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Commercial exploration and exploitation of coalbed methane (CBM) in Gujiao coalbed methane (CBM) field, Xishan coalfield,
have rapidly increased in recent decades. The Gujiao CBM field has shown strong gas distribution heterogeneity, low gas
content, and wide distribution of wells with low production. To better understand the geological controlling mechanism on gas
distribution heterogeneity, the coal reservoir evolution history and CBM accumulation process have been studied on the base of
numerical simulation work. The burial history of coal reservoir can be classified into six stages: shallowly buried stage; deeply
buried stage; uplifting stage; short-term tectonic subsidence stage; large-scale uplifting stage; and sustaining uplifting and
structural inversion stage. Mostly, coal seams have experienced two-time thermal metamorphisms with twice hydrocarbon-
generation processes in this area, whereas in the southwest part, the coal seams in there suffered three-time thermal
metamorphisms and hydrocarbon-generation processes. The critical tectonic events of the Indosinian, Yanshanian, and
Himalayan orogenies affect different stages of the CBM reservoir accumulation evolution process. The Indosinian orogeny
mainly controls the primary CBM generation. The Yanshanian orogeny dominates the second and third gas generation and
migration processes. The Himalayan orogeny mainly affects the gas dissipation process and current CBM distribution
heterogeneity.

1. Introduction

As a clean and unconventional natural gas resource, coalbed
methane (CBM) is considered to be the most potential source
of energy with broad prospects for commercial development.
In recent years, the exploitation of CBM in coal-bearing
basins has achieved tremendous success in China, especially
in Qinshui Basin and Ordos Basin [1-9]. The exploration
and exploitation of CBM in Xishan coalfield start relatively
late, and the research bases of CBM geology are poor in there.
Previous research works show that the geological back-

ground of Xishan coalfield is very unique. The coalfield had
experienced multistage tectonic deformation accompanied
with complex structural morphology [10, 11]. The maturity
of the Pennsylvanian and Permian coal seams in Xishan coal-
field shows strong heterogeneity and ranges from high-
volatile bituminous A to anthracite [12]. Gujiao CBM field
is one of the most important areas for the exploration and
exploitation of CBM in Xishan coalfield. The proved CBM
resource in this area is about 82.9 billion m’, showing
strongly economic developmental potential [13]. Since
2011, more than 700 CBM wells have been drilled in this
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FIGURE 1: Location of the study area and structural outline of Xishan coalfield.

area. However, the exploitation performance of these CBM
wells is not very well. The average of daily gas production is
only about 277 m® [14]. Bian et al. proposed that the compli-
cated structural character of coal reservoir and the ambiguity
of resource evaluation process are the main reasons for this
poor gas production phenomenon [15].

In recent years, many research works have been carried
out in Gujiao CBM field, including geological structural char-
acter analysis [16], sedimentary environment restoration
[17-24], coal reservoir energy field dissection [25-28], coal
reservoir physical property characterization [29, 30], favor-
able area evaluation [16, 25, 31-33], and qualitative research
on CBM accumulation [12, 34-44]. However, to the best of
the authors” knowledge, effective research on the coal reser-
voir evolution and CBM accumulation process has not been
conducted in Gujiao CBM field.

The coal reservoir evolution process is a complex
dynamic process which includes coal organic matter matura-

tion, gas generation, sorption, migration, diffusion, pooling,
and accumulation processes [45]. These dynamic processes
were mainly controlled by the evolution characteristics (tec-
tonic subsidence history, geothermal and paleotectonic stress
field evolution history) of coal bearing basin [45]. Basin-scale
investigations of the CBM reservoir evolution process have
been performed in the United States [46, 47], Australia [48,
49], Russia [50], Belgium [51], Ukraine [52], and China
[45, 53, 54].

