability of self-learning and correcting the error [47, 48].
Nowadays, ANN has been used in various fields of engineer-

ing and plays an important role in predicting and distin-
guishing, while the BP neural network is one of the most
widely used ANN in engineering fields for its strong ability
of self-learning, information processing, nonlinear mapping,
error feedback adjustment, and fault tolerance [49, 50].
Though the BP neural network has such advantages in pre-
dicting foundation pit settlements, it still has limitation in
optimizing weights and thresholds, for easily falling into the
local optimum [51, 52], while the genetic algorithm, which
can be obtained by the near-optimal solutions in every search
space, can well solve these problems [53, 54]. Therefore, a
genetic algorithm (GA) is adopted to optimize the weights
and thresholds of the BP neural network. On the contrary,
the training process needs high-quantity and representative
data [55]. In fact, it is hard to obtain accuracy and enough
data in an actual engineering project, caused by the compli-
cated influencing factors. Thus, the error will extremely lack
an adequate training process. As for the grey Verhulst model,
it can conduct a forecast for the data sequence in nonlinear
and uncertain systems with insufficient data [32, 47, 56].
Therefore, the GA-BP neural network optimized by the grey
Verhulst model is used to predict the settlement around
foundation pits.

Meanwhile, in the preview study, the amount of training
data is extremely insufficient, in which the amount of train-
ing data is often less than 20 sets, and the amount of predic-
tion data is usually less than 10 sets [12, 40, 43, 57, 58]. It is
mainly because the units of training data and prediction data
are often set as month and week [40]. Not only that, time is
often set as the only input parameter [12, 57, 58]. However,
the settlement of the foundation pit is influenced by many
factors, such as the internal friction angle, cohesion, bulk
density, Poisson’s ratio, void ratio, changes of real-time
water level, permeability coefficient, the number of supports,
and real-time excavation depth. Cause of the settlement of
foundation pits is influenced by such many parameters; thus,
it is inaccurate and meaningless to only study the influence
of excavation time on the settlement of foundation pits. In
addition, compared to the monthly or weekly accumulated
settlement, the prediction of settlement that can be accurate
to a certain day or a certain excavation depth has higher
engineering significance. In this paper, the internal friction
angle, cohesion, bulk density, Poisson’s ratio of different
soils, void ratio, changes of water level, permeability coeffi-
cient, number of supports, and real-time excavation depth
are set as the input factors to predict the settlement around
the foundation pits, which is nearby a pile foundation of a
highway and larger settlement than other settlement moni-
toring points.

2. Methodology

The grey Verhulst model was proposed by Verhulst and Mal-
thus to predict the procedure of featured saturation [59]. It is
assumed that the xð0ÞðiÞ is the settlement value for the i-th
monitoring, while the xð1ÞðiÞ is the accumulated generating
operation of xð0ÞðiÞ. The xð0ÞðiÞ and xð1ÞðiÞ are shown as
follows:
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X 0ð Þ = x 0ð Þ 1ð Þ, x 0ð Þ 2ð Þ,⋯,x 0ð Þ nð Þ
n o

, ð1Þ

X 1ð Þ = x 1ð Þ 1ð Þ, x 1ð Þ 2ð Þ,⋯,x 1ð Þ nð Þ
n o

, ð2Þ

where xð1ÞðkÞ =∑k
i=1x

ð0ÞðkÞ, k = 1, 2, 3,⋯, n, while the
Zð1Þ = fzð1Þð1Þ, zð1Þð2Þ,⋯,zð1ÞðnÞg is the mean sequence of
xð1ÞðkÞ, where zð1ÞðkÞ = 1/2ðxð1ÞðkÞ + xð1Þðk − 1Þ, k = 2, 3,⋯,
n. The grey Verhulst model is shown as [60]

x 0ð Þ kð Þ + az 1ð Þ kð Þ = b z 1ð Þ kð Þ
� �2

, ð3Þ

where the xð0ÞðkÞ is named as the grey derivative; a and b
are the development coefficient and grey factor, respectively;
and the zð1ÞðkÞ is called the background value [61]. In partic-
ular, the parameters a and b are determined by the least-
square method [62]. The parameter vectors of a and b are
shown as

â = a, b½ � = BTB
� �−1

BTY , ð4Þ

where

B =

−z 1ð Þ 2ð Þ z 1ð Þ 2ð Þ
� �2

⋮ ⋮

−z 1ð Þ nð Þ z 1ð Þ nð Þ
� �2

2
66664

3
77775
,

Y =
x 0ð Þ 2ð Þ
⋮

x 0ð Þ nð Þ

2
664

3
775:

