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The study on the subsidence of backfill mining block has been a concern of many scholars. A mechanical model of plate subsidence
is established by studying the roof of a filling mining area in Luo Iron Mine in this paper. The boundary conditions are given, and
the Navier method is used to solve the problem. Based on the thin plate model, the subsidence distribution map of the roof of the
underground plate area is obtained. Based on the basic calculation parameters, the influence of a different foundation coefficient,
mining depth, length-width ratio of plate area, elastic modulus of roof rock, and thickness of roof on the subsidence of roof is
studied. According to the deflection calculation formula obtained, the expression of the internal force and stress is deduced, and
the distribution of stress and shear stress on the upper and lower surfaces of the roof is analyzed. The dangerous area of the roof
can be obtained, which provides a theoretical basis for the daily maintenance of mine safety.

1. Introduction

Mineral resources are the important material basis of social
development and construction. With the development and
depletion of shallow mineral resources, more and more min-
erals are converted to underground mining. Filling mining
technology can not only maintain stope stability but also
effectively control surface subsidence and protect ecological
environment, which has significant safety and environmental
benefits [1]. In this paper, the roof of the filling mining panel
in the Luoshan iron mine is taken as the research object.
According to the theory of elastic-plastic mechanics and the
characteristics of underground panel, the mechanical model
of roof settlement is established to analyze the settlement
law of the underground panel roof, which is expected to pro-
vide a theoretical basis for the daily maintenance of mine
safety.

The Luohe iron mine is mined in two phases, one in
the East and the other in the West. The design scale of
phase I is 3 million t/a, which is divided into two stages

of -560m and -620m. The stage height of -560m is
120m, the stage height of -620m is 60m, and the first
stage is -560m. The original mining method was sublevel
caving without sill pillar. Due to the difficulty of land
acquisition and relocation, the mining method is the filling
method [2]. According to the characteristics of the under-
ground mining panel, combined with the original solid
mechanics theory and various research methods, the paper
studies the deformation of overlying strata and surface set-
tlement law in the process of mine filling, which can pro-
vide reference for optimizing mining and filling sequence
and stope structure parameters, and realize low-cost, effi-
cient, and safe mining [3].

2. Physical Model Description

The buried depth of the Luohe iron ore body is -382m~ -
864m. Mining is divided into two stages, first up and then
down. Each panel is 126m long along the strike of the ore
body, which is divided into 7 rooms, each room is 18m,
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and the mining method of “mining every other one” is
adopted. There are 18m pillars between each panel to sup-
port the roof and overburden. The width of each panel is
100m, and the height is 120m. The roof rock mass is lay-
ered. According to the theory of thin plate, when the ratio
of the thickness h to the characteristic dimension L is
about 1/80~1/5, it can be called a thin plate. According
to the lithology and strata thickness of 13# geological sec-
tion in the Luohe iron mine, a single panel and its roof
can be regarded as a thin plate model.

The filling body can be regarded as an elastic foundation,
and the supporting force is transferred to the basic roof
through the direct roof [4]. Therefore, the basic roof can be
regarded as a plate with the upper part bearing the load of
the overlying strata and the lower part supported by the fill-
ing body and the surrounding pillars [5]. The schematic dia-
gram of establishing the settlement mechanics model is
shown in Figure 1.

3. Mathematical Models

3.1. Basic Equations of Solid Mechanics Model

3.1.1. Equilibrium Differential Equation.When the interior of
the object is in a state of equilibrium, it needs to meet the
equilibrium conditions [6], and the equilibrium equation is
shown in
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or abbreviated as

σij,j + Xi = 0 or ρ
∂2u
∂t2

 !
, ð2Þ

where σij is the second-order stress tensor inside the
body; X, Y , andZ are the components of the physical
force in three coordinates; u, v, andw are the components
of the displacement vector at any point in the body in
three coordinate directions; and ρ is the density of the
body.

3.1.2. Geometric Equation. Because it does not involve the
cause of deformation and the material properties of the
object, they are generally applicable equations [7]. The geo-

metric equation is as follows:

εij =
1
2 ui,j + uj,i
� �

, ð3Þ

where εij is the strain tensor inside the body.

