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The total organic carbon (TOC) content is a critical parameter for estimating shale oil resources. However, common TOC
prediction methods rely on empirical formulas, and their applicability varies widely from region to region. In this study, a
novel data-driven Bayesian optimization extreme gradient boosting (XGBoost) model was proposed to predict the TOC
content using wireline log data. The lacustrine shale in the Damintun Sag, Bohai Bay Basin, China, was used as a case
study. Firstly, correlation analysis was used to analyze the relationship between the well logs and the core-measured TOC
data. Based on the degree of correlation, six logging curves reflecting TOC content were selected to construct training
dataset for machine learning. Then, the performance of the XGBoost model was tested using K-fold cross-validation, and
the hyperparameters of the model were determined using a Bayesian optimization method to improve the search efficiency
and reduce the uncertainty caused by the rule of thumb. Next, through the analysis of prediction errors, the coefficient of
determination (R2) of the TOC content predicted by the XGBoost model and the core-measured TOC content reached
0.9135. The root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE)
were 0.63, 0.77, and 12.55%, respectively. In addition, five commonly used methods, namely, ΔlogR method, random
forest, support vector machine, K-nearest neighbors, and multiple linear regression, were used to predict the TOC content
to confirm that the XGBoost model has higher prediction accuracy and better robustness. Finally, the proposed approach
was applied to predict the TOC curves of 20 exploration wells in the Damintun Sag. We obtained quantitative contour
maps of the TOC content of this block for the first time. The results of this study facilitate the rapid detection of the
sweet spots of the lacustrine shale oil.

1. Introduction

Recently, unconventional shale oil and gas reservoirs have
profoundly revolutionized the energy industry in North
America and China [1, 2]. Unlike marine shales, the Bohai
Bay Basin in northeast China mainly develops lacustrine
shale plays, with frequent changes in the sedimentary envi-
ronment and strong reservoir inhomogeneity. The accurate
and efficient identification of the sweet spots in thin shale
plays is a hot research issue. Studies found that the explora-
tion potential of shale oil is primarily associated with three
factors: the hydrocarbon generation potential, reservoir
capacity, and recoverability [3]. Organic matter is an essen-

tial material for determining the hydrocarbon generation
potential and hydrocarbon enrichment [4]. The total organic
carbon (TOC) content is a key indicator to evaluate organic
matter abundance [5]. An accurate TOC value is typically
obtained from Rock-Eval pyrolysis of the rock core sample;
however, drilling to obtain core samples is time-consuming
and expensive, resulting in the discontinuous and nonuni-
form distribution of core-measured TOC data. Moreover,
the thickness of organic-rich lacustrine shale plays is usually
very small; thus, it is unreasonable to use discrete core-
measured TOC data points to evaluate the hydrocarbon gen-
eration potential. Well logs have high resolution and provide
continuous data. The variation of the organic matter content
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affects the petrophysical properties of the formation, such as
radioactivity, resistivity, and density (DEN), forming a
unique logging response; therefore, the TOC curve can be
predicted using well logs [6].

At present, methods using well logs to predict the TOC
content include statistical correlation, overlapping methods,
multiple regression, and machine learning. Beers first pro-
posed using the natural gamma radioactivity intensity to
evaluate the TOC content [7]. Subsequently, many scholars
established empirical relationship equations between the
natural gamma (GR) logs and TOC in different areas [8,
9]. Swanson found that the radioactivity of organic matter
was mainly related to the adsorption amount of uranium
(U) in the formation. Thus, researchers predicted the TOC
content using the GR ray spectrum logs [10, 11], such as
establishing a linear correlation between the TOC content
and the U log [12] or establishing a multivariate statistical
relationship between the TOC content and the U log com-
bined with the thorium (Th)/U ratio log [13]. Schmoker
found that the main reason for a decrease in the DEN of
an organic-rich formation was the increase in the organic
matter content; therefore, a regression relationship was
established between the DEN log and TOC content [14].
Herron proposed a method to determine the TOC content
using the carbon-oxygen ratio log [15]. Passey et al. pro-
posed the △log R method [16], which overlaps the porosity
logs with the deep resistivity (RD) log and uses the non-
source rock zone as the baseline to establish an empirical
relationship formula between the TOC content and the well
logs. Subsequently, many scholars proposed improved
methods based on the △log R method [17–20]. In recent
years, the emergence of special logging methods has pro-
vided many approaches to predict TOC content. Examples
include calculating the TOC content using element capture
spectroscopy logs [21] or combining the nuclear magnetic
resonance logs and the DEN log to estimate TOC content
[22]. All the above methods are developed based on the rock
physical model (RPM) and rely extensively on empirical for-
mulas. Due to the third artificial intelligence boom, machine
learning has been widely used for lithology identification
[23–25] and reservoir evaluation [26, 27]. Machine learning
methods for TOC content prediction include support vector
machine (SVM) [28, 29], Gaussian process regression (GPR)
[30, 31], extreme learning machine (ELM) [32, 33], neural
network [34, 35], fuzzy clustering [36], and random forest
(RF) [37]. Machine learning is data-driven, which improves
the accuracy and efficiency of TOC prediction compared to
conventional methods.

