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This study is devoted to determining the long-term strength of porous geomaterials under alternate wetting and drying condition
by statical shakedown analysis. In the framework of micromechanics of porous materials, Gurson’s hollow sphere model with
Drucker-Prager solid matrix is adopted as the representative volume element. The effects of alternate wetting and drying are
considered as variable water pressure imposed on the inner boundary surface of the unit cell. The cyclic responses are separated
as a pure hydrostatic part under compressive/tensive loads and an additional deviatoric part to capture shear effects. The
reduction of the long-term strength due to inner water pressure is observed by the illustration of obtained macroscopic criteria
with respect to various load parameters. In addition, the accuracy of the analytical solution is also verified by comparing to the
results of FEM-based step-by-step computations.

1. Introduction

Variable loadings exist widely in engineering structures,
such as slops, offshore platform foundations, and pave-
ments [1–3]. The long-term strength of the geomaterials
in this condition is visibly reduced comparing to that sub-
jected to a constant load. Actually, experimental observa-
tions [4–6] and numerical simulations [7, 8] have already
shown that the fracture strains under cyclic loads are sig-
nificantly lower than those reached in a monotonic way.

Additionally, considering the soil or rocks above the
water level in the underground engineering, the alternate
wetting and drying condition due to the variation of the
water level is even more harmful for its long-term stability,
which is a common case in natural condition [9]. Conse-
quently, the strength of geomaterials obtained in propor-
tional or constant loading case is accordingly reduced

due to the variable loads and alternating wetting condi-
tion. To this end, shakedown analysis, a powerful tool to
provide the essential information of material under cyclic
loads at limit state, is accepted in this research to compute
the strength reduction.

Two dual theoretical shakedown approaches have been
contributed to this subject. The statical one was firstly devel-
oped by Melan [10]. He states that the structure shakes down
if a so-called time-independent residual stress field can be
found, such that the yield condition is always fulfilled in the
whole body. The statical approach has been widely used
and developed in engineering [11–13] theoretically and
numerically, since the obtained limit load is strictly lower
than the real one. On the other hand, the kinematical
approach is based on a key concept of admissible plastic
strain increment, which was firstly introduced by Koiter
[14] and developed in [15–17]. Particularly, König and
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Siemaszko’s extension [18] of Melan’s theorem allows to ver-
ify the shakedown condition through critical cyclic loads
containing all the vertices in the load domain, instead of
any arbitrary load path.

Considering the fact that most geomaterials contain
microstructures [19, 20] (pores, mineral inclusions, etc.)
which induce the inelastic macroscopic behaviors, numerous
contributions have been devoted to study the effects of the
microstructure on geomaterials within the framework of
micromechanics [21–25], especially that of pores [26, 27].
Using Gurson’s hollow sphere model [28], the stress tensors
are decomposed as the sum of a pure hydrostatic part under
compressive/tensive loads and an additional deviatoric part
to capture shear effects [29–31] owing to the symmetric
geometry. The first author has already applied the statical
shakedown theorem in determining the limit load of porous
materials [32–34] with this model subjected to 1 independent
cyclic load.

In this work, the loading condition is even more complex
than in the mentioned works. The hydrostatic and deviatoric
parts of the load are no longer related by the imposed macro-
scopic stress triaxiality. In other words, two independent
loads are considered in the current study, for which there
are only numerical solutions [35] in the literature. Moreover,
the alternate wetting and drying condition is simulated by the
variable water pressure applied on the inner boundary sur-
face of the hollow sphere model. The solid matrix is consid-
ered obeying Drucker-Prager’s yield law, in order to
describe the plastic compressibility and asymmetric behav-
iors between tension and compression of geomaterials at
the macroscale. The obtained macroscopic criterion by
homogenization is expected able to predict the long-term
strength of porous geomaterials under alternate wetting and
drying condition.

The paper is organized as follows. In Section 2,
micromechanic-based formulations and the statical shake-
down theorem are briefly recalled. A limit analysis-based
macroscopic strength criterion of porous geomaterials pro-
posed in [29] is also provided. The strength reduction due
to variable loadings considering alternate wetting and drying
condition indicated by the macroscopic shakedown criterion
is given in Section 3. The first and second subsections are
devoted to the microscopic stress fields and application of
the statical theorem, and the variable water pressure is taken
into consideration in the third subsection. In Section 4, step-
by-step elastoplastic numerical computations are performed

for various load cases, and the results are compared with
the obtained analytical solution. Conclusions and perspec-
tives are given in the last section.

2. Micromechanical Model and Homogenized
Macroscopic Criterion for
Porous Geomaterials

In this section, a micromechanic-based hollow sphere repre-
sentative volume element (RVE) of porous geomaterials is
firstly introduced. Using this model, we recall also a macro-
scopic strength criterion proposed by Guo et al. [29], which
can describe the plastic compressibility and asymmetric
behaviors between tension and compression of the studied
materials at the macroscale.

2.1. Homogenization of Porous Geomaterials and Hollow
Sphere Model. We consider a class of porous geomaterials
characterized by a solid phase and pores at the microscale,
in which the pores are embedded (see Figure 1). The classical
Gurson’s hollow sphere model [28] with uniform strain rate
boundary condition is adopted to study the macroscopic
behaviors of this kind of material by homogenization.