ð5Þ

The whitenization differential Equation (6) of the grey
Verhulst model, which is the first-order differential equation,
can be obtained from the xð1ÞðkÞ

dx 1ð Þ

dt
+ ax 1ð Þ = b x 1ð Þ

� �2
: ð6Þ

The resolution of the above Equation (6) is shown as

x∧ 1ð Þ k + 1ð Þ = 1
b/a + 1/x 1ð Þ 1ð Þ − b/a

� �
eak

, ð7Þ

where k = 1, 2, 3,⋯, n − 1.
As mentioned before, the grey Verhulst model lacks the

ability to self-learn and correct the error. Due to the high
ability of the BP neural network in information process
self-learning, nonlinear mapping, and so on, BP neural
networks are adopted in this paper.

While the BP neural network still has limitations in opti-
mizing thresholds and weights, the GA is taken in this paper.
The GA is adopted to acquire the near-optimal solutions.

Generally, the GA starts with an initial population using
binary bits, such as 1 and 0, string generated through random
ways. All the potential solutions, the integers, and the real
numbers are encoded. The fitness is regarded as the key
factor to evaluate the quality of each string in the prob-
lem’s domain. Then, a better population will be created
through genetic operators. And the BP neural network is
optimized by the GA. The flow chart of the GA-BP neural
network optimized by the grey Verhulst model is shown in
Figure 1.

It can be seen in Figure 1 that the weight and thresholds
of the BP neural network are encoded, when the topological
structure is determined. The training process is determined
by the thresholds and weights. In the genetic algorithm part
(within the red rectangle), the crossover, fitness value, selec-
tion, and mutation are calculated. It decides if the new group
is satisfactory; if not, the weights and thresholds are chan-
ged till the requirement is satisfied. As for the genetic algo-
rithm (GA), the near-optimal solutions are obtained.
Commonly, the GA commonly starts with the initial popu-
lation using binary bits, such as 1 and 0, strings generated
through random ways. All the integers, potential solutions,
and real numbers are encoded by binary strings. And these
are taken from search space, including with all the potential
solutions. Then, strings are decoded into the search space,
while the performance of these strings is evaluated by com-
puting the fitness value for the objective function. In partic-
ular, the fitness is the key factor of the quality of each
string in the problem’s domain. After the strings are evalu-
ated, a better population will be created through the genetic
operators. In the end, the optimized weights and thresholds
are obtained. While in the grey Verhulst model part, the
grey Verhulst model is determined after the original
measured value is inputted. Then, the predicted values are
determined through performed simulation. Moving for-
ward, the grey prediction values are selected. As per the
analysis of the flow chart, the training processes are
conducted and the settlements are predicted based on the
input parameters.

Most of the previous studies focused on the influence of
time factor on the settlement prediction. Not only that, the
time factor is often simplified to the unit of week and month.
Meanwhile, the prediction of settlement is often the unit of
the week or month, which is lacking in engineering guiding
significance. Since the settlement is the result of multiple fac-
tors, it is inaccurate and meaningless to consider excavation
time only.

In this paper, many factors that affect settlement are
taken into account to predict the settlement. In the excava-
tion of foundation pits, the soil mechanical parameters have
great influence on the settlement, having small settlement
values under good geological conditions, while having huge
settlement values under bad geological conditions [36]. Pre-
vious studies rarely consider this factor, mainly because it is
difficult to determine the type of soil at a certain day of exca-
vation. Meanwhile, it is impractical to record the depth of
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excavation for each day, due to the complexity of excavation.
To solve this issue, this paper proposed a method as follows.
Firstly, supporting time and the position of different supports
are precisely recorded. Then, the real-time excavation depth
in the support position can be obtained, because these sup-
ports are set immediately when the foundation pit is exca-
vated to the support position. After that, the excavation
depth of the foundation pit is equally divided by the length
of the excavation time between two adjacent support posi-
tions. Finally, the relationship between time and excavation
depth can be established, which means the real-time excava-
tion soil style can be confirmed, according to the drilling
data. As for the internal support, the number of internal
supports is increasing when the excavation depth is increas-
ing, which can effectively decrease the deformation and
settlement, while the number of the supports is adopted as
the input parameters.

3. Application of Different Models in
Settlement Prediction

The deep foundation pit project is located in Foshan City,
Guangdong Province. This project consists of the receiving
well, the jacking well, and the pipe jacking tunnel. Compared
with the receiving well, the jacking well is taken as the
research object due to its more complicated geological condi-
tions, deeper excavation depth, and proximity to a bridge
pier, to which the settlement around the foundation pit can

induce adverse effects. In the process of foundation pit exca-
vation, the settlement must be monitored during the whole
excavation procedure. Different forms of monitoring points
are set in Figure 2.