3.1.3. Strain Compatibility Equation (Saint Venant
Equation). In order to make the geometric equations not
contradictory, the six strain components must satisfy certain
conditions. Therefore, the strain compatibility equation is
obtained:

εij,kl + εkl,ij = εik,jl + εjl,ik: ð4Þ

3.1.4. Constitutive Equation

(1) Elastic Stage. There are two forms that can transform each
other in this stage [8]:

(a) Expression of the strain component by the stress
component:

εij =
1 + υ

E
σij −

υ

E
σkkδij ð5Þ

(b) Expression of the stress component by the strain
component

σij = λεkkδij + 2μεij = λΘδij + 2μεij ð6Þ

(2) Plastic Stage. The constitutive equation for elastoplastic
materials is as follows:

dεij =
1
2GdSij + dλSij +

1 − 2υ
3E dσkkδij ð7Þ

where E is the modulus of elasticity, Pa; G is the shear
modulus, Pa; υ is Poisson’s ratio; δij is the unit tensor; μ, λ
is the lame constant; Θ is the volumetric strain, where Θ =
εx + εy + εZ; SIJ is the partial stress tensor; K is the bulk mod-
ulus; dλ is the proportional factor greater than zero related to
the loading history; eij is the total strain in the plastic stage;
and Θ is the total strain in the plastic stage; σm is called the
average stress, σm = ðσx + σy + σzÞ/3

For the plastic region, it also needs to satisfy three
equilibrium differential equations and six geometric and
constitutive equations. The problem can still be solved by
adding an increment dλ and a uniform condition f ðσijÞ
= 0. In the plastic region, the constitutive equation is
nonlinear.

3.2. Elastic Thin Plate Theory. Thin plate refers to the plate
whose thickness h is approximately 1/80~1/5 of the char-
acteristic dimension l. For thin plate bending problems,
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the following assumptions should be introduced on the
basis of continuous [9], uniform, and isotropic
assumptions:

(1) Any straight line segment perpendicular to the mid-
dle plane before deformation remains a straight line
after deformation and is perpendicular to the middle
plane after bending deformation, and the length
remains unchanged. That is, γzx = γxz = 0, εz = 0

(2) The normal stress perpendicular to the middle
plane of the thin plate is relatively small and
neglected, σz = 0

(3) There is no in-plane expansion and shear deforma-
tion in the thin plate, i.e., uðx, y, 0Þ = vðx, y, 0Þ = 0.

3.2.1. Constitutive Relation

(1) Stress-Deformation Relationship. According to the
hypothesis, the relationship between the strain component
and the midplane deflection w can be obtained as shown
in equation (8), and the generalized Hooke’s law [9] can
be written as the relationship between the principal stress
component and the midplane deflection w as shown in
equation (9):
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(2) Internal Force-Deformation Relationship. The relation-
ship between the internal force and deformation can be

expressed as
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where D is the bending rigidity of thin plate, expressed
as D = Eh3/12ð1 − υÞ; Mx and My are bending moment per
unit length of the thin plate cross-section; Mxy are Myx the
torque per unit length of the thin plate cross-section,
respectively; and Qx and Qy are the transverse shear force
per unit length of the cross-section.

(3) Bending Differential Equation of Thin Plate. After the
underground stope is filled, the roof is located on the con-
tinuous elastic foundation and is ballasted by the load qð
x, yÞ perpendicular to the slab [10]. When the deflection
value is small, according to the Winkler foundation
assumption, the reaction force of the filling body at any

Table 1: Calculation parameter value.

Number Parameter name (unit) Parameter value

1 Average density of rock (kg/m3) 2800

2 Elastic modulus (GPa) 30

3 Foundation coefficient (MPa/m) 40

4 Panel length (m) 126

5 Panel width (m) 60

6 Roof thickness (m) 10

7 Buried depth (m) 450

8 Poisson’s ratio 0.25

x

y

z

a

b

k·w(x,y)

k·w(x,y)

q(x,y)

(a) Model stereogram

k·w(x,y)

q(x,y)

(b) Model section

Figure 1: Mechanical model of roof settlement.
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point under the roof can be expressed as proportional to
the deflection of the point, so the load strength of each
point of the plate is

Q x, yð Þ = q x, yð Þ − k ⋅w x, yð Þ, ð11Þ

where k is the coefficient of elastic foundation.

Therefore, the differential equation of the roof bending
surface can be expressed as

∂4w
∂x4

+ 2 ∂4w
∂x2∂y2

+ ∂4w
∂y4

= q x, yð Þ − k ⋅w x, yð Þ
D

: ð12Þ

3.3. Solution of Mechanical Model of Roof Settlement.
According to the above modeling analysis, formula (12) is
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Figure 2: Distribution of roof settlement under basic parameters.
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Figure 3: Curve of the maximum settlement of roof with the variation of foundation coefficient.
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obtained, which is the differential equation of the roof settle-
ment mechanics model. The equation is a high-order partial
differential equation, which requires a special solution to
obtain the deflection and internal force expressions of the
model [11]. Firstly, the boundary conditions of the model
are given.