The internal and external radii of the chosen hollow
sphere RVE are, respectively, noted as a and b. We denote
Ω the total volume of the RVE, whereas ω the volume of
the voids. Thus, the volume fraction of the void is given by
f = ω/Ω = ða/bÞ3. The uniform strain rate boundary condi-
tion v =D · x is imposed on the outer surface of the hollow
sphere, where D is a uniform macroscopic strain rate and x
the position vector. The solid matrix is elastoplastic and con-
sidered obeying the associated Drucker-Prager plastic law in
this work (without considering hardening effects) so as to
exhibit the tension-compression asymmetry of geomaterials:

f σð Þ = σeq σð Þ + 3ασm − σy ≤ 0, ð1Þ

where σeq =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3/2Þσ′ : σ′

q
is the equivalent stress defined

from the deviatoric part σ′ of the stress tensor σ and σm
= ð1/3ÞtrðσÞ is the mean stress. σy represents the yield
stress of the matrix material and α the pressure sensitivity
factor related to the friction angle ϕ:
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Figure 1: Porous geomaterials and hollow sphere model with uniform strain rate boundary condition.
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α = tan ϕ

3 : ð2Þ

Having the microscopic fields of stress σ and plastic
strain rate d, the corresponding macroscopic ones Σ,D
of the RVE can be calculated as averages [36]:

Σ = 1
Ω

ð
Ω

σdV ,

D = 1
Ω

ð
Ω

ddV :
ð3Þ

Moreover, the macroscopic stress field Σ can be simply
obtained by integration on a surface instead of a volume:

Σ = 1
Ω

ð
∂Ω

σ · nð Þ ⊗ xdS, ð4Þ

if the microscopic one σ is statically admissible

σ s:t:div σ = 0 inΩ, σ = 0 inω, σ · n = 0 on ∂ωf g, ð5Þ

in which n is the unit normal vector outward to the unit
cell.

According to Hill’s lemma, the following equality relating
the dissipation at micro- and macroscales is always fulfilled
for admissible fields considering the uniform strain rate
boundary condition:

1
Ω

ð
∂Ω
d : σdV =D : Σ: ð6Þ

2.2. Macroscopic Strength Criterion. In the framework of limit
analysis, the macroscopic strength criterion of porous geo-
materials can be derived from the microscopic plastic yield-
ing criterion of the matrix:

F σð Þ ≤ 0⟶F Σ, fð Þ ≤ 0, ð7Þ

describing the nonlinear plastic behavior of the homogenized
porous geomaterials. Besides, the effects of the void volume
fraction can also be reflected. The accuracy of the homoge-
nized criterion depends mainly on the applied stress and
strain rate fields of the hollow sphere at microscale. In this
subsection, we introduce a homogenized continuum model
built around a three-parameter axisymmetric velocity field
[29] by Guo et al.

In a cylindrical coordinate system in orthonormal frame
feρ, eϕ, ezg, the following three-parameter velocity field is
adopted:

v = A0
b
r

� �3/s
ρeρ + zez
� �

+ A1ρeρ + A2zez , ð8Þ

where s = 1 ± α for A0 ≷ 0. A0, A1, and A2 are parameters.

The void growth can be computed as

_f = 3 f γ − fð ÞA0, ð9Þ

in which γ = 1 − ð1/sÞ, and the sign of A0 represents void
growth (A0 > 0) or compression (A0 < 0).

By means of limit analysis techniques, an implicit macro-
scopic criterion of porous geomaterials composed of
Drucker-Prager solid matrix is proposed as follows:

Σm = 1
3

1 − f
f γ − f + α ∂Π/∂A0ð Þ

∂Π
∂A0

,

Σeq =
f γ − f

f γ − f + α ∂Π/∂A0ð Þ
∂Π
∂De

,
ð10Þ

where ∂Π/∂A0 and ∂Π/∂De can be, respectively, expressed
by the Gauss hypergeometric function

∂Π
∂A0

= ω

s/2ð Þ − 1 〠
∞

0

1/2ð Þn 1 − s/2ð Þð Þn
2 − s/2ð Þð Þn

−ω2� �n
n!

"

− f 1− s/2ð Þ 〠
∞

0

1/2ð Þn 1 − s/2ð Þð Þn
2 − s/2ð Þð Þn

−ϖ2� �n
n!

#
,

∂Π
∂De

= 〠
∞

0

1/2ð Þn − s/2ð Þð Þn
1 − s/2ð Þð Þn

−ω2� �n
n!

− f 〠
∞

0

1/2ð Þn − s/2ð Þð Þn
1 − s/2ð Þð Þn

−ϖ2� �n
n!

,

ð11Þ

with ðaÞn the Pochhammer symbols ðaÞn = ðΓða + nÞÞ/ðΓðaÞÞ
and the pair of ratios ϖ = ω/f 1/s, −∞ < ω <∞.

Noticing that the invariants of the macroscopic stress
tensor can be derived similar to their microscopic counter-
parts,

Σm = 1
3 Tr Σð Þ,

Σeq =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3Σ

′ : Σ′
r

,
ð12Þ

Σ′ being the deviatoric part of Σ.
Guo’s homogenized yield criteria FðΣmðωÞ, ΣeqðωÞÞ = 0

mainly defined by Equation (10) for porous geomaterials
are plotted in Figure 2 with respect to different values of
porosity (red line: f = 0:05, green line: f = 0:10, and blue line:
f = 0:20). The classical Drucker-Prager yield criterion (black
dash dot line) is also presented in the same figure, in which
the effect of porosity of geomaterials is not taken into consid-
eration (f = 0). It is interestingly observed that the void vol-
ume fraction has a great influence on the closed-form yield
surface, which is provided by the macroscopic criterion
Equation (10).