Determining the topologicaal
structure of BPNN

Encode the weights and
thresholds of BPNN

The weights and thresholds
are assigned in a new BPNN

Training data are used
to train the network

Testing data are used to
verify the network

Test error

BPNN

Genetic algorithm

Calculate fitness value

High fitness chromosome
replication is selected

Crossover

New group

If the termination
criterion

is satisfied

Yes

No

The optimal prediction model

Mutation

Grey verhulst model

Input original measured value

Determining the grey verhulst model

Performed simulation to obtain
predicted values

Selected grey prediction values

Figure 1: Flow chart of GA-BP neural network optimized by the grey Verhulst model.

Earth pressure hole
Water level monitoring point
Horizontal displacement monitoring point
Settlement monitoring point

20 m0

Q4S Q3 Q2 Q1
Bridge pier

D4 D3
D2

Sw2

Sw1

Sw4

D6
D7

D8

Sw3

D5 Jacking well
D1

Figure 2: Different forms of monitoring points.
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The settlement monitoring points around foundation
pits are set as in Figure 2, which consist of D1-D8. Compared
with other settlement monitoring points, the settlement of
the D4 point (approximately 20m southeast of the founda-
tion pit) is the largest. Not only that, the D4 point is also close
to the bridge pier of the highway. It means that the settlement
of D4 may have a bad impact to the bridge pier, which is part
of the highway. Therefore, the settlement of D4 is studied in
this paper. Meanwhile, the project is located in Foshan city,
Guangdong Province, where rainfall is heavy and concen-
trated. Thus, the water level around this foundation pit
should also be considered. The SW1, SW2, SW3, and SW4
are water level monitoring points. In this paper, the water
level changes are set as the input factor for training and
prediction.

The characteristics and distribution of the rock-soil mass
are obtained by geological data and drilling result. In partic-
ular, specimens of rock-soil mass are precisely obtained along
different depths of drilling holes to obtain the rock-soil mass
properties. Thus, the properties of the rock-soil mass are
shown in Table 1.

The relationship between the real-time excavation time
and the excavation soil type is demonstrated in detail above
in this paper. Meanwhile, the water level changes are pre-
cisely match with the excavation time, while different perme-
ability coefficients of the rock-soil mass are also considered in
this paper to improve the accuracy of settlement prediction.
The foundation pit project started on February 2, 2019, and
the excavation to the bottom was on August 8, 2019 (188
days in total). The part monitoring data about the foundation
pit settlement and related soil physical parameters are shown
in Table 2 (for the detailed data, please refer to the supple-
mental files of Table 2).

As shown in Table 2, a day is 1 monitoring period, and
settlement data sets of 188 days are selected, which is the
whole process of foundation pit excavation. When the foun-
dation pit was excavated to the depth of -10 meters (150th

point) above sea level, the settlement of D4 was -31.52mm.
Up to 150 days, there was still 13m deep of soil that needed
to be excavated. In order to prevent the settlement of D4
from being too large, it is extremely important to predict
the settlement of D4 continuing the existing construction
conditions. Thus, the first 150 data sets are used to establish
the model, and the last 38 data sets are taken to verify the
accuracy of the trained model. In order to verify the accuracy
and application of the GA-BP neural network optimized grey

Verhulst model, four other models are compared, which
consists of the grey Verhulst model, BP neural network, BP
neural network optimized by grey Verhulst model, and BP
neural network optimized by genetic algorithm (GA-BP
neural network).

The grey Verhulst model is obtained through the first 150
actual settlement measured values (shown as the following
equation):

x k + 1ð Þ = −17:3341
1 − 0:4667 × e0:0059

: ð8Þ

Then, predicted results of the grey Verhulst model are
inputted to the BP neural network, while the original data
are set as the target value of the input vector to the BP neural

Table 1: The properties of rock-soil mass.

Category
Internal friction

angle (°)
Cohesion (kPa)

Bulk density
(kN·m-3)

Poisson’s ratio Void ratio
Permeability coefficient

(m·d-1)
Plain fill 12 6 19 0.29 0.92 0.864

Muddy soil 6.2 9.66 17.2 0.3 1.2 5.27E-05

Silt 24 2 18 0.33 0.78 1.04

Medium sand 30 3 19.5 0.34 0.67 19.3

Calcareous siltstone 45 65 24.5 0.25 0.8 8.64E-6

The structure of the foundation pit and the distribution along the depth direction of soils are precisely matched as shown in Figure 3.