3.3.1. Boundary Conditions. The boundary conditions at x
= 0 and x = a, y = 0 and y = b of the model are fixed, and
the deflection and rotation angle are both 0, so the boundary
conditions can be written as
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∂w
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3.3.2. Navier Method for Mechanical Model of Thin Plate. The
Navier method is often used to solve the problem of plate
deflection in mechanics, that is, double trigonometric series

can be used to express the deflection of the thin plate:

w x, yð Þ = 〠
∞

m=1
〠
∞

n=1
Amn sin

mπx
a

sin nπx
b

, ð14Þ

where m and n are any positive integers, Amn is the unde-
termined coefficient, a and b are length and width of the
thin plate model, respectively, m.

From the deflection formula, bending moment, and tor-
que formula, the stress components in the thin plate can be
obtained as follows:

σx x, y, zð Þ = 12Mx

h3
z,

σy x, y, zð Þ = 12My

h3
z,

σx x, y, zð Þ = 12Mxy

h3
z:

8>>>>>>><
>>>>>>>:

ð15Þ

4. Study on Factors Affecting Roof Settlement

Through the assignment of each parameter, the settlement of
different positions of the roof can be calculated [12]. Accord-
ing to the geological data of a mine, the values of basic
parameters are shown in Table 1.
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The distribution of roof settlement under this parameter
is shown in Figure 2.

In Figure 2, the X direction represents the advancing
direction of the stope, and the Y direction represents the
width of the panel area. It can be seen from the figure that
the maximum settlement occurs at x = 63m and y = 30m.
The maximum settlement is 23.3 cm. The roof boundary is
limited by boundary conditions, so the displacement is zero.
The following is to analyze the influence of different param-
eters on the roof settlement. It can be seen from the figure
that the maximum roof settlement occurs in the middle of
the stope. Therefore, based on the basic parameters, the influ-
ence of different factors on the maximum roof settlement is
studied.

4.1. Foundation Coefficient. The foundation coefficient in the
model is used to express the supporting force coefficient of
the filling body to the roof after the panel is filled [13]. Differ-
ent foundation coefficients represent different strength back-
fills. The variation curve of the maximum settlement of the
roof with the foundation coefficient is shown in Figure 3.

The influence degree of different panel length to width
ratios on the roof settlement curve is also different. When
the ratio of length to width is 3 : 1, the influence of the foun-
dation coefficient on settlement is small. When the length to
width ratio is 1 : 1, the maximum settlement of roof is greatly
affected by the foundation coefficient. The influence of the

foundation coefficient is larger in the initial stage and gradu-
ally slows down with the increase of the foundation
coefficient.

4.2. Mining Depth.With different mining depths, the load on
the roof is different, so the study of different mining depths
on the roof settlement is of great significance for mine work.
Under different elastic moduli of the roof, the curve of the
maximum roof settlement with mining depth is shown in
Figure 4.

According to the theory of in situ stress, the load on
the roof is equal to the weight of the overburden, so the
deeper the mining depth is, the greater the qðx, yÞ is. It
can be seen from the curve in the figure that the maxi-
mum roof settlement increases approximately linearly with
the increase of depth, because the influence of lateral stress
is not considered in the model. The influence of the roof
elastic modulus on the maximum settlement of the roof
shows that the smaller the elastic modulus is, the greater
the growth rate of settlement is.

4.3. Aspect Ratio of Panel. The aspect ratio of the panel is an
important parameter for mine design and evaluation of stope
safety. In order to study its influence on roof settlement, the
variation curves of the maximum roof settlement with panel
width under different roof thicknesses are calculated, as
shown in Figure 5.
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According to the mining design of the mine, the length of
a panel is 126m, so when the stope length is unchanged and
the stope width increases from 10m to 120m, the variation
curve of the maximum roof settlement under different roof
thicknesses is obtained. It can be seen from the figure that
the maximum roof settlement increases rapidly with the
increase of the stope width. When the ratio of stope length
to width decreases to 1.5 : 1, the increase slows down. Com-

paring the curves of different roof thicknesses, it can be seen
that the greater the thickness is, the slower the maximum
roof settlement increases with the increase of stope width.