Practically, most of the core samples that can be used as
machine learning samples are concentrated in key reservoir
zones. However, few labeled data points exist in nonreser-
voir zones, leading to a significant imbalance in training
samples. When individual models are used to optimize the
objective function, it is easy to fall into local minima, and
these models have poor generalization ability. Ensemble
learning can effectively solve this problem by training multi-
ple models and taking advantage of the composite output.
The individual models are used to create an optimal predic-
tive model, which provides higher prediction accuracy than

an individual model. A popular example of an ensemble
model is RF, which has been used for seismic reservoir pre-
diction [38], lithology identification [39], and hydrocarbon
source rock prediction [40]. However, RF is based on the
bagging technique and is sensitive to noise and prone to
overfitting when performing regression prediction. In con-
trast, the gradient boosting decision tree (GBDT) is based
on the boosting technique and generally performs better
for regression problems. Chen et al. first proposed the
extreme gradient boosting (XGBoost) method based on
GBDT [41]. Unlike the GBDT algorithm which utilizes
first-order derivative information, XGBoost carries out a
second-order Taylor expansion on the loss function and
contains a regular term in the objective function to find
the optimal solution to avoid overfitting, making the method
highly efficient, flexible, and portable. Yan et al. applied
XGBoost to well logging interpretation of tight sandstone
and found that it performed better for fluid identification
than the SVM and RF models [27]. Nguyen et al. used
XGBoost for predicting compressional and shear waves in
micritic limestones and achieved higher accuracy than an
artificial neural network (ANN) and SVM [42]. Gu et al.
used a particle swarm optimization (PSO) algorithm to
determine the hyperparameters of the XGBoost algorithm
and applied XGBoost to predict the permeability of tight
sandstone [43]. To date, the XGBoost model has not been
applied to the TOC prediction of reservoirs. Therefore, in
this study, a workflow consisting of XGBoost machine learn-
ing based on Bayesian optimization for TOC prediction is
proposed and applied to lacustrine shale oil in the Bohai
Bay Basin. The prediction results are compared with the △
log R method and other typical machine learning methods
to demonstrate the accuracy and reliability of the proposed
method.

2. Theory of Machine Learning

2.1. Theory of the XGBoost Model. XGBoost is an ensemble
boosting algorithm that consists of multiple decision tree
iterations. It is an improvement of the GBDT. Multiple clas-
sification and regression tree (CART) models are first con-
structed to make predictions using the dataset; these trees
are then combined into a new tree model. The models are
continuously and iteratively enhanced, with each iteration
generating a new tree model that fits the residuals of the pre-
vious tree. As more trees are added, the complexity of the
ensemble model becomes progressively higher until it
approaches the complexity of the data itself; thus, training
achieves optimal results [41]. If there are K regression trees,
the expression of the prediction function is defined as

yi∧ = 〠
K

k=1
f k xið Þ, f k ∈ F, ð1Þ

where f k is the kth regression tree, F represents the set of
CARTs, and yi∧ is the predicted value of the ith sample.
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The loss function L is represented by the predicted value
yi∧ and the true value yi:

L = 〠
n

i=1
l yi, yi∧ð Þ, ð2Þ

where n is the number of samples.
The prediction accuracy of the model is jointly deter-

mined by the deviation and the variance. The loss function
represents the deviation of the model, and the variance is
determined by the regular term Ω that suppresses the com-
plexity of the model. Therefore, the objective function Obj
can be defined as

Obj = 〠
n

i=1
l yi, yi∧ð Þ + 〠

K

k=1
Ω f kð Þ, ð3Þ

Ω f kð Þ = γT +
1
2
λ ωk k2, ð4Þ

where T represents the number of leaf nodes, ω is the leaf
weight value, γ is the penalty factor of the leaf tree, and λ
is the leaf weight penalty factor.