Different from the phenomenological yield law (e.g.,
Drucker-Prager model), the dilatant and contractant behav-
iors of geomaterials in the triaxial compression test can be
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both reflected by this micromechanic-based model. For
instance, within the region of a low confining pressure
(−0:5 < Σm/σy < 0), the plastic dilatancy of geomaterials is
easily observed while the contractancy can be obtained under
a high confining pressure (Σm/σy < −1:5). Even for the same
loading condition, the dilatant and contractant phenomena
are different due to the influence of porosity. Under the con-
fining pressure Σm/σy = −1:5, it is located in a dilatant
domain for f = 0:05 and in a contractant domain for f =
0:20, instead. Besides, the compression/tension asymmetric
behaviors of geomaterials and the strength reduction at the
macroscale due to pores are also observed, according to
Guo’s criterion. For more detailed derivation of the above
macroscopic criterion, it is referred to [29].

3. Strength Reduction due to Variable Loadings
considering Alternate Wetting and
Drying Condition

This section is devoted to calculate the strength reduction of
porous geomaterials subjected to variable loadings, compar-
ing to the homogenized yield criterion (Equation (10)). As
mentioned in the first section, the effective load-bearing
capacity of materials is also depending on the varying ampli-
tude of applied loads. Similar to pioneering theoretical works
[32, 34, 37] on porous media, the stress and strain fields of
the hollow sphere RVE are divided into hydrostatic and
deviatoric parts, on account of the axisymmetric geometry.

It must be remarked that, unlike the previous researches
where the variable loadings are imposed proportional during
each cycle (T = Σm/Σeq is constant), the hydrostatic parts Σm

and Σeq are considered independent in the paper for the pur-
pose of no loss of generality in engineering problems. In
other words, the long-term stability of porous geomaterials
is concerning a multidimensional shakedown problem
instead of one. If the load varies in a certain domain, for
which after a transient phase, the material’s response

becomes linearly elastic (shakedown). This will ensure the
long-term safety of porous geomaterials.

3.1. Transformed Variable Loading Problem and Statical
Shakedown Theorem. Considering an applied variable load-
ing ΣðtÞ in the domain P (see Figure 3(a)), the residual
stresses ρ in the considered model can be obtained by sub-
tracting the elastic responses σE from the total stresses σ:

ρ x, tð Þ = σ x, tð Þ − σE x, tð Þ, ð13Þ

where σEðx, tÞ is the purely elastic stress responses in the fic-
titious elastic cell.

According to Melan’s classical shakedown theorem [10],
if there exists a time-independent residual stress field �ρðxÞ,
such that

F σE x, tð Þ + �ρ xð Þ� �
< 0 ð14Þ

is fulfilled anywhere in the body at any time, the material
shakes down. F represents the yield function of the solid
matrix (Equation (1)). Then, the dissipated energy is
bounded in time, independently on the initial state.

Moreover, the key-point time-independent residual
stress field belongs to the set of statically admissible fields
(Equation (5)) in the present study:

�ρ ∣ div �ρ = 0 inΩ, �ρ · n = 0 on∂ω, �ρ = 0 inωf g: ð15Þ

Owing to Equation (4), the following special relation
relating the residual stresses at macro- and microscales is
imposed by the surface integration:

Σr =
1
Ωj j

ð
∂Ω

�ρ · nð Þ ⊗ xdS = 0, ð16Þ

such that the average residual stresses vanish and are identical
to the macroscopic elastic stresses in the fictitious elastic body:

Σ = Σr + ΣE = ΣE: ð17Þ

Let us introduce the load factor α, which controls the size
of the actual load domain P = αP 0. Beyond the threshold of
the maximum of the admissible load αSD, the body can not
keep in the shakedown state under variable loads. As a result,
to find the shakedown limit load factor αSD, beyond which the
fracture due to fatigue or formation of mechanism (incremen-
tal collapse at first cycle), is the main objective of this paper for
the long-term stability of porous geomaterials.

In practice, the shakedown state under original arbitrary
load guaranteed byMelan’s theorem can be transformed owing
to König and Siemaszko [18]: if a given structure shakes down
over any load path contained within a given load domain P ,
then it also shakes down over any load path contained within
the convex hull ofP . In other words, the shakedown condition
only needs to be verified over a cyclic load path containing all
the vertices of the hyperpolyhedral load domain P (e.g., in
Figure 3(b), path 1⟶ 2⟶ 3⟶ 4⟶ 1), instead of any
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Figure 2: Macroscopic yield surfaces defined by Guo’s criterion
Equation (10) with respect to different values of porosity
considering ϕ = 15.
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arbitrary load path within the same domain. This is also called
the convex hull theorem.