4.4. Panel Roof Thickness. The thickness of the roof has an
important impact on the safety of the stope. The thickness
of the roof depends on the thickness of the direct roof of
the panel [1]. Therefore, the parameters of the underground
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stope can be understood according to the geological data to
evaluate and predict the maximum settlement of the roof.
In this model, when the roof thickness increases from 4m
to 20m, the maximum settlement curve of the roof is shown
in Figure 6.

It can be seen from the figure that the roof settlement
decreases with the increase of the thickness of the roof and
decreases rapidly in the initial stage. When the thickness
increases to a certain value, the maximum settlement of the

roof does not decrease significantly [14]. When the founda-
tion coefficient is 20MPa/m, it can be seen that the roof
thickness has a great influence on the maximum settlement
[15]. Therefore, the foundation coefficient is a sensitive
parameter when studying the relationship between the max-
imum settlement and the thickness of the roof.

4.5. Elastic Modulus of Roof Rock. The elastic modulus is an
indicator of rock strength [16]. The curve of maximum roof
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settlement is shown in Figure 7 when the elastic modulus
increases from 12GPa to 60GPa.

It can be seen from the figure that the larger the elastic
modulus is, the smaller the roof settlement is. When the elas-
tic modulus increases linearly, the maximum roof settlement
decreases nonlinearly. From the influence of different stope
depths on settlement, we can see that the influence of stope
depth is linear. In underground mining, due to different geo-
logical conditions, the elastic modulus of rock is different, so
it is very important to understand the influence of the rock
elastic modulus on the maximum roof settlement.

5. Stress Analysis

After analyzing the influencing factors of the roof settlement,
the deflection formula can be substituted into the internal
force formula to get the stress component and internal force
of the roof [17]. According to the assumption of the model,
the stress at z = 0 is 0, so the stress changes at different z will
be analyzed below.

5.1. Stress at z = h/2. It can be seen from Table 1 that the
thickness of the thin plate is 10m, so when z = 5m, it is the
upper surface of the thin plate, and the plate is concave
downward, so the stress in the upper part is compressive
stress, and the stress in the lower part is tensile stress.
According to the calculation, the stress distribution is shown
in Figure 8.

The stress in x and y directions and shear stress in xy
direction in the upper surface of the thin plate are, respec-
tively, shown in Figures 8(a) and 8(b) showing that the max-
imum stress in the thin plate occurs in the middle of the
plate, that is, the position of the maximum settlement. The
maximum stress in the x direction is 60MPa, while the max-
imum stress in the y direction is 138MPa, because the model
takes 126m in the x direction and 60m in the y direction. It

can be seen that the panel parameters have a great influence
on the roof stress. According to the boundary conditions, the
stress around the thin plate is 0.

Figure 8(c) shows the shear stress in the xy direction in
the thin plate. It can be seen from the figure that the shear
stress at the four vertices is the largest, reaching 46MPa,
while the shear stress at the most central position of the plate
is 0. The shear stresses at two adjacent vertices are equal in
magnitude and opposite in direction. Therefore, it can be
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Figure 10: Maximum roof settlement displacement curve under different mining depths.

Table 2: Data comparison between the mathematical model
calculation and numerical simulation results.

Influence
factor

Parameter
Calculated
value of the
model (m)

Numerical
simulation
value (m)

Difference
rate (%)

Mining
depth

350m 0.180 0.188 4.4

450m 0.233 0.261 12.0

550m 0.285 0.334 17.2

660m 0.337 0.456 35.3

Aspect
ratio

3 : 1 0.100 0.127 27.0

2 : 1 0.233 0.261 12.1

1.5 : 1 0.310 0.289 -6.8

1 : 1 0.370 0.317 -14.3

Roof
thickness

5m 0.378 0.296 -21.7

8m 0.296 0.280 -5.4

10m 0.233 0.261 12.0

12m 0.177 0.240 35.6

Elastic
modulus

15GPa 0.298 0.305 2.3

30GPa 0.233 0.261 12.0

45GPa 0.192 0.196 2.1

60GPa 0.160 0.145 -9.4

Note: difference rate = ðsimulation value − calculated valueÞ/ðcalculated
valueÞ ∗ 100%:
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seen that the most dangerous part of the roof occurs in the
center and four corners of the plate, which is prone to frac-
ture and torsion.

5.2. Stress at z = −h/2. In the last section, the distribution of
stress and shear stress on the upper surface of the roof is
investigated. The symmetrical position of the surface is at z
= −h/2, and the distribution of stress and shear stress is
shown in Figure 9.