XGBoost uses a gradient boosting strategy where the
newly generated regression tree needs to fit the residuals of
the last prediction. The objective function at the tth iteration
can be rewritten as

L tð Þ = 〠
n

i=1
l yi, y∧

t−1
i + f i xið Þ� �

+Ω f tð Þ +C : ð5Þ

A Taylor expansion is performed on the objective func-
tion to obtain

L tð Þ ≅ 〠
n

I=1
l yi, y∧

t−1
i

� �
+ gi f i xið Þ + 1

2
hi f

2
i xið Þ

� �
+Ω f tð Þ, ð6Þ

where gi = ∂y∧t−1
i
lðyi, y∧t−1

i Þ is the first-order derivative of the
loss function and hi = ∂2y∧t−1

i
lðyi, y∧t−1

i Þ is the second-order

derivative of the loss function.
Therefore, it is only necessary to calculate the gi and hi

values of the loss function for each step and optimize the
objective function to obtain f ðxÞ for each step. Finally, an
optimal ensemble model is obtained based on the additive
method.

2.2. Bayesian Optimization of the Hyperparameters. When a
machine learning model is established, the hyperparameters
need to be determined in advance. The selection of the
hyperparameters has a significant impact on prediction
accuracy. Therefore, it is important to obtain the optimal
combination of hyperparameters. The optimization of the
hyperparameters is a typical black-box optimization prob-
lem. Commonly used optimization methods include grid
search (GS), random search (RS), genetic algorithm (GA),
PSO, and Bayesian optimization [44]. The GA and PSO
algorithms require a sufficient number of initial sample

points and are not very efficient for optimization. At present,
GS, RS, and Bayesian optimization are the most common
methods. The GS method needs to traverse all possible
parameter combinations, which is very time-consuming for
a large data volume and many hyperparameter dimensions.
In contrast, the RS randomly samples the hyperparameters
in a certain range and selects them by comparing the perfor-
mance of different combinations, which does not guarantee
that the optimal combination will be obtained. Moreover,
the GS and RS are computed independently for each hyper-
parameter combination. The current computation does not
use the result of the searched points, but this information
guides the search process and can improve the quality of
the results and the search speed. In contrast, Bayesian opti-
mization selects the most promising hyperparameters by
evaluating the past results, enabling the selection of the
appropriate hyperparameters with fewer iterations than the
RS method [45, 46]. Theoretically, Bayesian optimization
solves the global optimal solution of the objective function:

x∗ = argmin
x∈X

f xð Þ, ð7Þ

where x denotes the hyperparameters to be optimized, X is
the set of hyperparameters to be optimized, f ðxÞ is the objec-
tive function, and x∗ is the optimal combination of hyper-
parameters. The core of the Bayesian optimization
algorithm consists of two parts: first, the posterior probabil-
ity distribution is calculated based on past results using GPR
to obtain the expected mean and variance of the hyperpara-
meters at each sampling point. Second, an acquisition func-
tion is constructed to determine the next sampling point
based on the posterior distribution.

2.2.1. Gaussian Process. The Gaussian process (GP) is a gen-
eralization of the multivariate Gaussian probability distribu-
tion defined by the mean function m ðxÞ and the covariance
function kðx, x′Þ.

m xð Þ = E f xð Þ½ �, ð8Þ

k x, x′
� �

= E f xð Þ −m xð Þð Þ f x′
� �

−m x′
� �� �h i

: ð9Þ

The GP can be expressed as

f xð Þ ∽ GP m xð Þð , k x, x′
� �� �

: ð10Þ

For convenience in practical applications, let the prior
mean function be 0. There exists a Gaussian distribution sat-
isfying

p f ∣ X, θð Þð =N 0,K X,Xð Þð Þ: ð11Þ
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The covariance matrix KðX,XÞ can be expressed as

K X,Xð Þ =
k x1, x1ð Þ ⋯ k x1, xnð Þ

⋮ ⋱ ⋮

k xn, x1ð Þ ⋯ k xn, xnð Þ

0
BB@

1
CCA: ð12Þ

The corresponding covariance function can be expressed
as

k x, x′
� �

= exp −
x − x′
�� ��2

2

 !
: ð13Þ

According to the nature of the GP, after adding the sam-
ple X ∗ to be predicted, the new Gaussian distribution can be
expressed as

f

f ∗

 !
∽N 0,

K X,Xð Þ K X,X∗ð Þ
K X∗,Xð Þ K X∗,X∗ð Þ

" # !
: ð14Þ

Then, the joint posterior distribution of f ∗ is

p f ∗ ∣ X, f ,X∗ð Þð =N f ∗h i, cov f ∗ð Þð Þ: ð15Þ

By evaluating the mean and covariance matrices, f ∗ can
be sampled from the joint posterior distribution.

