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The increasing carbon dioxide content is identified as the main cause of global warming. Capturing carbon dioxide in the atmosphere
and transporting it to deep salt layer for storage have been proven and practiced in many aspects, which considered to be an effective
way to reduce the content of carbon dioxide in the atmosphere. The sealing property of cap rocks is one of the key factors to determine
whether CO2 can be effectively stored for a long time. In view of the disadvantages of tedious and time-consuming laboratory test
methods for breakthrough pressure of cap rock, this paper explores the relationship between breakthrough pressure and other
parameters such as porosity, permeability, density, specific surface area, maximum throat radius, and total organic carbon. The
results show that the rock breakthrough pressure is closely related to the maximum throat radius and permeability determined by
the mercury injection method, followed by the porosity and specific surface area, and less related to the density, depth, and TOC
content of the rock itself. Then, with the selected parameters, a neural network model is established to predict the breakthrough
pressure of cap rock, which can achieve good prediction results.

1. Introduction

For more than a decade, the problem of greenhouse gas
effects has been one of the focuses of research. Scholars have
conducted numerous studies on the continuous increase of
CO2 content in the atmosphere and the problem of green-
house effect [1, 2]. One of the main causes of the greenhouse
effect was the continuous increase of CO2 concentration in
the atmosphere [3, 4]. The storage of CO2 in deep saline
aquifers has attracted much attention due to its large capac-
ity, long-term storage, and even permanent closure [5, 6].

The sealing ability of cap rocks is essential to the success
of CO2 storage [7]. When stored in saturated brine forma-
tion, high negative capillary pressure is formed in the pores
of the rock due to the nonwetting properties of the injected
CO2. The capillary pressure of reservoir rock and cap rock

differs due to the difference in their pore throat radius. Cap-
illary pressure must be addressed in the process of CO2 seep-
age. Therefore, breakthrough pressure must be satisfied for
CO2 gas to pass through mudstone caprock [7].

Various methods could be used for testing the break-
through pressure of cap rock, including indirect and direct
methods. Amongst them, the mercury intrusion method is
an indirect method, whilst the displacement method, the
step method, the continuous method, and the pulse method
are direct methods [8]. In 1968, Thomas et al. [9] used nitro-
gen to carry out breakthrough pressure tests by gradually
increasing the injection pressure on the rock sample.
Ibrahim et al. in 1970 and Schowalter in 1979 [10, 11] sepa-
rately used a step-by-step method (where the pressure is
gradually applied to one side of the rock until the gas breaks
through the rock) to test the breakthrough pressure of rocks.
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In 1985, Busch et al. tested the consolidated MX-80 benton-
ite and pointed out that the breakthrough pressure is related
to the expansion pressure.

As critical capillary pressures of mudrocks are extraordi-
narily difficult to measure in the laboratory and experiments
often turned out to be extremely time consuming, the pres-
ent study is aimed at finding “simple” rules [12]. The con-
ventional method is to determine the relationship between
breakthrough pressure and other standard parameters,
which is easy to measure.

The factors that affect the breakthrough pressure of
rocks are complex. Numerous studies have shown that con-
tact angle and surface tension are closely related to clay
minerals, temperature, pressure, burial depth, and other
parameters [12–14]. Some scholars have attempted to pre-
dict the breakthrough pressure of mudstone by using the
parameters of porosity and permeability, but the testing
accuracy and applicable range could not meet the needs for
evaluation.

As the core technology of artificial intelligence, the arti-
ficial neural network (ANN) has been widely used in daily
life, invention, and creation; it also plays a role in promoting
academic research in various fields. In the field of chemistry,
scholars use the concept of the ANN model to study differ-
ent methods to predict the solubility of hydrogen sulphide
in various ionic liquids. For instance, the content of dis-
solved calcium carbonate in oilfield brine was determined.
ANN was also used to build a model for CO2 foam flooding
to improve indoor oil recovery [15], accurately predict
asphaltene precipitation caused by natural exhaustion [15],
and monitor network permeability and porosity [16]. The
combination of swarm intelligence and ANN was used to
predict the chemical displacement efficiency of reservoirs
[17] and further understand the fluid behaviour of reservoirs
through a reservoir simulation scenario. In the present
paper, various rock parameters were combined to establish
a neural network model to predict the CO2 breakthrough
pressure of rocks and further improve the accuracy and uni-
versal trial range of the prediction results.

The entire dataset contains data from nuclear waste stor-
age, hydrocarbon sealing, and CO2 storage research, includ-
ing rock permeability, porosity, maximum throat radius,
specific surface area, and total organic carbon (TOC). In this
paper, a neural network model was used to comprehensively
analyse the relationship between these factors and the break-
through pressure of rocks, and a prediction model of break-
through pressure of mudstone was established.