Considering the notion of the load factor α, the actual load
can be decomposed into a combination of several elementary ones

Σ tð Þ = 〠
n

k=1
μk tð ÞΣk = α〠

n

k=1
μk tð ÞΣ0

k, ð18Þ

where α is the same factor defined in P = αP 0 and Σ0
k the refer-

ence loads. The load multipliers μkðtÞ are independent within the
range μ−k < μkðtÞ < μ+k . In this research, the number of indepen-
dent loads n = 2. Consequently, the two elementary loads will
construct a 2-dimensional convex load domain having 4 vertices.

3.2. Macroscopic Shakedown Criterion of Porous
Geomaterials under Variable Loadings. Recalling the previ-
ous researches on the shakedown analysis of porous media
under one cyclic load, the trial stress fields at the microscale
are separated into two parts:

σ = σ 1ð Þ + σ 2ð Þ, ð19Þ

in order to describe the compressive/tensive and shear effects
of the hollow sphere model subjected to pure hydrostatic and
deviatoric loads, respectively. It must be pointed out that the
construction of the trial stress fields is already provided in the
former research [34]. To avoid repetition, we only give the
expression of these fields in the following parts.

(1) As mentioned in Equation (13), the exact stress field
subjected to hydrostatic load is considered as the sum
of two parts:

σ 1ð Þ = σE 1ð Þ + �ρ 1ð Þ: ð20Þ

The elastic stress field σEð1Þ in the fictitious body is given
in spherical coordinates:

σE 1ð Þ = Σm

1 − f
1 + 1

2
a
r

� �3
eθ ⊗ eθ + eϕ ⊗ eϕ − 2 er ⊗ er
� �� �

:

ð21Þ

The corresponding residual stress field �ρð1Þ writes as follows:

�ρ 1ð Þ = C0 1 − a
r

� �3γ� �
1 + 3

2 γ
a
r

� �3γ
eθ ⊗ eθ + eϕ ⊗ eϕ
� �� �

−
Σm+
1 − f

1 + 1
2

a
r

� �3
eθ ⊗ eθ + eϕ ⊗ eϕ − 2 er ⊗ er
� �� �

:

ð22Þ

(2) Similarly, the additional terms of the stress field
under deviatoric load is

σ 2ð Þ = σE 2ð Þ + �ρ 2ð Þ, ð23Þ

where the fictitious elastic stress field writes as

Reference load domain p0

Load domain p0 = 𝛼p0

Load path

∑1

∑2

(a) Original variable load

Reference load domain p0

2 1

43

Load domain p0 = 𝛼p0

P1P2

P4P3

∑1

∑2

(b) Equivalent cycles of load

Figure 3: Transformation of the variable load within a given load domain.

σE 2ð Þ = −
sign J3ð ÞΣeq
3 1 − fð Þ

a3 18a2 + 5r2 −5 + νð Þ� �
1 + 3 cos 2θð Þð Þ

2 r5 −7 + 5νð Þ −
1 + 3 cos 2θð Þ

2

	 

er ⊗ erð Þ

�

+ a3 27a2 + 5r2 1 − 2νð Þ − 3 21a2 + 5r2 −1 + 2νð Þ� �
cos2 θð Þ� �

2 r5 −7 + 5νð Þ + −1 + 3 cos 2θð Þ
2

	 

eθ ⊗ eθð Þ

+ a3 9a2 + 25r2 −1 + 2νð Þ − 45 a2 + r2 −1 + 2νð Þ� �
cos2 θð Þ� �

2 r5 −7 + 5νð Þ + 1
	 


eϕ ⊗ eϕ
� �

+ 3a3 12a2 − 5r2 1 + νð Þ� �
sin 2θð Þ

2 r5 −7 + 5νð Þ + 3 sin 2θð Þ
2

	 

er ⊗ eθ + eθ ⊗ erð Þ

�
,

ð24Þ
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with ν being Poisson’s coefficient and J3 the third invariant of
the macroscopic stress deviator.

And the corresponding residual �ρð2Þ takes the form �ρð2Þ

= �ρð2aÞ + �ρð2bÞ, where �ρð2aÞ is the maximum value of σEð2Þ

and �ρð2bÞ is related to σEð2Þ by

σ′ �ρ 2bð Þ
� �

= C1 K rð Þσ′ σE 2ð Þ
� �

,

σm �ρ 2bð Þ
� �

= C1 K rð Þσm σE 2ð Þ
� �

,
ð25Þ

where C1 is the constant to be determined and KðrÞ is a func-
tion of r, noticing that the detailed derivation of �ρð2Þ is firstly
provided in [33].

Consequently, the full expression of the complete micro-
scopic stress fields (19) has been obtained. Inspiring from
former researches [32, 34], the most “dangerous” point of
the considered hollow sphere model always locates at the
inner boundary (r = a). In this case, the average stress σm
and equivalent stress σeq can be readily computed from
Equation (19) to Equation (25):

σm = γC0 −
Σm+ − Σm

1 − f
−
5 ν + 1ð Þ 3cos2θ − 1

� �
−7 + 5ν

� sign J3+ð ÞΣeq+ − sign J3ð ÞΣeq
3 1 − fð Þ + K að ÞC1

� �
,

ð26Þ

σ2eq =
3γC0
2 −

3
2
Σm+ − Σm

1 − f

� �2

+ ξ2 θð Þ sign J3+ð ÞΣeq+ − sign J3ð ÞΣeq
1 − f

+ 3K að ÞC1

� �2

+ ξ1 θð Þ 3γC0 − 3 Σm+ − Σm

1 − f

� �

� sign J3+ð ÞΣeq+ − sign J3ð ÞΣeq
1 − f

+ 3K að ÞC1

� �
,

ð27Þ
where J3+ (resp., J3−) is the maximum value (resp., min-
imum value) of the third invariant in the deviatoric
space, and