Guiding wall Crown beam

The first concrete support

The second concrete support

The third concrete support

The fourth concrete support

The fifth concrete support

The sixth concrete support

5.5

2.5

−2.5

−7.5

−12.5

−17.0

−23.0

800 mm underground continuous wall 

Calcareous
siltstone

Medium sand

Silt

Silty soil

Silty soil

Plain fill

Silt

Figure 3: The structure of foundation pits and distribution along
the depth direction of soils.
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network. Then, the weights and thresholds are optimized by
the genetic algorithm. The training max epochs are 50000;
the learning rate is 3e-3. The target error of the training is
set as 1E-10, while the highest failure time is selected as 6.
The gradient descent method is used in this study. In
MATLAB, the input layer uses the function “tansig,” the hid-
den layer uses the function “logsig,” and the “purelin” are
selected in the output layer, while the best hidden neurons
are 6, which is obtained after the training and testing pro-
cesses. As for the best neurons of the GA-BP neural network
and BP neural network, the best hidden neurons are both 6.
The other parameters are same as the GA-BP neural network
for the purpose of comparison. The comparison between
measured values and different models, which consist of the
BP neural network, the GA-BP neural network, the BP neural
network optimized by grey Verhulst model, and the GA-BP
neural network optimized by grey Verhulst model, is shown
in Figure 4.

As shown in Figure 4, the predicted values of the BP
neural network are compared with the measured values.
It shows that the accuracy of the predicted values and the
consistently measured values is relatively low. In particular,
since day 167, the error between measured values and the
predicted value has largely increased. The fluctuation of
settlement values with time cannot be reflected well by
the BP neural network, while the consistency between mea-
sured values and predicted values can be basically accepted
before day 167, and the consistency is low after day 167. At
day 188, the error between measured values and the pre-
dicted value is 3.502, while the relative error at day 188
is 8.42%. The changes of error show an increasing trend
with the increase of time. And it is basically fitted with
the feature of the prediction result, in which the prediction
resolution decreased with the increase of the predicted data
sets.

Due to the “S” characteristics of foundation pit settle-
ments, the grey Verhulst model is often adopted to predict
settlement due to its own characteristics. Then, the BP neural
network is optimized by the grey Verhulst model to forecast
the settlement. The comparison between predicted values
and measured values of the BP neural network optimized
by the grey Verhulst model is shown in Figure 5.

As shown in Figure 5, it can be easily found that the
consistency is relatively high. It is mainly because the pre-
diction process is optimized by the grey Verhulst model,
which is very suitable for the prediction of the settlement.
The blue oval (Figure 5) marks the peaks of the predicted
polyline and the measured polyline with high consistency
and resolution, while the green rectangle (Figure 5) marks
the part polylines that also show a high consistency.
Although the consistency between predicted values and
measured values is high, it is worth noting that the error
between measured values and predicted values, which is
before day 170, is too large. It is mainly because the BP
neural network easily falls into a local optimum, which is
limited in optimizing weights and thresholds. As for the
predicted values after day 170, the resolution of predicted
results highly contributes to the correction of the grey Ver-
hulst model. Due to the lack of predicted value accuracy

before day 170, the BP neural network is optimized by
the GA, which has the ability to optimize the weights and
thresholds. The comparison between measured values and
the predicted value of the GA-BP neural network are
shown in Figure 6.

As shown in Figure 6, it can be obtained that the pre-
dicted values of the GA-BP neural network have high accu-
racy, in which the polyline of predicted values is almost in
the internal position of the polyline of the measured values.
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Figure 4: Comparison between measured values and predicted
values of BP neural network.
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Comparing the Figures 4 and 6, it can be easily found that
the prediction accuracy of the GA-BP neural network has
largely improved compared to the prediction of the BP
neural network, while compared to the BP neural network
optimized by the grey Verhulst model, it is worth noting
that the GA-BP neural network has low reflection to the
fluctuation of the measured values. This conclusion also
proved that the grey Verhulst model has good application
to predict the settlement around the foundation pits on
the other side. Through the above analysis, the GA-BP

neural network optimized by the grey Verhulst model is
used to predict the settlement of foundation pits, which
has taken the advantage of the genetic algorithm and the
grey Verhulst model. The comparison between measured
values and predicted values of the GA-BP neural network
optimized by the grey Verhulst model are shown in
Figure 7.