2. Data Acquisition and Processing

As the breakthrough pressure test takes a long time and the
number of tests is limited, the test data in this article could
not meet the needs for statistical analysis. Therefore, several
sets of test data related to breakthrough pressure were col-
lected by consulting the literature, including 158 sets of
mudstone shale and 14 sets of sandstone test data, which
consisted of breakthrough (capillary) pressure, porosity, per-
meability, maximum throat radius, specific surface area, and
other parameters. Table 1 shows the data sources collected,

number of samples, data types, and quantity. Although the
parameters measured in each literature were not exactly
the same, a considerable number of statistical results were
obtained for regularity analysis.

This article focused on the study of the breakthrough
pressure of CO2 in saturated mudstone. The data collected
in this article included not only the breakthrough pressure
of CO2 but also the breakthrough pressure test data of N2,
CH4, He, and other gases and the breakthrough medium
pressure test data of Hg. However, the relationship between
the surface tension and the wetting angle of the two-phase
media could be converted using the following formulas [31]:

Pc⋅brkth⋅CO2
= Pc⋅x ⋅

γCO2‐brine
γx‐brine

, ð1Þ

where x means non-CO2 gas (N2, CH4, and He).
Parameters such as contact angle and interfacial tension

are required to recalculate the breakthrough pressure of
other gases on the basis of Hg pressure measurement data.
The conversion formula could be expressed as follows:

Pc⋅brkth⋅x = Pc⋅entry⋅Hg ⋅
γx‐brine ⋅ cos θxð Þ

480 mN/mð Þ ⋅ cos 141°ð Þ : ð2Þ

The surface tension of gas is affected by temperature and
pressure. Heath et al. [32] summarised the previous research
results and pointed out the relationship between surface ten-
sion and temperature pressure, as shown in Figure 1.

For the values of the surface tension in different gases,
the fitting curve proposed by Busch et al. [33] was used in
the present paper on the basis of previous research results.
The surface tension of CH4, N2, CO2, and H2 with tempera-
ture and pressure could be expressed as follows:

γCH4
= 67:26 − 0:926 ⋅ p + 0:011 ⋅ p2 − 0:119 ⋅ T − Trefð Þ, ð3Þ

γN2
= 66:03 − 0:353 ⋅ p + 0:011 ⋅ p2 − 0:169 ⋅ T − Trefð Þ, ð4Þ

γCH4
= 49:08 − 1:582 ⋅ p + 0:032 ⋅ p2 − 0:100 ⋅ T − Trefð Þ, ð5Þ

γCH4
= 72:00 − 0:028 ⋅ p − 0:165 ⋅ T − Trefð Þ: ð6Þ

where p is the pressure (MPa), T is the temperature (K), and
Tref is the reference temperature (333K for CH4 and N2,
298K for He, and 348K for CO2).

In accordance with the relationship of the above formu-
las, the breakthrough pressure test data of different break-
through gases for different sources were converted into the
breakthrough pressure value of CO2 breakthrough brine to
conduct a unified analysis. The effect of a single factor on
the breakthrough pressure was analysed separately. The
pressure was determined by the pore throat radius, the wet-
ting angle, and the surface tension. According to previous
studies, porosity, permeability, specific surface area, and
density could reflect the size and arrangement of rock poros-
ity which are closely related to the pore throat radius. The
depth of rocks is closely related to the pore pressure in
deeply buried underground environments. According to
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the above analysis, the depth of rocks could affect the surface
tension of gas and then the breakthrough pressure. The clay
mineral content in the mineral composition could also affect
the wetting angle and surface tension. The influence of each
factor on the breakthrough pressure of rocks was analysed,
the quantitative relationship between each factor and the
breakthrough pressure was explored, the main factors that
affect the breakthrough pressure were determined through

analysis, and a predictive model was established by neural
network calculation method.

3. Correlation Analysis of Factors Affecting
Breakthrough Pressure

3.1. Relationship between Breakthrough Pressure and
Permeability. In this section, the relationship between the per-
meability of rocks and CO2 was mainly explored. The data
were not uniform because the collected datamostly came from
literature collection. The collected permeability data mainly
includes water, brine, and gas permeability. The main study
involved the storage of CO2 in the brine layer. Therefore, the
relationship between saltwater permeability and the break-
through pressure of CO2 was mainly explored in this section.
Firstly, the relationship between brine permeability and gas
permeability was analysed, and then the relationship between
brine permeability and pure water permeability was analysed
to unify the data. Hildenbrand et al. [19] conducted perme-
ability tests on homogenous rocks (mudstone and sand mud-
stone) by using pure water and saltwater and used the
collected data to establish the relationship between the salt-
water permeability of rocks and water permeability, as
shown in Figure 2. Saltwater permeability and water perme-
ability show a good correlation, and the ratio between them
is approximately 1. Therefore, in the data obtained in this
article, this was analysed as saltwater permeability for some
water-only permeability data sets.

Permeability is a parameter that characterises the rock’s
ability to conduct liquid. It closely relates to rock porosity
and rock pore geometry. The pressure of CO2 passing
through a rock is determined by the geometry of the rock
pore and the size of the rock pore. Therefore, some relation-
ships must exist between the permeability of rocks and the
breakthrough pressure of CO2.