2.2.2. Acquisition Functions. The acquisition function deter-
mines the next sample point based on the posterior results of
the probabilistic agent model. Usually, the selection of sam-
ple points for the acquisition function requires both explor-
ing new areas in the objective space and exploiting areas that
are already known. The exploitation refers to searching for
the global optimal solution based on the current optimal
solution to improve the mean value of the objective function.
The exploration refers to detecting the unevaluated sample
points to reduce the uncertainty of the objective function.
When the GP is used as the probabilistic agent model, the
four commonly used acquisition functions include probabil-
ity of improvement (PI), entropy search (ES), upper confi-
dence bound (UCB), and expected improvement (EI) [45].
In this paper, the EI is chosen as the acquisition function;
its mathematical expression is

aEI xð Þ = E max 0, f ′ − f xð Þ ∣ x,D
�h i

, ð16Þ

where D = ðX, θÞ represent the observations and f ′ is the
minimum value of the current observation of f .

2.3. TOC Prediction Process. The flowchart of the TOC pre-
diction based on the Bayesian optimization XGBoost model
is shown in Figure 1. It contains three parts, namely, data
preprocessing, model building, and model application,
which are described as follows.

(1) Data preprocessing: we first collect the core-
measured TOC data and the corresponding well log

data. The data are depth-corrected, outlier-proc-
essed, and normalized, and then, the well logs rele-
vant to the TOC prediction are selected as machine
learning input features using linear regression cross-
plots and Pearson correlation coefficient techniques.
Finally, the processed data are randomly divided into
a training set and a test set using an appropriate rule

(2) Model building: we establish the initial XGBoost
model and then optimize the hyperparameters of
the model using the Bayesian optimization algorithm

(3) Model application: the optimal XGBoost model is
applied to the unused well logs to predict the TOC
content

3. Geology Settings and Data Analysis

3.1. Study Area. The Damintun Sag is located in the north-
ern part of Liaohe Depression in the Bohai Bay Basin in
northeast China, covering a region of about 800 km2

(Figure 2(a)). It is a Mesozoic-Cenozoic continental sedi-
mentary sag developed in the basement of the Archean
metamorphic rock and Proterozoic carbonate rock. Struc-
turally, it has an irregular triangular shape that is wider in
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Figure 1: Flowchart of TOC prediction using the Bayesian
optimization XGBoost model.
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the south and narrower in the north and bounded by three
major faults. The main source rocks are the oil shale plays
of the fourth member and the dark mudstone plays of the
third member in the Paleogene Shahejie Formation (E2S4,
E2S3). The target formation of this study is the lower sub-
member of E2S4 (E2s4

L), located in the central area of the
Damintun Sag (Figure 2(b)), covering an area of about
200 km2. Among 137 wells drilled in the E2s4

L formation,
favorable oil and gas conditions were observed in 53 wells,
and 4 wells provide industrial oil production.

During the sedimentation of E2s4
L, the lake level oscillation

caused by tectonic movement has led to cyclic changes in the
sedimentary environments, and the lithology of the formation
shows “sandwich” characteristics (Figure 3). The upper part
is the E2s4

L-I group, characterized by dark oil shales, and
thin-bedded sandstone is locally observed. The middle part is
the E2s4

L-II group, which is composed of siltstone and argilla-
ceous dolomite. The lower part is the E2s4

L-III group, charac-

terized by intercalated oil shales, marl, and dolomite. The
total thickness of E2s4

L ranges from 20m to 220m, the TOC
content ranges from 2% to 12.8%, R0 ranges from 0.4 to
0.6%, and the organic matter is mainly type I, with some types
II1 and II2. The hydrocarbon generation intensity is about
4200 × 104 t/km2. The latest prediction showed that the E2s4

L

formation has 20:9 × 108 t hydrocarbon resources, demon-
strating significant potential for shale oil exploration [47].