In this study, the method proposed in our previous work
[45] was used to study this complex dynamic process in
Gujiao CBM field. The evolution histories of sedimentary-
burial process, thermal field, and hydrocarbon generation
in CBM reservoir were simulated by analyzing the geophysi-
cal logging data. Then, a dynamic equilibrium model was uti-
lized to explain the evolution of CBM reservoir. Finally, the
controlling mechanism of four critical tectonic events on
CBM accumulation heterogeneity was investigated.
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FIGURE 2: Geological structure and elevation of the No. 8 coal seam in Gujiao CBM field. B1-B4 are structural domains.

2. Geological Settings

The Gujiao CBM field is located in the northwest part of
Xishan coalfield, including Dongqu, Tunlan, Malan, and
Xingjiashe well fields (Figure 1). The structural contour
map of the No. 8 coal seam is shown in Figure 2. Current tec-
tonic structural morphology is mainly controlled by Malan
syncline in this area. A series of large-scale NE-SW normal
faults developed in this area such as Gujiao fault, Lijiashe
fault, and Yuanxiang fault. Some small folds developed in
the western region [38]. For the purpose of assessment, the
Gujiao CBM field is subdivided into four structural domains
(i.e., blocks B1-B4) according to the structural morphology
and fracture development character (Figure 2).

Block B1 locates in the region of the Malan syncline’s
west limb. This block contains an east-dipping monocline
with abundant small-scale folds and normal faults. Block
B2 is the nucleus area of the Malan syncline. The structure
of this block is relatively simple. Only a few faults and
small-scale synclines are developed in the northern region.
The region of the Malan syncline’s eastern limb is further
subdivided into two domains. Block B3 is the north part,
which declines from northeast to southwest. A series of par-
allel large-scale northeast-southwest normal faults are devel-
oped in this area. Block B4 is the south part, whose structural

characteristic is definitely inconsistent with block B3. The
structure is relatively simple in this domain.

The strata preserved in the Gujiao CBM field include
rocks of the Archaeozoic, Proterozoic, Cambrian, Ordovi-
cian, Pennsylvanian, Permian, Triassic, and Quaternary Sys-
tems. The main coal-bearing strata are the Benxi Formation
and the Taiyuan Formation of the Pennsylvanian System
and the Shanxi Formation and the Lower Shihezi Formation
of the Permian System [38]. The principal targets for CBM
development are coal seam No. 2 in the Shanxi Formation
and Nos. 8 and 9 in the Taiyuan Formation (Figure 3), with
thicknesses of 1-8m, 1-4m, and 1-6m, respectively [42].
No.8 coal seam is the target in this research.

3. Method and Dataset

3.1. Sampling and Experiments. Four coal blocks were col-
lected in the study area (Figure 1). All samples were collected
from fresh coal mining face in underground coal mines. In
order to minimize the influence of tectonic deformation
and macroscopic coal type on the experimental results, the
primary structural semibright coal samples were selected
for experiment. These samples were treated to 60-80 mesh
(0.18-0.25 mm). After moisture-equilibrium treatment, iso-
thermal adsorption experiments were carried out at 25, 30,
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FIGURE 3: Stratigraphic column of the Gujiao CBM field. The dashed lines indicate the formation unconformity boundary.

40, 50, 60, and 70°C under an equilibrium pressure of up to
20 MPa. Combining with the simulated results of coal reservoir
condition (pressure and temperature) evolution, these iso-
therms were used to characterize the adsorption capacity evo-
lution character of coal reservoir during an uplifting process.

3.2. Simulation Process. Data of 9 exploration wells were used
to simulate the evolution of reservoir formation (Figure 2).
The data of proximate analysis, coal seam burial depth, thick-
ness, vitrinite reflectance, gas content, and others were used

for simulation research. Table 1 provides an example of the
input database of the XST-019 well.

The dynamic equilibrium model proposed by Wei et al.
[53, 54] was used to simulate the geological evolution history
in this study. The tectonic subsidence history, geothermal
field evolution history, and methane generation features were
simulated by using a commercial computer software pro-

gram PetroMod 2012. More details can be found in our pre-
vious work [45].