On the basis of many data obtained in this paper, a relation-
ship diagram between saltwater permeability and the

Table 1: Mudstone breakthrough pressure test data obtained through literature review.

References
Data type and quantity obtained

Depth Porosity Permeability
Specific

surface area
TOC Density

Maximum
throat radius

Breakthrough
pressure

Daisuke Ito et al. (2011) [18] 3 3 3 — — — — 3

Hildenbrand et al. (2002, 2004) [19, 20] 39 39 32 33 38 — 39 34

Yang and Aplin (1998, 2007) [14, 21] 30 30 30 30 30 — 20 —

Al-Bazali et al. (2005, 2009b) [22, 23] — — 3 — — — — 3

Marschall et al. (2005) [24] — 6 6 6 — 6 — 6

Amann-Hildenbrand et al. (2013) [25] — 15 9 13 14 15 15 15

Boulin et al. (2011) [26] — 2 2 — — — 2

Zhang and Yu (2016) [27] 4 4 — 4 4 4 — 4

Espinoza and Santamarina (2017) [28] — — 5 5 — 5 — 5

Ono et al. (2013) [29] — 15 15 — — 15 — 15

Gao Shuai et al. (2015) [8] — — — — — — — 4

Huang Haiping and Deng Hongwen
(1995) [13]

17 11 11 15 16 16 16 16

Schlömer and Krooss (1997) [30] 27 26 27 27 27 — — 27
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Figure 1: Relationship between gas surface tension and
temperature, pressure, and ionic strength [32].
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breakthrough pressure value of CO2 was established, as shown
in Figure 3. Some of the rock breakthrough pressure data were
obtained from CH4, H2, or N2. The breakthrough pressure
values of other gases were analysed in accordance with the con-
version of Formulas (2) and (3) into CO2 breakthrough pressure
values of saturated brine rock samples to facilitate a uniform
analysis of the data. The value of the surface tension of different
gases was calculated using Formulas (4), (5), (6), and (7).

Figure 3 shows that the saltwater permeability of rocks
and the breakthrough pressure of CO2 in saturated brine
rocks show a strong correlation on the whole. With the
increase in permeability, the breakthrough pressure of the
rock shows a fast downward trend. The fitting relationship
between the saltwater permeability k rate of the rock and
the breakthrough pressure PC‐brkth of CO2 is as follows:

Lg PC‐brkthð Þ = −0:279 lg k − 5:097,
n = 139, R2 = 0:49
� �

:
ð7Þ

In view of the wide range of sources of data collected,
despite the differences in sampling locations, origin, develop-
ment history, and even rock testing methods for rock samples
and the overall correlation coefficient (R2) being 0:49 < 0:5,
the relationship between pressure and permeability still shows
a good correlation. A strong internal relationship is also found
between rock permeability and breakthrough pressure. In the
test data from the same source, the relationship between the
breakthrough pressure value of CO2 and saltwater permeabil-
ity is more obvious. For general rocks with a wide range of
sources, a large error exists in predicting their breakthrough
pressure value when using their permeability. Therefore, to
predict the breakthrough pressure more accurately, the analy-
sis needs to be performed in conjunction with other rock
parameters. Comparison between Figures 3 and 4 shows a cer-
tain difference between the breakthrough pressure determined
by the Hg intrusion method and the gas breakthrough pres-
sure. Thus, the breakthrough pressure determined by the Hg
method could not fully reflect the rock’s ability to seal gas.

3.2. Relationship between Breakthrough Pressure and
Porosity. Porosity, as an important indicator of the develop-
ment of rock pores, is closely related to rock permeability
[34]. In Section 3.1, rock permeability and breakthrough pres-
sure were explored, and the results showed a close relationship
between the two. The relationship between rock porosity and
the breakthrough pressure of CO2 is shown in Figure 5. The
higher the rock porosity is, the greater its breakthrough pres-
sure. In general, rock porosity is positively correlated with rock
permeability [35]. The higher the rock porosity is, the larger the
pore throat radius. Thus, the rock’s breakthrough pressure is
higher, which is consistent with the general law. Although the
overall trend is consistent, it is obtained through the fitted expo-
nential relationship curve. In addition, R2 < 0:1, showing
almost no correlation. However, for the data from the same
source, the correlation between porosity and breakthrough
pressure is strong, whereas the composition of the data from
Hildenbrand et al. in 2002 and 2004 [19, 20] and Schlömer
and Krooss in 1997 [30] is weakly correlated. The data from
Sprunt in 2006 [36] is moderately correlated. The remaining
data groups show strong correlations.

