
Research Article
Effect of Lower Surface Roughness on Nonlinear Hydraulic
Properties of Fractures

Jinglong Li, Xianghui Li , Bo Zhang, Bin Sui, Pengcheng Wang, and Mi Zhang

School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China

Correspondence should be addressed to Xianghui Li; xianghui_li_sdu@126.com

Received 31 December 2020; Revised 28 January 2021; Accepted 2 February 2021; Published 11 February 2021

Academic Editor: Bin Gong

Copyright © 2021 Jinglong Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study investigates the effect of fracture lower surface roughness on the nonlinear flow behaviors of fluids through fractures
when the aperture fields are fixed. The flow is modeled with hydraulic pressure drop = 10−4 ~ 105 Pa/m by solving the Navier-
Stokes equations based on rough fracture models with lower surface roughness varying from JRC = 1 to JRC = 19. Here, JRC
represents joint roughness coefficient. The results show that the proposed numerical method is valid by comparisons between
numerically calculated results with theoretical values of three parallel-plate models. With the increment of hydraulic pressure
drop from 10-4 to 105 Pa/m spanning ten orders of magnitude, the flow rate increases with an increasing rate. The nonlinear
relationships between flow rate and hydraulic pressure drop follow Forchheimer’s law. With increasing the JRC of lower
surfaces from 1 to 19, the linear Forchheimer coefficient decreases, whereas the nonlinear Forchheimer coefficient increases,
both following exponential functions. However, the nonlinear Forchheimer coefficient is approximately three orders of
magnitude larger than the linear Forchheimer coefficient. With the increase in Reynolds number, the normalized transmissivity
changes from constant values to decreasing values, indicating that fluid flow transits from linear flow regimes to nonlinear flow
regimes. The critical Reynolds number that quantifies the onset of nonlinear fluid flow ranges from 21.79 to 185.19.

1. Introduction

Hydraulic properties of rock fractures are very important for
engineering practices such as enhanced oil recovery [1], CO2
sequestration [2], and geothermal energy development [3].
The permeability/transmissivity is commonly calculated/pre-
dicted based on Darcy’s law using parallel-plate models,
neglecting the effects of fracture surface roughness and iner-
tial force [4–6]. However, for fluid flow in karst systems and
in high-pressure pump tests, the fluid flow enters the nonlin-
ear flow regime and the effect of surface roughness of frac-
tures should be considered [7–9].

The rough surface of fractures gives rise to the increase in
the flow paths, decreasing the permeability/transmissivity
[10–13]. Many methods have been used to characterize frac-
ture surface roughness, such as root-mean-square of first
derivative of asperity height (Z2), Hurst exponent (H), fractal
dimension (Df ), and joint roughness coefficient (JRC) [14–
17]. JRC is widely used in rock mechanics and rock engineer-

ing due to its simplicity [18]. However, the determination of
JRC is subjective, significantly depending on personal experi-
ences [19]. Therefore, some empirical functions have been
proposed to quantitatively determine JRC, such as the follow-
ing [17, 20]:

JRC = 32:2 + 32:47 log Z2,

Z2 =
1
M

〠 zi − zi−1
xi − xi−1

� �2
" #1/2

,
ð1Þ

where xi and zi are the coordinates of the fracture profile
along length and height directions, respectively, and M is
the number of sampling points along the length direction;
xi − xi−1 is the interval of sampling points along the length
direction and zi − zi−1 is the corresponding height variation.
It is generally accepted that with the increase in fracture sur-
face roughness, the permeability/transmissivity decreases.
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For example, Liu et al. [21] reported that the transmissivity of
rough fractures with Z2 = 0:5 is 50~70% of that of smooth
fractures with Z2 = 0, when the ratio of mechanical aperture
to the length of fractures varies from 0.01 to 0.10. Huang
et al. [22] concluded that when JRC = 6 ~ 18, the contact area
accounts for 5~27% of the total fracture plane during shear,
and the permeability of rough fracture models is approxi-
mately 26~80% of that of smooth fracture models. However,
the apertures are shear-induced or assigned following Gauss-
ian distributions with the lower surface to be a smooth plane
[22, 23]. In the nature, the lower surface of fractures is rough
and should be taken into consideration.