ξ1 θð Þ = 3 5ν + 5ð Þ
7 − 5ν

3 cos2 θð Þ − 1
� �

2 ,

ξ2 θð Þ = 225ν2 − 25ν − 1780
� �

cos4 θð Þ
+ −375ν2 + 600ν − 375
� �

cos2 θð Þ
+ 175ν2 − 325ν − 425

2

� �
� 9
5ν − 7ð Þ2 :

ð28Þ

Owing to König and Siemaszko’s statical theorem
[18], only the critical cyclic loading paths containing all

vertices of the load domain (Figure 3(b)) need to be ver-
ified to guarantee the material’s safety. In this study, the
applied loads are considered varying from zero to maxi-
mum value:

0 < Σm < Σm+,
0 < Σeq < Σeq+,

ð29Þ

which is the most common case in engineering. As
shown in Figure 4, there are load paths 1, 2, and 3
including 4 vertices: P̂1ð0, 0Þ, P̂2ð0, Σeq+Þ, P̂3ðΣm+, Σeq+Þ,
and P̂4ðΣm+, 0Þ.

Combining the shakedown condition (14) and the micro-
scopic stress field (20), the following equations at the vertices
can be obtained at the shakedown limit state (the equality is
reached):

9
4 γC0ð Þ2 + K að ÞC1ð Þ2ξ2 θð Þ + 3 γC0 ξ1 θð Þ K að ÞC1ð Þ

	 
1/2

+ 3α γC0 −
5 ν + 1ð Þ 3cos2θ − 1

� �
−7 + 5νð Þ K að ÞC1

	 

= σy,

ð30Þ

9
4 γC0 −

Σm+
1 − f

� �2
+

sign J3+ð ÞΣeq+
3 1 − fð Þ + K að ÞC1

� �2
ξ2 θð Þ

"

+ 3 γC0 −
Σm+
1 − f

� �
ξ1 θð Þ sign J3+ð ÞΣeq+

3 1 − fð Þ + K að ÞC1

� �#1/2

+ 3α γC0 −
Σm+
1 − f

−
5 ν + 1ð Þ 3cos2θ − 1

� �
−7 + 5νð Þ

	

� sign J3+ð ÞΣeq+
3 1 − fð Þ + K að ÞC1

� �#
= σy,

ð31Þ

3

1

2

P1

P2

P4

P3

𝛴m

𝛴eq

Figure 4: Critical cyclic loadings of the considered load domain.
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9
4 γC0 −

Σm+
1 − f

� �2
+ K að ÞC1ð Þ2ξ2 θð Þ

"

+ 3 γC0 −
Σm+
1 − f

� �
ξ1 θð Þ K að ÞC1ð Þ


1/2

+ 3α γC0 −
Σm+
1 − f

−
5 ν + 1ð Þ 3cos2θ − 1

� �
−7 + 5νð Þ K að ÞC1ð Þ

	 

= σy,

ð32Þ
9
4 γC0ð Þ2 + sign J3+ð ÞΣeq+

3 1 − fð Þ + K að ÞC1

� �2
ξ2 θð Þ

"

+ 3 γC0ð Þξ1 θð Þ sign J3+ð ÞΣeq+
3 1 − fð Þ + K að ÞC1

� �
1/2

+ 3α γC0 −
5 ν + 1ð Þ 3cos2θ − 1

� �
−7 + 5νð Þ

	

� sign J3+ð ÞΣeq+
3 1 − fð Þ + K að ÞC1

� �

= σy:

ð33Þ

Let us introduce the general stress triaxiality considering
the pure elastic responses within the shakedown load

domain, which is defined by

τ = −Σm+/ 1 − fð Þ
sign J3+ð ÞΣeq+
� �

/ 3 1 − fð Þð Þ = γC0
K að ÞC1

= γC0 − Σm+/ 1 − fð Þð Þ
sign J3+ð ÞΣeq+
� �

/3 1 − fð Þ� �
+ K að ÞC1

,
ð34Þ

for the load path connecting P̂1 and P̂3. Likewise, for vertices
P̂2 and P̂4, one has the following relation:

−τ = γC0 − Σm+/ 1 − fð Þð Þ
K að ÞC1

= γC0
sign J3+ð ÞΣeq+
� �

/3 1 − fð Þ� �
+ K að ÞC1

:

ð35Þ

Referring to [34], KðaÞC1 can be eliminated by taking
Equation (34) to the first two shakedown conditions (30)
and (31). Solving the two equations with respect to the sign
of KðaÞC1, one can obtain

Taking the general stress triaxiality (34) into account, the
macroscopic shakedown criterion of porous geomaterials
derived from Equations (30) and (31) is

Similarly, resulting from the last two shakedown condi-
tions (32), Equation (33) and the general stress triaxiality

(35), the other part to complete the full macroscopic shake-
down criterion is

sign J3+ð ÞΣeq+
� �

3 1 − fð Þσy
= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9/4ð Þτ2 + 3τξ1 θð Þ + ξ2 θð Þ

p
9/4ð Þτ2 + 3τξ1 θð Þ + ξ2 θð Þ − 9α2 τ − 5 ν + 1ð Þ 3cos2θ − 1ð Þ/ −7 + 5νð Þð Þð Þ2