In the data of porosity less than 30%, the breakthrough pres-
sure value of rocks decreases with the increase in porosity. For the
data from Ono et al. [29], the porosity is between 35% and 45%
and the breakthrough pressure of rocks shows an increasing
trend with the increase in porosity. The reason is the connectivity
of rock’s own pores and its pore structure and composition.
However, as only the set of data in this paper demonstrates the
phenomenon that the breakthrough pressure increases with the
increase in porosity and this set has less data, it could not be con-
sidered as a general rule. The analysis of its internal factors was
not discussed in detail in this paper. However, this phenomenon
explains that the level of rock porosity could reflect the break-
through pressure of rocks to a limited extent. The connectivity
of rock’s pores and its pore structure and morphology could all
have a great effect on breakthrough pressure.

3.3. Relationship between Breakthrough Pressure and
Maximum Roaring Radius. Breakthrough pressure refers to
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Figure 2: Relationship between saltwater permeability and water permeability.
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the minimum pressure of the nonwetting phase fluid to dis-
place the wetting phase fluid, and displacement pressure
refers to the minimum capillary pressure corresponding to
the largest connected pore size in rock. Thus, the break-
through pressure of rocks is closely related to its maximum
pore size. The relationship between the breakthrough pressure
of rock CO2 and the maximum pore size of rocks was estab-

lished, as shown in Figure 5. The breakthrough pressure has
a strong correlation with the maximum aperture. With the
increase in maximum pore diameter, the breakthrough pres-
sure of rocks decreases sharply. The overall R2 is 0.569, show-
ing a strong correlation. For data from the same source, the R2

is approximately 0.7, also showing a strong correlation. How-
ever, due to different pore morphologies, rock compositions,
temperatures, pressure conditions, and other factors, the sur-
face tension and contact angle between gas-phase and liquid-
phase fluids are affected to varying degrees, thereby causing
some errors in the estimation of rock breakthrough pressure.

3.4. Relationship between Breakthrough Pressure and Specific
Surface Area. The specific surface area of rocks refers to the
total internal surface area of pores in unit volume or the total
surface area of rock skeletons in unit volume of rocks. Given
that the surface of rock pores is the boundary of fluid flow,
its size could determine many properties of rocks and espe-
cially has a greater effect on the fluid flow in the reservoir.
The specific surface area of rocks is related to their structure
and morphology. Thus, a certain relationship possibly exists
between the specific surface area and the breakthrough pres-
sure. The relationship between the specific surface area of
rocks and the breakthrough pressure of rock CO2 was estab-
lished by summarising data, as shown in Figure 6. As the
specific surface area increases, the breakthrough pressure
shows an increasing trend because the larger the specific sur-
face area of the rock is, the finer the particles, thus reducing
the pore radius and increasing the breakthrough pressure.

R2 = 0.7123

R2 = 1
R2 = 0.512

R2 = 0.0016
R2 = 0.3464

R2 = 0.0586

R2 = 0.8995

R2 = 0.1795

R2 = 0.876

0.01

0.1

1

10

100

1.00E–22 1.00E–21 1.00E–20 1.00E–19 1.00E–18 1.00E–17

CO
2 

br
ea

kt
hr

ou
gh

 p
re

ss
ur

e (
M

Pa
)

Saltwater permeability (m2)

Ito et al. (2011)
Schlömer and Krooss (1997)
Wollenweber et al. (2010)
Amann-hildenbrand et al. (2010)
Espinoza et al. (2017)
Huang Haiping et al.(1995)

Masaki et al. (2013)
Hildenbrand et al. (2002)
Boulin et al. (2011)
Al-bazali et al. (2011)
Hildenbrand et al. (2004)

Figure 3: Relationship between saltwater permeability and breakthrough pressure of CO2.
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The higher the degree of cementation is between the rock par-
ticles, the smaller the specific surface area of the rock and the
better the cementation. The degree could reduce the perme-
ability of the rock’s pores, also leading to an increase in break-
through pressure. From these two aspects, the specific surface
area of the rock could break through it. The effect of the force
is multiple. The characteristics of the rock pores are related to
the genesis and development history of the rock, which led to a
large difference in the breakthrough pressure between rocks of

different sources with similar specific surface area. A large dif-
ference exists in the degree of correlation. For rocks of the
same source, a certain relationship exists between the specific
surface area and the breakthrough pressure. According to
the fitted exponential curve, most of the R2 values are between
0.3 and 0.5, showing moderately relevant characteristics.
Therefore, combining the specific surface area of rocks to pre-
dict their breakthrough pressure could further improve the
prediction accuracy.

3.5. Relationship between Breakthrough Pressure and Density
and Depth. The natural density of a rock could reflect its
compactness to a certain extent. In general, the higher the
density of a rock, the better its cementation and the higher
its breakthrough pressure. Figure 7 shows that the
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breakthrough pressure of rocks generally increases with the
increase in their density. According to the fitting relation-
ship, the R2 of 0.126 is weakly correlated. However, the nat-
ural density of rocks is considerably affected by their mineral
composition and content. Therefore, the relationship
between the density of rocks formed under different condi-
tions and the breakthrough pressure of CO2 also shows dif-
ferent trends. Amongst them are rocks that appeared from
the data sets of Espinoza and Santamarina in 2017 [28]
and Masaki et al. [29]. The decrease in breakthrough pres-
sure with increasing density also shows that the relationship
between rock density and breakthrough pressure is not
strong.