In the early studies, the cubic law is used to predict the
flow behaviors of fluids through rock fractures, which is suit-
able for parallel-plate models [24–26]. Later, to extend the
model to natural fractures with rough surfaces, the cubic
law is modified by investigating the relationships between
hydraulic aperture and mechanical aperture [18, 27].
Although the modified cubic law can be used to characterize
fluid flow through rough fractures, the model is also simpli-
fied, in which the lower surface and the upper surface are
well-mated deviating from the natural fracture profiles.
Recently, the fractures with different lower and upper profiles
are established and fluid flow is modeled by solving the
Navier-Stokes equations [28–30]. Thus, the nonlinear flow
characterizations can be well understood. However, when
addressing the effect of fracture surface roughness, the pro-
files of both lower surface and upper surface are changed
[31], and the previous studies did not estimate the effect of
lower surface roughness of fracture on the nonlinear flow
behaviors of fluids when the aperture fields are fixed.

The present study is aimed at studying the nonlinear
hydraulic properties of rough fractures with varying rough-
ness of lower surfaces. First, three parallel-plate models are
established and the Navier-Stokes equations are solved to
model fluid flow. The results are compared with theoretical
values, verifying the validity of proposed numerical method.
Then, six rough models with the joint roughness coefficient
of the lower surface varying from 0 to 19 are utilized to esti-
mate the nonlinear hydraulic properties. Finally, the stream-
line distributions at different hydraulic pressure drops, the
nonlinear relationships between hydraulic pressure drop
and flow rate, the evolutions of Forchheimer coefficients a
and b, the relationships between normalized transmissivity
and Reynolds number, and the variations in critical Reynolds
number versus lower surface roughness are systematically
analyzed and discussed.

2. Theoretical Background

Assuming that the water is a kind of incompressible Newto-
nian fluid, the fluid flow can be governed by the Navier-
Stokes equations, written as follows [24, 32, 33]:

ρ
∂u
∂t

+ u ⋅ ∇ð Þu
� �

= −∇ρ+∇ ⋅ T + ρf , ð2Þ

where u is the flow velocity tensor, ρ is the fluid density, p is
the hydraulic pressure, T is the shear stress tensor, t is the

time, and f is the body force tensor. The convective accelera-
tion terms, ðu ⋅ ∇Þu, take into consideration the effect of iner-
tial forces and are the source of nonlinear relationships
between flow rate and hydraulic pressure drop. The nonline-
arity of fluid flow is generally affected by the variations in
local aperture and surface roughness.

The Reynolds number (Re) that is defined as the ratio of
viscous force to inertial force can be calculated according to
the following [23, 34]:

Re =
ρQ
μw

, ð3Þ

where Q is the flow rate, μ is the dynamic viscosity, and w is
the width of fractures. For 2D fractures, it is assumed that
w = 1 by default.

When fluid flows with a low Re, the inertial force is neg-
ligibly small with respect to viscous force. In such a case, the
nonlinear terms, ðu ⋅ ∇Þu, can be deleted. Thus, Equation (2)
reduces to the cubic law by neglecting the effect of fracture
surface roughness, written as follows [35]:

Q = −
we3

12μ
∇P, ð4Þ

where e is the hydraulic aperture, ∇P is the hydraulic pressure
drop that equals to ΔP/ΔL, and L is the fracture length.

Equation (4) implies that Q is linearly proportional to
∇P, which is also linearly correlated to the cube of e. Equa-
tion (4) is applicable for modeling fluid flow at a low Re
through parallel-plate models. Due to its simplification,
Equation (4) has been widely used for estimating hydraulic
properties of fractured rock masses. When the Re is larger
than a critical value, fluid flows into the nonlinear flow
regime, in which Q is nonlinearly correlated with ∇P. In
such a case, Forchheimer’s law can be employed, written as
follows [36, 37]:

−∇P = aQ + bQ2, ð5Þ

where a and b are the linear coefficient and nonlinear coeffi-
cient, respectively. The linear coefficient a can be expressed
as follows [38]:

a =
12μ
we3

: ð6Þ

Equation (4) can be rewritten as follows:

−∇P =
μQ
Tw

, ð7Þ

where T is the transmissivity and is correlated to the cube
of e, written as follows:

T =
e3

12
: ð8Þ
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Thus, Equations (4) and (5) yield the following Equa-
tions (9) and (10), representing the transmissivity in the
linear and nonlinear flow regimes, respectively [39].