: ð36Þ

9
4

Σm+
1 − f

� �2
− 3ξ1 θð Þ Σm+

1 − f

sign J3+ð ÞΣeq+
3 1 − fð Þ + ξ2 θð Þ sign J3+ð ÞΣeq+

3 1 − fð Þ
� �2

− 9α2 Σm+
1 − f

+ 5 ν + 1ð Þ 3cos2θ − 1
� �

−7 + 5νð Þ
sign J3+ð ÞΣeq+

3 1 − fð Þ
� �2

= 2σy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4

Σm+
1 − f

� �2
− 3ξ1 θð Þ Σm+

1 − f

sign J3+ð ÞΣeq+
3 1 − fð Þ + ξ2 θð Þ sign J3+ð ÞΣeq+

3 1 − fð Þ
� �2

s
:

ð37Þ

9
4

Σm+
1 − f

� �2
+ 3ξ1 θð Þ Σm+

1 − f

sign J3+ð ÞΣeq+
3 1 − fð Þ + ξ2 θð Þ sign J3+ð ÞΣeq+

3 1 − fð Þ
� �2

− 9α2 −
Σm+
1 − f

+ 5 ν + 1ð Þ 3cos2θ − 1
� �

−7 + 5νð Þ
sign J3+ð ÞΣeq+

3 1 − fð Þ
� �2

= 2σy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4

Σm+
1 − f

� �2
+ 3ξ1 θð Þ Σm+

1 − f

sign J3+ð ÞΣeq+
3 1 − fð Þ + ξ2 θð Þ sign J3+ð ÞΣeq+

3 1 − fð Þ
� �2

s
:

ð38Þ
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According to previous researches, the most “dangerous
point” of the adopted hollow sphere model locates at the
equator (θ = π/2) or the poles (r = 0 or π) depending on the
sign of J3+, where

ξ1
π

2
� �

= 3 5ν + 5ð Þ
2 5ν − 7ð Þ ,

ξ2
π

2
� �

= 225 7ν2 − 13ν + 7
� �
5ν − 7ð Þ2 ,

ξ1 0ð Þ = 3 5ν + 5ð Þ
−5ν + 7 ,

ξ2 0ð Þ = 225 ν2 + 2ν + 1
� �
5ν − 7ð Þ2 :

ð39Þ

The established macroscopic shakedown criterion (Equa-
tions (37) and (38)) is illustrated in Figure 5 with porosity f
= 0:1 and Poisson’s coefficient ν = 0:2. The friction angle ϕ
of the solid matrix is considered as 30°. The limit surfaces
defined by the proposed macroscopic criterion are plotted
on a dash dot line (green line for the collapse at equator θ =
π/2; blue line for the collapse at poles θ = 0). As a result, the
effective shakedown domain is bounded by the red solid line.

Comparing with the analytic research of porous media
under one independent load, the obtained shakedown
domain in Figure 5 is completely symmetric about the axis
Σeq/σy. It can be seen as the “pulsating loading case” in

[34], but the hydrostatic part Σm is not related to the deviato-
ric part Σeq through the stress triaxiality. Moreover, it is obvi-
ously seen that the sign of J3+ has no influence on the final
shakedown domain (red line). Indeed, this interesting con-
clusion is in accord with the numerical study [35] by nonlin-
ear optimization based on the interior-point method, which
is concerning the shakedown analysis of porous media hav-
ing von Mises solid matrix.

3.3. Long-Term Stability under Alternate Wetting and Drying
Condition. As mentioned in the first section, alternate wet-
ting and drying condition occurs in some geoengineering
and will reduce its long-term strength. Obviously, an additional
stress field needs to be considered for shakedown analysis of
porous geomaterials. In this subsection, the effects owing to
the alternate wetting and drying condition on the materials
are considered as a variable water pressure pw applied at the
inner boundary (r = a) of the hollow sphere model.

Similar to the construction of stress field (20) under pure
hydrostatic load, an additional microscopic stress field is also
proposed in the following form:

σ wð Þ = σE wð Þ + �ρ wð Þ, ð40Þ

in which the fictitious elastic response and corresponding
residual stress field under variable water pressure are

σE wð Þ = −
pw
1 − f

1 + 1
2

a
r

� �3
eθ ⊗ eθ + eϕ ⊗ eϕ − 2 er ⊗ er
� �� �

,

�ρ 1ð Þ = pw+
1 − f

1 + 1
2

a
r

� �3
eθ ⊗ eθ + eϕ ⊗ eϕ − 2 er ⊗ er
� �� �

− Cw 1 − a
r

� �3γ� �
1 + 3

2 γ
a
r

� �3γ
eθ ⊗ eθ + eϕ ⊗ eϕ
� �� �

,

ð41Þ

with pw+ being the maximum value of the water pressure and
Cw an additional constant. In engineering, the water pressure
usually varies in the range 0 < pw < pw+.