4. Results and Discussion

4.1. The Evolution History of Xishan Coalfield. As a part of
Xishan coalfield, the geological evolution histories (the
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TaBLE 1: The database of simulation nodes that contain well XST-019.

Parameter Value Parameter Value

X 4192416.47 Y? 19598982.88
Recent burial depth® (m) 609.96 Vit (m’/t) 25.93

P;* (MPa) 3.04 Reservoir pressure® (MPa) 7.93
Saisisio(ﬁ?/l:) in air-dry 16.46 Gas saturation® (%) 95.19
Moisture® (%) 0.65 Ash yield® (%) 16.87
Vitrinite® (%) 74.90 Inertinite® (%) 24.70
Liptinite® (%) — Volatile matter® (%) 17.14

Coal thickness® (m) 3.60 Ry mas (%) 1.24
Turning point of Rob (Ma) 284.87, 250, 215, 200.62 R at turning pointb (%) 0.37,0.47, 0.76, 1.33

Burial depth turning point ~ 299.7, 285.3, 250.5, 215.4, 180.2,

Burial depth of bottom coal

43.9, 146.9, 822.9, 3017.9, 2579.9, 2833.9,

of bottom coal seam® (Ma) 165.6, 144.7, 130, 64.9, 46.1, 10.6,0 seam at turning pointb (m) 2535.9,2184.9, 1530.9, 1038.9, 843.9, 609.9

Turing point of
geotemperature gradient”
(Ma)

306.5, 235, 215, 200, 180, 50, 0

Geo-temperature gradient
at turning point® ("C/100 m)

2.8,3,3.2,6.46,3.2,3.05,2.9

V, and P; are Langmuir volume (in air-dry base) and Langmuir pressure. “The data are obtained from wellbore, geophysical logging, and experiments
(isothermal adsorption tests, maceral measurements, vitrinite reflectivity measurements, proximate analysis). *The data are obtained from the subsidence,

geothermal, and organic maturation history simulations.

tectonic and subsidence evolution, geothermal evolution, and
coal maturation history) of coal reservoir in Gujiao CBM
field were strongly controlled by the evolution process of
Xishan coalfield. Since the Hercynian movement, the tec-
tonic and subsidence evolution process of Xishan coalfield
can be divided into six stages, accompanied with two mag-
matic activities (Figure 4).

In stage I (306.1-250 Ma), affected by the Hercynian
movement, the North China plate began to subside, and a
series of near north-south direction coal accumulation
depressions were formed in Xishan coalfield [25, 55]. Then,
Pennsylvanian paralic coal-bearing rock series, Permian con-
tinental coal-bearing rock series, and continental clastic rock
series were deposited continuously (Figure 4(a)).

In stage II (250-215 Ma), during the Indosinian orogeny
period, the coalfield subsided rapidly and Triassic strata were
deposited. The burial depth of coal-bearing strata reached the
maximum [56, 57] (Figure 4(b)).

In stage III (215-180 Ma), the whole coalfield experienced
tectonic uplift and sedimentary rocks suffered denudation.
As a result of the Early Yanshanian orogeny, the coalfield
had shown heterogeneous evolution characteristics. Affected
by the continuous development of the east-west direction
tectonic zone of Yangqu-Meng county in the north of Xishan
coalfield, the northern part of Xishan coalfield was uplifted
(Figure 4(c)) [55]. The Permo-Pennsylvanian coal seams
and Ordovician limestone were exposed to the surface in this
area, and the Xishan coalfield was separated with the north-
ern Ningwu coalfield. For the southeast part, the Qixian con-
cealed rock was developed in this stage which caused an
uplift and denudation in this area (Figure 4(c)) [36].

In stage IV (180-165 Ma), the coalfield experienced tec-
tonic subsidence. Jurassic strata were deposited in depression
areas in this stage [20]. Influenced by the east-west compres-
sion force, a series of north-south direction syncline struc-

tures were formed. Malan syncline and Shuiyuguan
syncline were formed initially (it is estimated that they were
connected at this time). The Jiaocheng fault was also formed
initially, and it was thrust nature at this time (Figure 4(d))
[58].