Figure 8 shows the breakthrough pressure and depth of
rocks. For rocks of the same source, the breakthrough pres-
sure tends to increase with increasing depth. The reason is
that for the same type of rocks, the deeper the depth is, the
denser the rock, and the better the degree of cementation,
leading to a decrease in rock permeability and an increase
in breakthrough pressure. However, according to the overall
data, no correlation exists between the breakthrough pres-
sure of a rock and its depth. As the development of crust dif-
fers amongst various sites, the sedimentary conditions and
development environment of a rock has a great influence
on the development of its composition, morphology, and
pores [35]. During rock development, geological activities
could cause strong disturbances to the depth of rocks. Thus,
finding the regularity of the breakthrough pressure of mud-
stones in different regions is difficult.

3.6. Relationship between Breakthrough Pressure and TOC.
Jarvie et al. in 2007 [37] and Wang and Gale in 2009 [38]
pointed out that the brittleness of rocks in TOC distribution
is often high, which makes microfractures easy to develop.
In Cheng’s [39] 2018 study on the breakthrough pressure
of carboniferous shale in Qaidam Basin, the breakthrough
pressure of rocks and TOC showed a good correlation. Com-
bined with the results of scanning electron microscopy, the

brittleness was affected by TOC, which generated more
microfissures in the place where it was distributed and then
formed microfissure channels, resulting in the breakthrough
pressure of the rock showing a decreasing trend with the
increase in TOC content. From the data of different site
sources, the above rules are not general. Figure 9 illustrates
that the breakthrough pressure of CO2 and the TOC content
of rocks does not fully follow the above rules. The reason is
that the development of microfractures in rocks could be
affected by TOC content; however, this is not the main fac-
tor. The development of microcracks in rocks is determined
by the stress state experienced during the development pro-
cess. The stress history of rocks at different sites is consider-
ably different, resulting in the different fitting curves of rock
data from different sources in the graph. Therefore, accord-
ing to the data collected in this article, the TOC content
could not fundamentally reflect the magnitude relationship
of the breakthrough pressure of rocks.

4. Prediction of Breakthrough Pressure of
Mudstone Based on Neural
Network Algorithm

On the basis of extensive data collection, several factors that
may have a significant effect on the breakthrough pressure of
rocks were analysed. The regularity and correlation of rock
permeability, porosity, maximum throat radius, specific sur-
face area, density, depth, and the breakthrough pressure of
TOC and CO2 were also analysed. The results showed that
the breakthrough pressure of a rock is most closely related
to its permeability and maximum throat radius, followed
by the relationship between porosity and specific surface
area. In other words, the relationship between the density
and sampling depth of rocks and TOC content is the weak-
est, and almost no correlation could be found. However, the
influence of rock permeability and throat radius on break-
through pressure is limited by its site. Thus, predicting and
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evaluating the breakthrough pressure of rocks based on only
one factor often results in high errors. The neural network
model could integrate multiple factors to analyse the break-
through pressure of rocks, providing a possibility for the
prediction of breakthrough pressure. In this section, the neu-
ral network model was used to synthesise the factors ana-
lysed above, which has a certain correlation with the
breakthrough pressure of rocks, to predict this breakthrough
pressure.

4.1. Introduction to Neural Network Model. ANN, also
known as neural network, is a data processing model. It
was inspired by biological neural networks and developed.
Its internal calculations are connected by a large number of
neurons, and then they are adjusted by external information.
The means of adjusting its own structure is mainly by
changing the weights between its connecting neurons, mak-
ing it capable of solving practical problems.

4.2. Prediction Model Establishment of Back Propagation
(BP) Neural Network. The BP network was proposed by a
group of scientists headed by Rumelhart and McCelland in
1986 [40]. It is a multilayer feedforward network trained
by the error back propagation algorithm. It is one of the
most widely used neural network models at present.

In engineering applications, complex nonlinear prob-
lems are often encountered, and accurately modelling them
mathematically is difficult. In this paper, the BP neural net-
work was used to solve this problem. The BP neural network

is a multilayer feed forward neural network that includes
input layers, hidden layers, and output layers. The hidden
layer could be divided into one or more layers. Its main
characteristics are information forward propagation and
error backward propagation. In the process of forwarding
information propagation, the information passes through
the input layer to the hidden layer and then passes through
to the final output layer. If the output layer output does
not reach the expected result, the error is back propagated
and then the weights and thresholds within the adjustment
period of the BP error are maintained until the final output
result is within an acceptable range. A diagram of the BP
neural network structure is shown in Figure 10.

In Figure 11, X1, X2, ..., Xn are input values; Y1, Y2, ..., Ym
are predicted values; and ωij and ωjk are the weight value. The
BP neural network could also be considered as a nonlinear
function. The input variable is the independent variable of
the nonlinear function, and the output variable is the depen-
dent variable of the nonlinear function. When the number of
input variables is n and the number of output variables is m,
it is a nonlinear function mapping relationship from n inde-
pendent variables to m dependent variables [41].