Consequently, resulting from Equations (19) and (40), the total
stress at the microscale including the effect of water pressure reads

σ = σ 1ð Þ + σ wð Þ + σ 2ð Þ, ð42Þ

Following the derivation of the shakedown criterion (from
Equation (26) to Equation (38)) in the previous subsection, a new
macroscopic criterion to predict the long-term stability of porous
geomaterials considering alternate wetting and drying condition
can be obtained as

–1 –0.5 0

Limit surfaces at equator (𝜃 = 𝜋/2)
Limit surfaces at poles (𝜃 = 0)
Effective shakedown domain

0.2

0.4

0.6

0.8

1

0.5
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𝜃 = 𝜋/2

𝜃 = 0 or 𝜋

1

𝛴m

𝛴eq

𝜎y

𝜎y

Figure 5: Limit surfaces defined by the proposed macroscopic
shakedown criterion of porous geomaterials taking f = 0:1, ν = 0:2,
and ϕ = 30.

9
4

Σm+ − pw+
1 − f

� �2
− 3ξ1 θð ÞΣm+ − pw+

1 − f

Σeq+
3 1 − fð Þ + ξ2 θð Þ Σeq+

3 1 − fð Þ
� �2

− 9α2 Σm+ − pw+
1 − f

+ 5 ν + 1ð Þ 3cos2θ − 1
� �

−7 + 5νð Þ
Σeq+

3 1 − fð Þ
� �2

= 2σy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4

Σm+ − pw+
1 − f

� �2
− 3ξ1 θð ÞΣm+ − pw+

1 − f

Σeq+
3 1 − fð Þ + ξ2 θð Þ Σeq+

3 1 − fð Þ
� �2

s
,

9
4

Σm+ − pw+
1 − f

� �2
+ 3ξ1 θð ÞΣm+ − pw+

1 − f

Σeq+
3 1 − fð Þ + ξ2 θð Þ Σeq+

3 1 − fð Þ
� �2

− 9α2 −
Σm+ − pw+

1 − f
+ 5 ν + 1ð Þ 3cos2θ − 1

� �
−7 + 5νð Þ

Σeq+
3 1 − fð Þ

� �2
= 2σy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4

Σm+ − pw+
1 − f

� �2
+ 3ξ1 θð ÞΣm+ − pw+

1 − f

Σeq+
3 1 − fð Þ + ξ2 θð Þ Σeq+

3 1 − fð Þ
� �2

s
,

ð43Þ
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in which this shakedown condition needs to be fulfilled at θ
= 0 and π/2 to avoid the fracture due to variable loads in
the whole model. The corresponding expressions of ξ1ðθÞ
and ξ2ðθÞ are given by Equation (39).

Comparing with the macroscopic criterion in the pre-
vious subsection, it can be concluded from the proposed
one (43) that the existence of the variable water pressure
pw will decrease the effective mean stress and finally
reduce the load-bearing capability of the considered mate-
rial. The amplitude of the variation on the inner water
pressure pw depends mostly on the water level in geoma-
terials. The detailed comparisons will be fully discussed
in the next section.

4. Numerical Verification by Step-by-Step
FEM Computations

This section is devoted to verify the accuracy of the proposed
macroscopic criterion of porous geomaterials by comparison
to numerical results. The elastoplastic numerical simulations
are carried out by Abaqus software in a step-by-step manner
to analyze the transient phase before shakedown or collapse.

4.1. Implementation of the FEM-Based Computation. Owing
to the geometrical symmetry, only a quarter of the hollow
sphere model discretized by 1500 axisymmetric elements
(see Figure 6) is considered, which is refined enough to cap-
ture the reliable results. The homogeneous boundary condi-
tion v =D · x is imposed on the outer boundary.

As described in Figure 4, only 3 critical cyclic load paths
containing all the vertices need to be considered to calculate
the shakedown limit load, if the variation of inner water pres-
sure is not concerned. On the contrary, under alternate wet-
ting and drying condition, the load domain is modified as
shown in Figure 7 located in the first and second quadrants.
Consequently, 4 critical cyclic load paths have to be taken
into consideration to fulfill the shakedown condition.

Nevertheless, the macroscopic stress triaxiality is defined
by T3 = Σm+/Σeq+ at vertex P̂3 describing the shape of the
rectangular load domain. Moreover, the stress triaxiality T
= Σm/Σeq for all the cyclic load path remains constant in a
single cycle, which is implemented in Abaqus by the means
of multipoint constraint subroutine (MPC) satisfying the
imposed uniform velocity field boundary condition. Notice
that such MPC subroutine is firstly provided in the study of
polymeric materials [38] and latterly applied in a series of

ductile porous media [30, 32, 35] with the same boundary
condition.

The above computation procedure is performed for an
imposed value of stress triaxiality T3 with 100 cycles. The
long-term stability of the considered material is evaluated
during the transient phase before shakedown or collapse. In
practice, the accumulated equivalent plastic strain at the
“dangerous” point will be checked in the transient phase,
which is supposed to be constant if it is in a shakedown state.
By increasing the applied load, the shakedown limit is
obtained when the collapse due to fatigue or incremental
fracture occurs.

The cyclic responses on the inner boundary r = a at equa-
tor θ = π/2 of the hollow sphere at a shakedown state with
T3 = 0:44 are plotted in Figure 8. The porosity f = 0:01 and
ν = 0:2, ϕ = 20° of the solid phase are considered. It can be
observed that after a transient phase, the plastic response
ceases gradually. The strain-stress curve tends to coincide
in each cycle, corresponding to 3 critical load paths as shown
in Figure 4.