In stage V (165-65 Ma), during the Middle-Late Yansha-
nian orogeny period, influenced by the composite effects of
regional east-west compressive stress, slowly uplifting of
Lvliang mountain (120-65Ma), and the development of
Huyan mountain intrusion (141-125Ma) [22], the whole
coalfield experienced tectonic uplift, especially the western
part of the coalfield. The direction of Malan syncline’s axis
changed, and the Malan syncline separated from Shuiyuguan
syncline in this period (Figure 4(e)) [20].

In stage VI (65Ma-Now), affected by the accelerated
uplift of Lvliang mountain in the Himalayan orogeny period
[59, 60], Xishan coalfield sustained uplift and suffered denu-
dation. Influenced by the northwest-southeast tension stress
field, a series of normal faults were formed in the coalfield
[59, 61]. At this time, the Jiaocheng fault changed from thrust
to normal fault [25]. Significant subsidence occurred in the
area on the upper wall of the fault (Figure 4(f)). Finally, the
current structural character was formed.

4.2. Tectonic and Subsidence Evolution in Gujiao CBM Field.
As a part of Xishan coalfield, the evolution process of coal-
bearing strata in Gujiao CBM field could also be divided into
six stages, which are deposition, burial, uplift, reburial, rapid
uplift, and step erosion (Figure 5).

4.2.1. Stage I. Late Pennsylvanian and Permian Periods
(306.1-250 Ma). Aftected by the Hercynian movement, the
Gujiao CBM field began to subside, and coal-bearing strata
from the Pennsylvanian to the Lower Permian Systems were
deposited (Figure 4(a)) [25, 55]. During the Pennsylvanian
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Taiyuan period, the paralic sedimentary coal-bearing strata
had been deposited with a deposition rate of 12.3-
19.7m/Ma and a sedimentary thickness of 92-146 m. Then,
in the Permian Shanxi period, the sedimentary environment
transited from paralic to continental. The deposition rate and
sedimentary thickness were 2.6-3.8m/Ma and 38-55m,
respectively. After the deposition of these Permo-
Pennsylvanian coal-bearing strata, the sedimentary environ-

Huyanshan intrusive rock formed. Malan
syncline and Shuiyuguan syncline separeted.
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of Xishan coalfield evolution.

ment became relatively dryer in the Permian Shihezi-
Shiqianfeng period. Continental variegated clastic rocks were
deposited with a deposition rate of 48.3-59.8 m/Ma and a
sedimentary thickness of about 654-810 m.

4.2.2. Stage II: Early and Middle Triassic Periods (250-
215 Ma). Abundant river-lake face red clastic rocks were
deposited in this stage with a deposition rate of 62.3-
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66.6m/Ma and a sedimentary thickness of about 2182-
2332 m. The strata of the Triassic (Liujiagou Formation, the
Heshanggou Formation, and the Ermaying Formation) were
deposited successively in the study area [38]. The coal reser-
voir reached its maximum depth at the end of Middle Trias-
sic (Figure 4(b)).

4.2.3. Stage III: Late Triassic and Early Jurassic Periods (215-
180 Ma). In this stage, the study area was in a state of uplift-
ing with a rate of 11.4-14.3 m/Ma and suffered denudation
with an erosion thickness of 401-498 m. The eroded thick-
nesses of northern and southeast part of research area were
more than elsewhere due to the development of the east-
west direction tectonic zone of Yangqu-Meng county in the
north and Qixian concealed rock in the southeast, respec-
tively (Figure 4(c)) [22, 55].

4.2.4. Stage IV: Middle Jurassic Period (180-165 Ma). During
the fourth stage, subsidence occurred due to the Middle Yan-
shanian orogeny in the North China platform. The Permo-
Pennsylvanian coal-bearing strata were buried deeply again,
and approximately 263-298 m of continuous sedimentary
strata was deposited with a rate of 17.5-19.8 m/Ma [20].