T =
−μQ
w∇P

= T0, ð9Þ

T =
−μQ
w∇P

=
T0

1 + wbQT0/μð Þ , ð10Þ

where T0 is the initial transmissivity that equals to the
transmissivity in the linear flow regime.

Substituting Equation (3) into Equation (10) gives the
following [39]:

T
T0

=
1

1 + β Re
, ð11Þ

where β is a coefficient that can be expressed as follows:

β =
w2bT0

ρ
: ð12Þ

It is assumed that when T/T0 = 0:9, the corresponding Re
is the critical Reynolds number (Rec) that quantifies the onset
of nonlinear flow of fluids [39, 40]. T/T0 = 0:9 implies that
the nonlinear flow-induced transmissivity decrease occupies
10% of the initial transmissivity. When the applied Re is
smaller than Rec, the fluid flow is in the linear flow regime
and Equation (4) can be employed. When the applied Re is
larger than Rec, the fluid flow is in the nonlinear flow regime
and Equation (2) should be solved. Substituting T/T0 = 0:9
into Equation (11) yields the following:

Rec =
1
9β

: ð13Þ

3. Verification of the Numerical Method

To verify the validity of the numerical method, three parallel-
plate models with a length of 100mm (L = 100mm) andmean
mechanical apertures (E) varying from 2.52mm to 5.51mm
are established, as shown in Figure 1. The fluid is injected into
the model through the left side and flows out of the model
through the right side. The upper and lower surfaces are
impermeable. The geometry of the fractures is plotted in Auto-
CAD and exported as SAT files. The SAT files are imported
into ANSYS ICEM for meshing. The quadrilateral meshes
are adopted with a maximum side length of 0.1mm. Thus,
there are more than 25 layers along the aperture direction.
We have also checked the effect of number of iterations and

(a)

(b)

(c)

Inlet Outlet
Impermeable boundaries

E

Meshing

Upper surface

Lower surface

L

Figure 1: Parallel-plate models with different mechanical apertures: (a) E = 2:52mm, (b) E = 3:56mm, and (c) E = 5:51mm.
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Figure 2: Comparisons between theoretical values and simulated
results.
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Figure 3: Local aperture distributions along fracture length
direction.
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found that the calculated results are stable after 2000 itera-
tions. So, the number of iterations is determined as 2000.
The meshed geometries of the models are saved as MESH files
and then imported into ANSYS FLUENT for calculation. The
water is at a temperature of 25°, which has a density (ρ) of
998.2m3/kg and a viscosity (μ) of 0.001Pa·s. To guarantee a
linear flow, a sufficiently small hydraulic pressure drop
(−ΔP/ΔL) of 10-4Pa/m is applied between inlet and outlet.
By solving the Navier-Stokes equations, the flow rate (Q)
through the model can be calculated. For the three models,
Q = 1:34 × 10−10 m3/s, 3:76 × 10−10 m3/s, and 1:36 × 10−9 m3

/s, respectively. The theoretical values ofQ are derived accord-
ing to Equation (4), and the calculated Q = 1:33 × 10−10 m3/s,
3:76 × 10−10 m3/s, and 1:39 × 10−9 m3/s, respectively. The rel-
ative errors of all cases are less than 0.8%. The numerically cal-
culated and theoretical results are presented in Figure 2, which
agree well with each other verifying the validity of the pro-
posed numerical method. Thus, the proposed numerical
method is adopted for the following analysis.

4. Numerical Models and
Streamline Distributions

In the present study, the distributions of local apertures (Elocal)
along fracture length direction are fixed as shown in Figure 3,
which are extracted from cutting lines of sheared 3D rough

fractures. The minimum Elocal is 0.91mm, which is larger
than 0 guaranteeing that fluid can flow through the model.
The maximum Elocal is 3.64mm. The average Elocal is
2.52mm, which is the same as that shown in Figure 1(a).
Therefore, the same parameters used for the model shown
in Figure 1(a), such as the maximum side length of meshes
= 0:1mm and number of iterations = 2000, are adopted for
the analysis. Five rough lower surfaces of fractures with JRC
ðlowerÞ = 1, 3, 9, 11, and 19 are borrowed from Barton pro-
files proposed by Barton and Choubey [41]. For comparison,
a smooth lower surface with JRCðlowerÞ = 0 is added, as
shown in Figure 4. The height of the upper surface (hupper)
is the summation of the height of the lower surface (hlower)
and the height of the local aperture (Elocal), written as follows:

hupper = hlower + Elocal: ð14Þ

Note that the Elocal at different locations for the models
with different rough lower surfaces is the same. This guaran-
tees that the mean mechanical aperture is the same and the
surface roughness of lower surfaces is the only variable. Thus,
the effect of lower surface roughness can be investigated.