Before making a BP neural network prediction, the net-
work needs to be trained to make it predictive. The detailed
training process of a neural network model could be referred
to Li [42].

4.3. Establishment of BP Neural Network Prediction Model.
Considering the degree of influence of various factors on

Input layer Hidden layer Output layer

X1 X1 H1

Hr

Y1

Xn Xn
Ym

𝜔ij 𝜔jk

aj bk

i = 1, 2...n j = 1, 2...n k = 1, 2...n

bias bias

O1

Om

1 1

Figure 10: Schematic of BP neural network structure.

Porosity

Permeability

Specific surface area

Throat radius

CO2 breakthrough pressure

Figure 11: Topological structure of the BP neural network.
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Table 2: Measured and predicted breakthrough pressures and other input and output data.

Group
Sample
number

Sample serial
number

Input
Breaking pressure

(MPa)
MSE R2

Porosity
(%)

Permeability
(nD) (10-21 m2)

Specific surface
area (m2/g)

Throat
radius
(nm)

Measured
value

Predictive
value

Training set

1 H1 2.80 6.90 7.38 7 4.504 3.781

0.447 0.992

2 H2 2.20 1072.00 6.29 5 5.422 5.339

3 H3 6.70 8.40 26.75 8 3.765 3.810

4 H4 3.10 4.30 10.23 5 5.925 5.987

5 H5 1.60 44.00 2.35 20 12.628 11.429

6 H6 2.80 36.30 9.52 6 6.044 5.934

7 H7 3.00 1.90 7.30 38 0.357 0.386

8 H8 1.70 3.30 4.02 7 5.413 5.279

9 H9 1.50 4325.00 3.65 24 0.160 0.138

10 H10 4.40 1214.00 3.26 26 0.169 0.291

11 N5 0.90 37.00 10.54 7 3.189 3.721

12 N2 0.30 75.70 4.21 6 4.256 5.739

13 N3 6.60 1370.00 2.55 70 0.548 0.128

14 N4 6.60 1350.00 3.23 57 0.510 0.808

15 N1 0.70 7.80 25.32 22 14.667 14.690

16 N6 0.70 0.62 21.58 6 4.458 4.537

17 N7 0.50 50.00 9.10 6 3.652 4.176

18 N8 1.90 13.30 5.26 5 4.063 5.295

19 J1 0.15 34.00 21.10 8 3.200 3.272

20 J2 0.06 7.00 3.80 7 4.500 4.701

21 CS01 4.30 0.73 7.70 7 4.100 4.311

22 CS02 4.30 0.86 8.90 7 4.800 5.002

23 CS03 4.50 0.27 23.30 4 4.800 4.815

24 CS04 9.10 2.75 29.00 7 4.300 4.287

25 CS05 8.70 0.18 25.90 5 5.400 5.686

26 CS06 8.70 0.16 22.50 8 3.200 3.147

27 CS07 5.00 0.77 12.90 7 3.700 3.473

28 CS10 13.00 4.70 31.70 7 3.900 3.843

29 CS11 5.40 0.93 19.50 4 5.700 5.507

30 CS12 20.60 870.00 8.80 59 0.600 0.650

31 S1 26.10 4.30 30.56 8 18.800 18.808

32 S2 26.10 9.30 30.56 20 17.500 17.502

33 S3 29.90 30.90 26.21 44 5.400 5.109

34 S4 29.90 19.70 36.21 21 9.900 10.028

35 S5 10.30 9.90 26.80 13 16.200 16.270

36 S6 10.30 3.40 26.80 13 14.400 14.338

37 S7 24.40 549.60 20.10 260 14.000 14.216

38 S8 23.50 23.50 23.60 24 14.200 14.264

39 S9 23.40 65.60 20.60 60 18.700 17.986

40 S10 23.40 64.30 20.60 42 13.470 14.139
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the breakthrough pressure of mudstone and the availability
of measured data, the measured porosity, permeability, spe-
cific surface area, and TOC were used as inputs for the lab-
oratory to collect data, whilst the breakthrough pressure of
mudstone was used as an output. The prediction model of
this breakthrough pressure was established on the basis of
the BP neural network.

In this paper, all the collected data were compared and
screened to form a simulated prediction data set. A total of
55 sets of experimental data were selected for training and
verification of the BP neural network model. As shown in
Table 2, approximately 70% of the data was used as the
training set and roughly 30% was used as the test set, of
which 40 sets of data were used as the training set and 15 sets
of data were used as the test set.

A three-layer BP neural network model was used in this
paper, with four nodes in the input layer, the L node in the
hidden layer, and one node in the output layer. The number
of nodes in the hidden layer was selected as follows:

L =
ffiffiffiffiffiffiffiffiffiffiffiffi
n +m

p
+ a, ð8Þ

where L, n, and m are the number of nodes in the hidden
layer, input layer, and output layer, respectively, and a is
an adjustment constant between 1 and 1.