3.2. Data Analysis. The data used in the study is from the key
exploration well S352 and consists of well log data and core-
measured TOC data. Well S352 was drilled from 3150 to
3352m to encounter E2s4

L formation, and 145.92m of sealed
coring was completed at depths of 3169-3348.97m, obtain-
ing a core length of 122.47m, with a core recovery rate of
83.9%. A total of 107 experimental core samples were
obtained at nonequal intervals in this core section (3169-
3348.97m). A Leco carbon and sulfur analyzer was used to

Damintun Sag

Beijing

Bohai Bay Basin

N

0 10 km

Anfutun str
ucture

Wanghutun Slope

Qianjin
 Tectonic B

elt
Jin

anbao Tectonic B
elt

Fah
an

iu Tec
tonic 

Belt

Santaizi Sub-Sag

Rongshengbao Sub-Sag

S601

S119

S116S115

S147

J64

S352

A106

A109

S208

J12

S51

S221

(a) (b)

South
China
Sea

Sag boundary
Study
area

Fault

Sub-Sag

Well

Figure 2: Location of the study area.
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measure the TOC content according to Chinese standard
GB/T 191452003, and 104 valid TOC data points were
obtained. The available conventional well logs include GR,
natural potential (SP), well diameter (CAL), neutron
(CNL), DEN, transit time (AC), RD, and natural gamma
energy spectrum (U, TH, K). Before using data, depth cor-
rection and outlier filtering were performed to ensure that
the core-measured TOC data and the well log data had a
one-to-one correspondence. Table 1 shows the distribution
characteristics of the preprocessed well logs, including the
mean, maximum and minimum values, standard deviation,
skewness, and kurtosis. It can be seen that most of the log

curves satisfy a Gaussian distribution, except for the RD,
which has a large deviation. Thus, we applied a logarithmic
transformation of the RD data before use.

Crossplots were created to analyze the correlation
between the core-measured TOC content and the well logs,
and linear regression was used to fit the data. The coefficient
of determination (R2) was calculated to evaluate the good-
ness of fit of the linear model. It is defined as

R2 = 1 −
∑n

i=1 yi − y∧ið Þ2
∑n

i=1 yi − �yið Þ2 : ð17Þ
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Figure 3: Geological section of E2s4
L submember of the study area.
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The crossplots are shown in Figure 4. It is observed that
AC, CNL, RD, GR, TH, and U have a positive linear rela-
tionship with the TOC content. R2 of AC is the highest
(0.3431), followed by CNL (0.2984). The linear relationship
between RD, GR, TH, and the TOC content is weaker, with
R2 values of 0.0408, 0.0112, and 0.0957, respectively. The
DEN and potassium (K) have a negative linear relationship
with the TOC content, with higher R2 for DEN (0.2805)
and lower R2 for K (0.1002).

For the multisource data, Pearson’s correlation coeffi-
cient was calculated to measure the degree of linear correla-
tion between the well log data and the TOC content. It is
calculated using

px,y =
cov x, yð Þ
σxσy

, ð18Þ

where px,y reflects the degree of linear correlation
between variables x and y, cov ðx, yÞ is the covariance of var-
iables x and y, σx is the standard deviation of x, and σy is the
standard deviation of y.

The correlation between the variables can be evaluated
by creating a heat map of the Pearson correlation coefficient.
As shown in Figure 5, the values represent the correlation
coefficient px,y. A negative number represents negative cor-
relation, a positive number represents positive correlation,
0 means no correlation, and a value close to 1 or -1 indicates
a strong correlation. It can be seen that the highest correla-
tion occurs between AC and TOC (0.59), followed by CNL
(0.55) and DEN (-0.53), respectively. The correlation
between GR, U, and TOC is relatively poor (0.02 and 0.07,
respectively).

In summary, none of the well logs were significantly
correlated with the TOC content. However, the results
provide a ranking of the well log data according to their
association with the core-measured TOC content. Thus,
we can identify and remove irrelevant and redundant fea-
tures from the training dataset, reduce the complexity of
the model by reducing the dimensionality of the input
data, and improve the efficiency of the model [37].
Therefore, based on the results, we selected six logs
(AC, DEN, CNL, K, TH, and RD) as input training
features.

4. Evaluation Method of Model Performance

4.1. K-Fold Cross-Validation (CV). In machine learning, the
data are typically randomly divided into three parts: train-
ing set, test set, and validation set. However, we had very
few labeled data points, resulting in strong uncertainty
when using a small validation dataset to evaluate the
model performance and robustness. The optimum method
to avoid this problem is K-fold CV. The dataset is split
into K parts, and for each iteration, K − 1 parts are used
as the training set, and the remaining part is used as the
test set, obtaining K models. The K-fold CV makes use
of all data, substantially improves the learning ability of
the model, and increases the model’s robustness. In this
paper, following the suggestions of Zhang et al. [48] and
Wong [49], the folding number K was set to 5 and is
related to the trade-off between computation time and bias
(Figure 6).