5. Nonlinear Hydraulic Properties of Fractures

5.1. Streamline Distributions. To visually observe the flow
paths, a number of particles are injected at the inlet and the

JRC(lower) = 0 

(a)

JRC(lower) = 1 

(b)

JRC(lower) = 3 

(c)

JRC(lower) = 9 
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(f)

Figure 4: Fracture geometries with the same local apertures and different profiles of lower surfaces.
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Figure 5: Streamline distributions of fractures with −∇P = 10−4 Pa/m.
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streamlines are recorded according to the local flow velocity
tensors. When the hydraulic pressure drop is sufficiently
small, i.e., −∇P = 10−4 Pa/m, the flow rate is relatively small
neglecting the effect of inertial forces and the fluid flow is
in the linear regime. When the hydraulic pressure drop is
large, i.e., −∇P = 105 Pa/m, the fluid flow enters the nonlinear
flow regime and the effect of inertial forces cannot be negligi-
ble with respect to viscous forces. In this study, −∇P = 10−4
Pa/m and −∇P = 105 Pa/m are chosen to represent the linear
and nonlinear flow regimes and the corresponding stream-
line distributions are presented in Figures 5 and 6, respec-
tively. In the linear flow regime, the particles smoothly flow
through the void spaces formed by the tortuous lower and
upper surfaces. Since the viscous force is much larger than
the inertial force, no eddies are formed. In the nonlinear flow
regime, the inertial force cannot be negligible with respect to
the viscous force. Many eddies located at different locations
with different sizes and shapes. These eddies give rise to
energy losses, decreasing the transmissivity/permeability of

fractures. When JRCðlowerÞ = 0, the eddies exist in the place
where Elocal changes significantly and in the place where Elocal
does not change robustly, there are almost no eddies (i.e., the
right part of Figure 6(a)). Whereas when JRC(lower) is large
(i.e., = 19), the eddies are distributed within the total aperture
fields, due to the influences of local aperture variations and
rough surfaces of lower and upper walls. Therefore, the
energy losses more significantly with a larger JRC(lower),
resulting in a smaller transmissivity/permeability.

5.2. Nonlinear Relationship between Hydraulic Pressure Drop
and Flow Rate. For the six models as shown in Figure 4, −∇
P = 10−4 ~ 105 Pa/m spanning ten orders of magnitude are
applied and the macroscopic flow rate Q is calculated, cover-
ing the linear flow regime, weak nonlinear flow regime, and
strong nonlinear flow regime. A total of 60 fluid flow simula-
tions are performed. The relationships between Q and −∇P
are presented in Figure 7. The Q ~ −∇P curves can be
described by quadratic functions with a zero intercept. With
the increment of Q, −∇P increases with an increasing rate,
following Forchheimer’s law as shown in Equation (5). As
JRC(lower) increases, the curve moves leftwards, indicating
that the transmissivity decreases due to the rough surfaces.
Since the curves are fitted using Equation (5), the variations
in coefficients a and b can be calculated as shown in
Figure 8. With the increment of JRC(lower), a decreases
and b increases, both following exponential functions, writ-
ten as follows:

a = 4:29 × 106e−0:033 JRC lowerð Þ,

R2 = 0:7953,
ð15Þ

b = 3:35 × 109e−0:0597 JRC lowerð Þ,

R2 = 0:9034,
ð16Þ

where a has a unit of Pa·s·m-4 and b has a unit of Pa·s2·m-7.
Figure 8 indicates that with the increment of roughness of

lower surfaces, the linear coefficient decreases due to the
increase in flow lengths induced by the increased tortuous
length, yet the tortuous surface will induce energy losses
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Figure 6: Streamline distributions of fractures with −∇P = 105 Pa/m.
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contributing to the increase in the nonlinear terms and
increasing the nonlinear coefficient b. Although the variation
trends of a and b are different, the values of b varying from
2:15 × 106 Pa · s · m−4 to 4:72 × 106 Pa · s2 · m−7 are approxi-
mately 3 orders of magnitude larger than those of a.