3

21

4

P3

P4

P2

P1

𝛴eq+

𝛴
m+

p
w+

Figure 7: Critical cyclic loadings of the load domain considering the
alternate wetting and drying condition.
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5
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Path 1

Path 2

Path 3

𝜎
11

𝜖11

𝜖11–𝜎11

Figure 8: Cyclic strain-stress curve (ε11 − σ11) under 3 critical loads
at r = a, θ = π/2 under shakedown limit load T3 = 0:44 for porosity
f = 0:01 with the following parameters of the solid matrix ν = 0:2
and ϕ = 20°.

Table 1: Parameters of the material in numerical simulations.

Parameters
Young’s

modulus E
Poisson’s

coefficient ν
Porosity

f
Yield

stress σy

Value 2GPa 0.2 0.01 1MPa

Symmetry

x

y
a

b

z

o

Figure 6: Initial mesh of the hollow sphere model.
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The described step-by-step computations are performed
with the following parameters in Table 1. Additionally, dif-
ferent cases of friction angle ϕ = 10° and 20° with maximum
water pressures pw+ = Σm+/4 and 0.28MPa are also
considered.

4.2. Comparison and Verification of the Proposed
Macroscopic Criterion. The numerical results obtained by
the step-by-step elastoplastic computations together with
the analytical macroscopic criterion are illustrated in
Figures 9–11 with respect to the friction angle of the solid
matrix ϕ = 10° and 20°. The parameters of the material ν =
0:2 and f = 0:01 are adopted. Owing to the axisymmetry of
the shakedown domain (see Figure 5) and the existence of
negative stresses in geotechnical engineering, only the part
in the fourth quadrant will be compared and discussed.

In general (Figures 9–11), an accordance between the
results obtained by the proposed macroscopic criterion and

the step-by-step computations can be observed, indicating
that the established criterion has the ability to predict the
long-term safety of the considered porous geomaterials
under hydromechanical variable loads. More preciously, for
the pure hydrostatic load case (Σeq+ = 0), the analytical solu-
tion σm+ = ð3ð1 − f ÞÞ/ðð3/2 + 3αÞð3/2 − 3αÞÞ (see [34] for the
derivation) fits the value of numerical one, because of the
fact that the constructed microscopic stress field is the
exact one. On the other hand, with the increase of the
shear loads (Σeq+), small differences are remarked due to
the approximation of the deviatoric part of the trial stress
field. The applied elastic and residual stress fields satisfy
the statically admissible condition in an average way,
which can be improved by a more accurate solution.
Owing to the statical shakedown theorem, a quasi-lower
bound is provided by the proposed criterion.

Considering 1 single figure (Figures 9 or 10), the effective
safety load domain is bounded by the solid lines, in which the

–1.2 –1.0 –0.8 –0.6

SD surface pw+ = 0.25 𝛴m+ Numerical pw+ = 0.25 𝛴m+

Numerical pw+ = 0SD surface pw+ = 0

Limit analysis

Limit surface (Guo et al. 2008)
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pw+ = 0.25 𝛴m+

pw+ = 0
Effective limit surface
f = 0.01 𝜙 = 10

Figure 9: Comparison between the proposed macroscopic criterion and numerical results with respect to pw+ = 0 and 0:25Σm+. The friction
angle of the solid matrix ϕ = 10°.
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Figure 10: Comparison between the proposed macroscopic criterion and numerical results with respect to pw+ = 0 and 0:25Σm+. The friction
angle of the solid matrix ϕ = 20°.
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blue and red lines represent the yield surfaces of the proposed
criterion with water pressure pw+ = 0 and 0:25Σm+, while the
green line is the limit surface of the limit analysis-based one
[29]. It can be concluded that the long-term strength of geo-
materials is obviously reduced due to the variation of the
water pressure. The reduction of the “width” of the yield sur-
face can be estimated by the ration of pw+/ðΣm+ − pw+Þ.
Besides, around the domain of pure deviatoric load
(Σeq+ = 0), the effective safety domain is defined by the limit
analysis-based criterion (10). The collapse of the material is
owing to the development of a mechanism (incremental col-
lapse in the first loading cycle) instead of fatigue.

Figure 11 illustrates the comparison between the analyti-
cal and numerical results with the water pressure pw+ = 0:28
MPa. The maximum value of the water pressure is a constant
value, which is different from the two previous cases shown
in Figures 9 and 10. The corresponding yield surface has been
translated towards the right side, and the safety domain is
accordingly reduced.

5. Conclusion

In this paper, a macroscopic criterion based on a statical
shakedown theorem to predict the long-term strength of
porous geomaterials under alternate wetting and drying
condition has been established. In the framework of
micromechanics of porous materials, Gurson’s hollow
sphere model is adopted, and the effects of alternate wet-
ting and drying are considered as a variable inner pres-
sure. The obtained criterion depends on the first and
second invariants of the macroscopic stress tensor, Pois-
son’s coefficient, and the porosity. The reduction of the
effective safety domain due to the alternate wetting condi-
tion is observed, depending on the amplitude of the vari-
ation of water pressure. In the end, the accuracy of the
analytical solution has been evaluated by comparing with
the results of FEM-based step-by-step computations.

In the outlook, special efforts are needed to improve the
accuracy of the analytical solution under deviatoric loads.
The application of this method on structural computation
is also a challenging topic.
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