4.2. Comparison of Models. We compared the performance
of the XGBoost model with other machine learning algo-
rithms. Four methods were selected, i.e., RF, SVM, K
-nearest neighbor (KNN), and multiple linear regression
(MLR). The detailed description of these algorithms can
be found in the book of Mohri et al. [50]. The hyperpara-
meters of each machine learning algorithm were deter-
mined using a Bayesian optimization method to ensure
fairness. Additionally, we included the most widely used
ΔlogR method for comparison. This method overlays the
RD logs in logarithmic coordinates and the porosity logs
in arithmetic coordinates to calculate the TOC content in
organic-rich shales, where the two logs are separated.
The difference between the two logs, ΔlogR, is then
derived empirically using

ΔlogR = log 10 R
Rbaseline

+ 0:02 Δt − Δtbaselineð Þ
	 


, ð19Þ

where R is the resistivity (Ω·m), Δt is the measured transit
time (μs/ft), and Rbaseline and Δtbaseline are the resistivity
and transit time values, respectively, where the two logs
overlap in the baseline of the organic-deficient zone.

The ΔlogR and the organic maturity are used to
determine the TOC content in the organic-rich zones,
as shown in

Table 1: Results of the statistical analysis of well S352 well logs.

GR RD AC DEN CNL U TH K TOC
API ohm·m μs/ft g/cm3 % ppm ppm % wt.%

Mean 53.34 18.23 91.56 2.27 36.84 2.14 6.99 1.52 4.11

Std 7.61 41.11 14.19 0.17 7.41 0.71 1.78 0.56 2.37

Max 70.73 1.76 117.95 2.64 49.23 3.97 10.27 3.50 10.18

Min 29.68 296.08 62.80 1.96 19.89 0.63 2.45 0.52 0.29

Skewness -0.52 5.80 -0.42 0.47 -0.57 0.26 -0.39 1.33 0.39

Kurtosis 1.64 35.71 -0.81 -0.55 -0.61 -0.25 -0.12 2.07 -0.49
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TOC = ΔlogR × 10 2:297 − 0:1688LOMð Þ + ΔTOC, ð20Þ

where LOM is the level of organic maturity. ΔTOC is the
TOC content background level in organic-rich shale.

4.3. Evaluation Criteria. In addition to R2, we chose the root
mean square error (RMSE), the mean absolute error

(MAE), and the mean absolute percentage error (MAPE)
to evaluate the model performance. These criteria are
defined as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
yi − y∧ij j2

s
, ð21Þ
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Figure 4: Crossplots between core-measured TOC and well logs: (a) RD-TOC, (b) AC-TOC, (c) DEN-TOC, (d) CNL-TOC, (e) GR-TOC, (f)
U-TOC, (g) TH-TOC, and (h) K-TOC.
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MAE =
1
n
〠
n

i=1
yi − y∧ij j, ð22Þ

MAPE =
1
n
〠
n

i=1

yi − y∧ij j
max ε, yij jð Þ , ð23Þ

where yi is the true value, yi∧ is the predicted value, ϵ is a
positive minimum value, and n is the number of samples.

5. Results and Discussion

In this study, a 5-fold CV was adopted to test the model per-
formance and robustness. The code was implemented on a
microcomputer with an Intel Core i7-7700 CPU with
32GB RAM and a Windows 10 system. The programming
language was Python. The SVM, KNN, MLR, and RF models
were implemented in the open-source Scikit-learn machine
learning package. We used the open-source XGBoost toolkit
to run the XGBoost algorithm, and the △log R method code
was written by the authors.

5.1. Comparison of Model Performance. The dataset was ran-
domly divided into a training set and a test set for the 5-fold
CV. All data were normalized to eliminate the effect of unit
and scale differences between different well logging param-
eters. The crossplots of the predicted and core-measured
TOC content are shown in Figure 7; the solid line is the
1 : 1 line, and the dashed line is the linear regression line.
It should be noted that the ΔlogR method used all avail-
able data for analysis, and no 5-fold CV was used. The
results showed that the XGBoost model has the best pre-
diction performance, with R2 of 0.9135, followed by the
RMF model with an R2 value of 0.8931 and the ΔlogR
method with an R2 value of 0.8345. In contrast, the other
three methods have mediocre prediction performances,
with R2 values around 0.74.