5.3. Variations in Normalized Transmissivity and Critical
Reynolds Number. The variations in T/T0 versus Re with
JRC(lower) varying from 0 to 19 are presented in Figure 9.
When the Re is small (i.e., less than 10), the T/T0 varies neg-
ligibly small approximately equaling to 1, indicating that
fluid flow is in the linear regime and the cubic law is appli-
cable. When Re increases from 10 to 100, T/T0 decreases
from values larger than 0.9 to values smaller than 0.9, mean-
ing that fluid flow transits from linear flow regimes to non-
linear flow regimes. With the increment of JRC(lower), the
Re corresponding to T/T0 = 0:9 decreases. With continu-
ously increasing Re (i.e., Re > 100), the T/T0 continuously
decreases with an increasing rate. The T/T0 ~ Re relation-
ships can be well described using Equation (11), in which
the coefficient β can be determined. The results show that
with increasing JRC(lower) from 0 to 19, the β increases

from 0.0006 to 0.0051, following an exponential function
as shown in Equation (11), written as follows:

β = 0:00079e−0:0931 JRC lowerð Þ,

R2 = 0:8947:
ð17Þ

The values of β are in the reasonable magnitudes as
reported in the literature, such as β = 0:00477 and 0.00838
by Zimmerman et al. [39] and 0.00471 when the confining
pressure is 0 by Yin et al. [42]. By substituting the values
of β into Equation (13), the Rec can be calculated. As shown
in Figure 10, as JRC(lower) increases, the Rec decreases, fol-
lowing an exponential function, written as follows:

Rec = 141:38e−0:093 JRC lowerð Þ,

R2 = 0:8947:
ð18Þ

This indicates that the rougher surface of fractures gives
rise to the onset of nonlinear flow at a smaller Re. When
JRC(lower) increases from 0 to 1, Rec decreases from
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185.19 to 101.01 by a rate of 45.46%. When JRC(lower)
increases from 1 to 19, Rec decreases from 101.01 to 21.79
by a rate of 79.43%. The Rec exhibits a significant decrease
and then gradual decrease trend with increasing surface
roughness of fractures, which is similar with that reported
by Liu et al. [43].

6. Conclusions

The present study investigated the effect of lower surface
roughness of fractures on the nonlinear hydraulic properties
by solving the Navier-Stokes equations. The streamline distri-
butions, nonlinear relationships between hydraulic pressure
drop and flow rate, evolutions of normalized transmissivity
and coefficient β, and critical Reynolds number versus lower
surface roughness are analyzed and discussed.

The results show that the proposed numerical method is
valid by comparisons with theoretical result-based parallel-
plate models with different apertures. At a low hydraulic
pressure drop (i.e., 10-4 Pa/m), the fluid flow is in the linear
flow regimes and no eddies are formed, whereas at a high
hydraulic pressure drop (i.e., 105 Pa/m), the fluid flow is in
the nonlinear flow regime and a number of eddies are mod-
eled. The eddies occur at the places where apertures change
significantly and near the rough surfaces. The hydraulic pres-
sure drop has a quadratic function with flow rate, following
Forchheimer’s law, when the lower surface roughness is in
the range 0~19. With the increment of lower surface rough-
ness, the linear coefficient in Forchheimer’s law decreases
and the nonlinear coefficient in Forchheimer’s law increases,
both following exponential functions. The values of nonlin-
ear coefficient in Forchheimer’s law are approximately three
orders of magnitude larger than the linear coefficient in For-
chheimer’s law. As Reynolds number increases, the normal-
ized transmissivity holds a constant value of 1 and then
decreases with an increasing rate, indicating that fluid flow
transits from a linear regime to a nonlinear regime. With
the increment of lower surface roughness from 0 to 19, the
coefficient describing the variations of normalized transmis-
sivity increases from 0.0006 to 0.0051, following an exponen-
tial relationship as shown in Figure 11, which are in the
similar magnitudes as reported in the literature. With
increasing lower surface roughness from 0 to 19, the critical
Reynolds number decreases from 185.19 to 21.79, indicating

the fluid flow is easier to enter the nonlinear flow regimes for
fractures having a rougher surface.

Future works will extent the current 2D models to 3D
models to estimate the effect of fracture surface roughness
on nonlinear fluid flow properties. Besides, the influences of
aperture field and the ratio of aperture to fracture length will
be taken into consideration.
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