As shown in Figure 7, the predicted values of the GA-BP
neural network optimized by the grey Verhulst model have
shown extremely high resolution and accuracy with the mea-
sured values. The polyline of predicted values almost coin-
cides with the polyline of the measured values, which
means extremely high consistency between predicted values
and measured values. Comparing Figures 5 and 7, it can be
seen that the accuracy of predicted values of the BP neural
network optimized by the grey Verhulst model is greatly
improved by the genetic algorithm, which means the genetic
algorithm has good application in optimizing the BP neural
network, which has been already optimized by the grey
Verhulst model. Similarly, the reflection to the fluctuation
of the GA-BP neural network is greatly improved through
the optimization by the grey Verhulst model. In general,
the GA-BP neural network optimized by the grey Verhulst
model has high application and accuracy in the prediction
of the settlement.

Usually, mean absolute error (MAE), coefficient of corre-
lation (R2), mean absolute percentage error (MAPE), mean
square error (MSE), and root mean square error (RMSE)
are used to evaluate the prediction resolution. The model is
considered as excellent, when the errors in terms of MAPE,
MAE, RMSE, and MSE are close to 0 and the R2 is close to
1. In this paper, these evaluated parameters are used to fur-
ther compare the predicted values of the BP neural network,
BP neural network optimized by grey Verhulst model, GA-
BP neural network, and GA-BP neural network optimized
by grey Verhulst model with measured values. The compari-
son of these models is shown in Table 3.

As listed in Table 3, it can be obtained that the R2 of the
GA-BP neural network optimized by the grey Verhulst
model is the closest to 1, while the RMSE, MSE, MAE, and
MAPE are all the lowest compared with three other models.
It means that the GA-BP neural network is superior to the
three models in the prediction of settlement. In particular,
though the consistency has greatly increased from the BP
neural network to the BP neural network optimized by the
grey Verhulst model, these evaluated parameters of the BP
neural network optimized by the grey Verhulst are not
greatly improved compared with the BP neural network,
such as the RMSE has improved from 1.801 to 1.523, while
compared to the GA-BP neural network and the BP neural
network, the MSE has decreased from 3.245 to 0.942. In par-
ticular, the MAPE has decreased from 6.67% to 2.02%. But
the analysis above demonstrates that the GA-BP neural net-
work has low reflection to the fluctuation. So, the GA-BP
neural network optimized by the grey Verhulst model, which
has taken the two advantages of GA and the grey Verhulst
model, should have higher resolution than the three other
models in theory. The predicted result has well proven this
assumption.
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Figure 6: The comparison between measured values and predicted
value of GA-BP neural network.
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4. Summary and Conclusions

Because of the influence of many factors, settlement around
the foundation pit is hard to predict. In this paper, the settle-
ment of D4 is studied due to a large settlement value and
being close to the bridge pier of a highway. The internal fric-
tion angle, cohesion, bulk density, Poisson’s ratio, void ratio,
water level changes, permeability coefficient, number of sup-
ports, and excavation depth, which influence the settlement
around foundation pits, are adopted as the input parameters
of the prediction model. Since the supporting time is pre-
cisely recorded, the correspondence between the real-time
excavation depth and the excavation time can be obtained.
Then, the first 150 data sets are used to establish the model,
and the last 38 data sets are taken to verify the accuracy of
the established model. To obtain a suitable model, the BP
neural network, GA-BP neural network, BP neural network
optimized by grey Verhulst model, and GA-BP neural net-
work optimized by grey Verhulst model are used to predict
the settlement of foundation pits, and the comparisons are
detailed analysed. The following conclusions can be
advanced from this paper:

(1) Due to insufficient consideration of influencing fac-
tors in previous studies, the internal friction angle,
cohesion, bulk density, Poisson’s ratio, void ratio,
water level changes, permeability coefficient, number
of supports, and excavation depth are taken into con-
sideration in this study. Through the analysis of the
prediction results, the selection of these input param-
eters has high guiding significance for the prediction
settlement around foundation pits

(2) This paper proposed a new model, which is com-
bined with the BP neural, genetic algorithm, and grey
Verhulst models, to predict the settlement of a certain
day or excavation to a certain depth in a long period
of time in the future, which has guiding significance
for engineering construction

(3) The predicted values of the BP neural network, BP
neural network optimized by the grey Verhulst
model, GA-BP neural network, and GA-BP neural
network optimized by the grey Verhulst model are
compared with measured values. The results show
that the grey Verhulst model can greatly improve
the consistency between predicted values and mea-
sured values, while the accuracy of the early stage is
low. It is mainly because the BP neural network easily
falls into a local optimum. The genetic algorithm

(GA), which can largely improve the accuracy of pre-
dicted values, has low reflection to the fluctuation of
measured values. The GA-BP neural network opti-
mized by the grey Verhulst model, which takes the
advantages of the genetic algorithm (GA) and grey
Verhulst model, has extremely high consistency and
accuracy with measured values. The results of RMSE,
MAE, R2, and MSE further prove the conclusion
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