After different numbers of hidden layer nodes were used
for training, the results showed that the training mean
square error is small when the number of hidden nodes is
8. Thus, the number of nodes in the hidden layer was
selected in this paper. The schematic of the structure is
shown in Figure 10.

The input parameters need to be normalised to reduce
the effect of individual factor data. In this paper, the map-

minmax function was used to normalise the sample data to
½0, 1�. The tansig function was used for the transfer function
from the input layer to the hidden layer of the BP neural net-
work, and the purelin function was used for the transfer
function from the hidden layer to the output layer. The
trainlm function was selected as the function for training
the neural network. Finally, the target error was selected as
0.005, the momentum coefficient was selected as 0.9, and
the maximum training number was selected as 500 times.
After programming, simulation was performed in
MATLAB.

4.4. Prediction and Analysis of BP Neural Network Model

4.4.1. Training Error Curve of BP Neural Network. The BP
neural network could make its error continuously decrease
through repeated training, and it automatically stops train-
ing after reaching a predetermined error value. As shown

Table 2: Continued.

Group
Sample
number

Sample serial
number

Input
Breaking pressure

(MPa)
MSE R2

Porosity
(%)

Permeability
(nD) (10-21 m2)

Specific surface
area (m2/g)

Throat
radius
(nm)

Measured
value

Predictive
value

Prediction set

41 N9 0.8 26.6 9.73 3 7.951 6.813

0.587 0.9885

42 N10 0.6 3.5 4.34 75 0.115 0.138

43 N11 0.4 1.8 4.71 43 0.402 0.429

44 N12 1.5 0.08 6.14 30 0.295 0.036

45 H11 1.5 12.1 1.59 7 5.312 4.338

46 H12 2.6 15.1 4.87 6 2.786 4.201

47 H13 1.7 10.7 2.66 10 1.373 1.393

48 H14 1.7 7.3 4.98 4 3.832 2.938

49 H15 0.7 13.5 1.47 8 3.475 3.562

50 CS20 11.6 40 39 7 4.8 4.676

51 CS23 24 15 17.4 24 0.3 0.389

52 Z1 1.2 10.2 2.52 7 1.247 1.293

53 Z2 24.2 5.4 34.32 18 17.2 17.514

54 Z3 2.5 45 2.44 22 12.826 12.978

55 Z4 5.1 12.1 46.8 13.9 13.9 13.725
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Figure 12: Convergence process of BP neural network training.
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in Figure 12, the target error of 0.005 is satisfied in 362
trainings.

4.4.2. Comparative Analysis of Predicted and Measured
Values of BP Neural Network. The predicted value could be
obtained by denormalising the prediction result and com-
paring it with the measured value. The results are shown
in Figure 13 and Table 2. The MSE values of the training
and test sets were 0.447 and 0.587, respectively. The R2

values were 0.992 and 0.9885, respectively, which showed
that the established BP neural network model has a very
good generalization ability. Figure 14 shows the relationship
between the measured and predicted values. The ratio of
the predicted value to the measured value of the training
and test sets of the BP neural network model was approxi-
mately 0.9876 and 0.9908, respectively. The closer the ratio

is to 1, the smaller the error between the measured value
and the predicted value and the better the training result
of the BP neural network model. Figures 14 and 15 illus-
trate the comparison of the prediction results of the training
and test sets, respectively. The measured and predicted
values of the test set are basically the same except for the
individual points.

Figures 16 and 17 show the prediction error graphs and
prediction relative error graphs of the training and test sets.
The relative errors of the training and test sets were within
0.5MPa, except for the individual samples, and the relative
errors were within 20%. Large or small errors could be found
in the breakthrough pressure measured using laboratory
tests. At present, the two methods for testing breakthrough
pressure are basically the indirect method and the direct
method. The indirect method mainly uses the Hg pressure
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method, whilst the direct method mainly adopts four
methods: the continuous method, the step method, the dis-
placement method, and the pulse method. The Hg intrusion
method is simple and fast, but its accuracy is low. In partic-
ular, when the anisotropy of the rock sample is significant,

the test results are quite different from the true breakthrough
pressure. The breakthrough pressure measured by the step
method is often higher than the actual breakthrough pres-
sure value of the rock sample. With the continuous method,
it is difficult to consider the efficiency of the test and the
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accuracy of the test results. Therefore, the prediction results
of the BP neural network model considered that the error is
within the range of the measured error. The model could be
used as a method to predict the breakthrough pressure of
mudstone. The prediction results could also provide a refer-
ence for indoor testing and a new idea for determining the
breakthrough pressure of mudstone [8].

5. Analysis and Discussion

The relationship between rock breakthrough pressure and
permeability obtained in this article shows a good correlation,
indicating a strong internal relationship between rock perme-
ability and breakthrough pressure. For rock test data from the
same source, the relationship between the breakthrough pres-
sure value of rock CO2 and saltwater permeability is more
obvious. For general rocks with a wide range of sources, a large
error could be found in predicting the breakthrough pressure
value by using their permeability. Therefore, to predict the
breakthrough pressure of rocks more accurately, analysing it
with other rock parameters is necessary.