The three figures in Figure 9 show that the distribution of
internal stress and shear stress is similar to that in Figure 8,
but the directions are opposite. The stress in x and y direc-
tions is -62MPa and -138MPa, respectively. It means that
the plate bears tensile stress. The magnitude and distribution
of shear stress are the same, but the direction is opposite. The
damage prone parts are also the center and four corners.

6. Study on Influencing Factors of
Overburden Stability

Combined with the mechanical model of underground
mining panel roof settlement established above, the numer-
ical simulation method is used to study the influence of dif-
ferent mining depths, panel length to width ratios, roof
thicknesses, and roof rock elastic moduli on roof settlement.
The applicability of the settlement model can be verified by
comparison [5].

6.1. Simulation Results of Influencing Factors of Maximum
Roof Settlement

6.1.1. Influence of Mining Depth on Maximum Displacement
of Roof. The deeper the mining depth is, the greater the pres-
sure on the panel roof is, and the in situ stress increases cor-
respondingly. Using the simulation method, the settlement
curve of the maximum displacement of the panel roof with

the calculation step length under the mining depth of
350m, 450m, 550m, and 650m is simulated, as shown in
Figure 10.

6.1.2. Influence of Length to Width Ratio of Panel on
Maximum Displacement of Roof. In underground mining,
the ratio of length to width determines the exposed area of
the stope when the panel length is fixed [18]. The larger the
exposed area, the worse the stability of stope. Therefore, in
the mathematical model and numerical simulation, the
length of the panel is set as 126m, and the maximum dis-
placement of the panel roof is simulated when the panel
width is 40m, 60m, 80m, and 120m (length to width ratio
is 3 : 1, 2 : 1, 1.5 : 1, and 1 : 1, respectively). For each stope
width, the results are shown in Table 2.

6.1.3. Influence of Panel Roof Thickness on Maximum
Displacement of Roof. The maximum displacement of the
roof is simulated when the thickness of the roof is 5m, 8m,
10m, and 12m, respectively. The results are shown in
Table 2.

6.1.4. Influence of Elastic Modulus on Maximum
Displacement of Roof. The variation of roof displacement
with time step is simulated when the elastic modulus of roof
rock is 15GPa, 30GPa, 45GPa, and 60GPa, respectively. The
curve of the maximum displacement point of the roof is
shown in Figure 11.

6.2. Comparative Analysis of Mathematical Model
Calculation and Numerical Simulation Results. It can be seen
from Figure 11 that when the mining depth increases line-
arly, the increase of the maximum displacement of the panel
roof is nonlinear. When the mining depth increases from
550m to 650m, the maximum displacement of the roof
increases from 0.34m to 0.46m, with an increase of 35%. It
can be seen that in the process of deep mining, the pressure
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Figure 11: Maximum settlement displacement curve of roof under different elastic moduli of rock.
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around the panel increases sharply, and the potential safety
hazard also increases. As for the influence of the panel aspect
ratio, it can be seen from Table 2 that the influence of the
panel aspect ratio and roof thickness is as follows: with the
increase of panel width, the exposed area of the panel
increases, so the maximum displacement of the roof
increases gradually; the greater the thickness of roof, the
smaller the settlement.

Through the analysis and comparison of the calculation
results of the mathematical model and the numerical simula-
tion results, it can be seen from Table 2 that the influence law
of the mining depth and other four factors on the maximum
displacement of the panel roof is consistent. In order to verify
the accuracy of the mathematical model, the difference
between the two results is calculated, and the difference rate
is shown in the table. It can be seen that most of the calcu-
lated results are within 15%, and only a few of them are
20%~30%. Generally speaking, the mathematical model
can be used to calculate the settlement of the panel roof.

7. Conclusion

(1) Based on the previous research and the theory of
elastic-plastic mechanics, this paper analyzes the fac-
tors and laws of filling mining affecting overburden
settlement. By establishing the mechanical model of
panel roof settlement, the boundary conditions are
given and solved by the Navier method; the deflection
formula and internal force formula of panel roof set-
tlement are obtained. After analysis, the settlement
distribution map of the underground panel roof
based on the thin plate model is obtained.

(2) Based on the basic calculation parameters, the influ-
ence of different foundation coefficients, mining
depths, panel length to width ratios, roof rock elastic
moduli, and roof thicknesses on roof settlement is
studied. According to the obtained deflection calcula-
tion formula, the expressions of internal force and
stress are deduced, and the distribution of stress
and shear stress on the upper and lower surface of
the roof is analyzed. The dangerous area of the roof
can be obtained, which provides a theoretical basis
for the daily maintenance of mine safety.
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