Furthermore, we compared the RMSE and MAPE of the
different methods using 5-fold CV. Figure 8 shows the
RMSEs of the test set, which indicates that the RMSEs of
XGBoost and RF are substantially lower than those of the
other methods. Moreover, it can be inferred that the

XGBoost model is the most reliable because its RMSE
value is the lowest in all cases, except when k is 1.
Figure 9 shows the MAPEs of the test set. In terms of
the relative error performance, the XGBoost model outper-
forms the other models, with a maximum MAPE value of
16.14% for k = 4, a minimum of 9.77% for k = 1, and a
mean MAPE value of 12.55%. The second-best model is
RF, with a maximum MAPE value of 17.18% for k = 4, a
minimum of 9.05% for k = 1, and a mean MAPE value
of 12.97%. The MAPE of SVM fluctuates considerably;
the maximum value is 22.86%, and the minimum value
is 11.06%. The mean MAPE value of KNN is 16.49%.
The MLR had the lowest performance, with MAPE values
exceeding 20% in each test.

Table 2 lists the mean values of the MAE, RMSE, and
MAPE of the different methods for 5-fold CV. The mean
values of the MAE, RMSE, and MAPE of the XGBoost
model are 0.63, 0.77, and 12.55%, respectively, and each is
the lowest value compared with the other methods. The
error analysis results indicate that the XGBoost method
has the highest accuracy, providing a significant advantage
over other machine learning methods, as well as the ΔlogR
method, for TOC prediction.

5.2. Model Validation. We selected well S352 to validate the
prediction results of the TOC content of different
methods. The well logs, core-measured TOC data, and
TOC curves predicted by different methods are shown in
Figures 10 and 11. The first track represents the mud log-
ging lithology, the second track shows the lithology indica-
tor logs, the third track is the resistivity logs, the fourth
track shows the porosity logs, the fifth track is the GR
ray spectrum logs, and the 6th-10th tracks are the TOC
curves predicted by the △log R, MLR, KNN, SVM, RF,
and XGBoost methods; the red dots represent the core-
measured TOC data.

Figure 10 shows the predicted results of the E2s4
L-I

group. Between 3150 and 3200m, the lithology is oil shale,
and the fluctuations of the well logs are small, indicating
good formation homogeneity. The TOC curves predicted
by all methods are highly correlated with the core-
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Figure 6: Fivefold cross-validation.
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measured TOC content, and the trends are similar. How-
ever, between 3200 and 3236m, the lithology starts to
change. The resistivity logs show high resistance characteris-
tics, and the core-measured TOC content increases signifi-
cantly. The prediction results of the XGBoost, RF, and
△log R methods are in good agreement with the core-
measured TOC content. In contrast, the predicted values of
the MLR, SVM, and KNN methods are considerably smaller
than the core-measured TOC content.

Figure 11 shows the prediction results of the E2s4
L-II

and E2s4
L-III groups. The depth of the E2s4

L-II group is
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Figure 7: Crossplots of the predicted TOC and core-measured TOC content: (a) XGBoost model, (b) RF model, (c) △log R method, (d)
KNN model, (e) SVM model, and (f) MLR model.
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Table 2: Mean error values of different methods for 5-fold CV.

Model MAE RMSE MAPE (%)

XGBoost 0.63 0.77 12.55

RF 0.71 0.82 12.97

SVM 0.71 0.88 16.21

KNN 0.82 1.18 16.42

Linear 1.26 1.52 23.87

ΔlogR 0.79 1.07 14.80
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3248-3278m, and the lithology is argillaceous dolomite
interbedded with a small amount of oil shale. The core-
measured TOC content ranges from 0.17% to 3.84%, indi-
cating a weak hydrocarbon generation potential. The accu-
racy of the predictions of the different methods is highly
variable. The XGBoost and RF methods show higher pre-
diction accuracy than the other methods. The TOC values
predicted by the △log R method are significantly larger
than the core-measured TOC values. The likely reason is
that the mineral composition of this play differs greatly
from that at the baseline formation; thus, the AC and
RD logs are substantially affected by the lithology and do
not reflect the changes in organic matter content. The

depth of the E2s4
L-III group is 3278-3350m. This group

shows strong heterogeneity. Oil shales and argillaceous
dolomite are frequently interbedded, and the thickness of
each layer is less than 3m. The well logs show fluctua-
tions, and the TOC trend is unclear. The core-measured
TOC content ranges from 0.29% to 9.77%. The XGBoost
method provides the highest agreement with the core-
measured TOC data, followed by the RF. The predicted
values obtained from the △log R, MLR, KNN, and SVM
methods are substantially lower than the core-measured
TOC values.

Overall, the prediction results from well S352 show that
the Bayesian optimization XGBoost method performed most
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reliably in nonhomogeneous formations, providing the high-
est prediction accuracy and best generalization ability.
Thus, this method is more suitable for TOC prediction
of lacustrine shale oil than the other methods used in
this study.