Porosity, as an important indicator of the development
of rock pores, has some inherent relationships with the
breakthrough pressure. In general, the higher the rock
porosity is, the greater its breakthrough pressure. When
the porosity is less than 30%, the data shows that the rock
breakthrough pressure value decreases with the increase in
porosity. When the porosity is between 35% and 45%, the
breakthrough pressure value of a rock shows an increasing
trend with the increase in porosity. The connectivity of the
pores, the pore structure, and the morphology of rocks could
all have a great effect on its breakthrough pressure.

A strong correlation exists between the breakthrough
pressure of a rock and the maximum pore size. With the
increase in maximum pore size, the breakthrough pressure
decreases sharply. The overall R2 is 0.569, showing a strong
correlation. However, the differences in pore morphology,
rock composition, temperature, pressure conditions, and
other factors that affect the surface tension and contact angle
between the gas and liquid fluids to varying degrees cause
certain errors in the estimation of breakthrough pressure.

The specific surface area of a rock has multiple effects on
its breakthrough pressure. As the specific surface area of a
rock increases, its breakthrough pressure tends to increase.
The larger the specific surface area of the rock is, the finer
the particles and the lower the pore radius, resulting in an
increase in breakthrough pressure. The higher the degree
of cementation between rocks, the smaller the specific sur-
face area. A better degree of cementation could reduce the
permeability of rock pores, which could lead to an increase
in breakthrough pressure.

The natural density of rocks could reflect their compact-
ness to a certain extent. In general, the higher the density of
the rock is, the better its cementation and the higher its
breakthrough pressure. With the increase in depth, the
breakthrough pressure of a rock shows an upward trend.
The reason is that for the same type of rock, the deeper the
depth is, the denser the rock and the better the degree of
cementation, leading to a decrease in permeability and an

increase in breakthrough pressure. However, from the over-
all data, no correlation exists between the breakthrough
pressure of a rock and its density and depth.

The development of microfractures in rocks is affected
by TOC content; however, this is not the main factor. This
development is determined by the state of stress experienced
during the development process. According to the data col-
lected in this article, TOC content does not fundamentally
reflect the magnitude of the breakthrough pressure of a rock.

The analysis showed that the breakthrough pressure of a
rock is most closely related to its permeability and the max-
imum throat radius, followed by the relationship between
porosity and specific surface area, and the weakest relation-
ship is between the density and sampling depth, whilst
TOC content has no correlation. In this paper, many differ-
ent combinations of input variables were explored. Finally,
porosity, permeability, specific surface area, and maximum
throat radius were taken as the input variables, and the
breakthrough pressure of mudstone was used as the output
to minimise the prediction error. Approximately 70% and
30% of the data were randomly selected as the training set
and test set, respectively, to train the network to have predic-
tion ability, including 40 groups of data as the training set
and 15 groups of data as the test set. The MSE values of
the training and test sets were 0.447 and 0.587, respectively,
and the R2 values were 0.992 and 0.9885, respectively. These
findings are consistent with the BP ANN study of the
influencing factors of enhanced geothermal system produc-
tion performance [43] and another study of surface roughness
and energy consumption of machined parts [44]. The relative
errors of the training and test sets were within 0.5MPa, and
the relative errors were within 20% except for the individual
samples, showing that this method is more accurate and effec-
tive than other linear prediction methods [12]. Although the
flow of CO2 in rocks is a matter of multiphase saturated-
unsaturated coupling problem [45–47], the prediction results
of the BP neural network model was within the range of the
measured error and this model could be used as a method to
predict the breakthrough pressure of mudstone.

6. Conclusion

On the basis of the study of the relationship between the
breakthrough pressure of CO2 and other parameters (per-
meability, porosity, maximum throat radius, specific surface
area, density, depth, and TOC content), the following con-
clusions are drawn:

(1) The breakthrough pressure of mudstone is influ-
enced by many factors, but the degree of effect varies.
The analysis showed that the breakthrough pressure
of a rock is closely related to its permeability and
maximum throat radius, followed by its porosity
and specific surface area. The correlation with rock
density, sampling depth, and TOC content is the
weakest

(2) The breakthrough pressure of a rock is greatly influ-
enced by its geological background. According to the
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analysis, for rock samples from the same site, the
breakthrough pressure and other conventional
parameters (permeability, porosity, maximum throat
radius, specific surface area, density, depth, and TOC
content) show a strong regularity, and the relation-
ship between the rocks and other parameters is quite
different

(3) The relationship between the breakthrough pressure
of a rock and other parameters is strong or weak.
However, regardless of what single index is used to
predict the breakthrough pressure, a good prediction
effect could not be obtained. The breakthrough pres-
sure of a rock could be predicted accurately by
means of a neural network, which provides a new
means to determine the parameters of its break-
through pressure
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