5.3. Prediction of the TOC Distribution. We selected 20
exploratory wells drilled in the E2s4

L formation to predict
the TOC content using the XGBoost model. The contour
maps of the predicted TOC content of the E2s4

L-I, E2s4
L-II,

and E2s4
L-III groups in the study area are shown in

Figure 12. In the E2s4
L-I group, the TOC content is relatively

higher on the west side of well A10-A49-A95 (>4%), and the

highest value occurs near well S166 (>6%). The area with a
TOC content exceeding 4% is 73 km2 (Figure 12(a)). In the
E2s4

L-II group, the TOC content is relatively low, ranging
from 1.5% to 3.1%. The area with a TOC value greater than
2% covers 115 km2 (Figure 12(b)). In the E2s4

L-III group,
areas with a TOC content greater than 4% are located near
wells S224, A49, A104, Sh25, and Sh17, with an area of
23 km2. The TOC content of the other areas is below 4%
(Figure 12(c)). Vertically, the E2s4

L-I group has the highest
TOC content, followed by the E2s4

L-III group and the
E2s4

L-II group. Horizontally, high-quality source rocks are
mainly distributed on the west slope of the study area and
sporadically in other regions.
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6. Conclusions

We proposed a robust data-driven Bayesian optimization
XGBoost model to predict the TOC content using wireline
log data. The data were obtained from the Damintun Sag,
Bohai Bay Basin, China, consisted of well logs and core-
measured TOC data. Linear regression crossplots were
obtained, and Pearson’s correlation coefficients were calcu-
lated to evaluate the relationship between the well logs and
the core-measured TOC data. The results indicated that
none of the well logs were significantly correlated with the
TOC content. However, the correlation analysis enabled us
to identify and remove irrelevant and redundant well log-
ging features for the TOC prediction and reduce the model
complexity by reducing the dimensionality of the input data.
The model performance was evaluated using 5-fold CV. The

quantitative error analysis of the four criteria showed that
the proposed approach performs better compared to the tra-
ditional method (ΔlogR), with R2 increasing from 0.8345 to
0.9135 and MAE, RMSE, and MAPE decreasing from 0.79,
1.07, and 14.80% to 0.63, 0.77, and 12.55%, respectively.
Also, the XGBoost model outperforms other popular
machine learning algorithm (i.e., RF, SVM, KNN, and
MLR) in terms of robustness, accuracy, and generalization
in predicting TOC for strongly nonhomogeneous lacustrine
shale plays. We used the proposed approach for the TOC
prediction of 20 exploration wells in the Damintun Sag
and obtained contour maps of the TOC content in the
E2s4

L formation. The maps enabled the identification of
areas with high hydrocarbon generation potential, which is
useful for finding sweet spots. Generally, machine learning
relies extensively on the quality and quantity of the training

5

5
4

3

5

3
3

4

4

3

5 4 4

4

6
s166 sh25

s230
s252

s280s224 a95

s299

a68
a67

a104

a112
a114 a2

j33a10
a49

sh21
sh17

sh14

s352

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

TOC (wt.%)
6.0

5.5

0 2.5 km 5 km
N

Reverse fault

Normal fault

Pinchout line

Well

Contour of TOC4

E2S4
L-I

(a)

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

TOC (wt.%)
6.0

5.5

Reverse fault

Normal fault

Pinchout line

Well

Contour of TOC4

3
2.5

2.5

1.5
2

1.5

2

2.5

1.5

2.5

2.53

2 2

s166
sh25

s230

s252

s280s224 a95

s299

a68
a67

a104

a112
a114 a2

j33a10
a49

sh21
sh17

sh14

s352

N
0 5 km2.5 km

E2S4
L-II

(b)

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

TOC (wt.%)
6.0

5.5

Reverse fault

Normal fault

Pinchout line

Well

Contour of TOC4

4

4

4

4

3 4

3

3

5

s166 sh25

s230
s252

s280s224 a95

s299

a68
a67

a104

a112
a114 a2

j33a10
a49

sh21
sh17

sh14

s352

N
0 5 km2.5 km

E2S4
L-III

(c)

Figure 12: Contour maps of the predicted TOC content: (a) E2s4
L-I group, (b) E2s4

L-II group, and (c) E2s4
L-III group.

15Geofluids



data. As new exploration occurs, additional data should be
added in real time to improve the reliability and generaliza-
tion ability of the model. In the future, we plan to create a
database for machine learning. In addition to predicting
the TOC content, this database can be used to predict other
petrophysical and geomechanical properties of reservoirs.
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