4.2.5. Stage V: Late Jurassic Period to Late Cretaceous Period
(165-65Ma). In this stage, the Middle-Late Yanshanian
Epoch, the tectonic environment of the study area changed
from subsiding to uplifting. Once again, the coal-bearing
strata suffered denudation with a rate of 12.1-15.6 m/Ma.
Affected by the forming of Huyan mountain intrusion and
uplifting of Lvliang mountain, the sedimentary rocks in the
southwestern part of the study area were eroded most
(Figure 4(e)) [22, 59].

4.2.6. Stage VI: Cenozoic Era (65 Ma-Now). Since the Ceno-
zoic Era, the study area had experienced three stages of uplift

[51]: first, uplifting with a rate of 20.34-31.17m/Ma (65-
46 Ma); second, uplifting with a relative slower rate of 4.29-
6.58 m/Ma (46-10 Ma); and third, uplifting rapidly with a
rate of 23.19-35.53 m/Ma (10 Ma- Now). The study area suf-
fered stepped erosion, correspondingly (Figure 5) [59, 61].

4.3. Geothermal Evolution and Coal Maturation. The geo-
thermal evolution and coal maturation characters are illus-
trated in Figure 6. In stage I (306.5-250 Ma), the main
deposition period of the coal-bearing strata, the geothermal
gradient was about 2.8°C/100m and the coal reservoir was
buried shallowly. The low temperature of coal seam led to a
limited organic matter maturity (Table 2). In stage II (250-
215Ma), the study area subsided rapidly. The temperature
of coal seam was increasing gradually during the long-term
deposition process. At the end of Middle Triassic period,
the temperature of coal seam was about 105°C when the
burial depth of coal seam reached its maximum (Table 2).
The vitrinite reflectance (R, %) of the coal seam was approx-
imately 0.7% at that time (Figure 6). Then, in the uplifting
stage (stage IIT), affected by the development of Qixian con-
cealed rock (215-180Ma) in the southeast of study area
(Figure 4(c)), an abnormal geothermal field was formed
(Figure 6). Due to the superposition of magma heat, the geo-
thermal gradient in the study area increased significantly,
reaching 11.84°C/100m in some areas [22]. The regional
magma thermal metamorphism led to the significant
increase of coal reservoir organic maturity. The vitrinite
reflectance (R, %) of coal seam was approximately 1.3-
2.06% (Table 2), showing a decrease trend from southeast
to northwest. In stage IV (180-165 Ma), the study area expe-
rienced a short-term subsidence and deposited the Jurassic
strata. The geothermal field returned to normal level, and
the geotemperature decreased substantially (Figure 6). Coal
organic matter maturing stagnated in this stage (Table 2).



Depth (m)

Depth (m)

Depth (m)

Geofluids

o LIl P Fl—Zl T L] L )] K | » [NQ ol B [T T 1] Jo [ K | » [N@
toggetd | Ther: ogeniq T etic\\ Thernj ogeni
500 ga 500 ga gas
1000 - —~ 1000 - 50
E
1500 - S 1500 4 1
[ |
ot 75{C
2000 - | 2000 -
‘ 4
2500 - ! 2500 - : L
Regional 100 Regional 100°C 0° agma thermal
3000  metamorphism metamorphism 3000 1 metamorphism metamorphism
300 250 200 150 100 50 0 300 250 200 150 100 50 0
Age (Ma) Age (Ma)
0: 0.5-0.77% 0: 0.5-0.77%
[ Ro:0.5-0.7% [ Ro:0.5-0.7%
[ Ro:0.7-1.0% [ Ro:0.7-1.0%
0:1.0-1.3% 0: 1.0-1.3%
[ Ro: 1.0-1.3% [ Ro: 1.0-1.3%
() (b)
0 P P [T T L] T [J3] K [ p NQ 0 o T W] % [J3] K P
etic\| Thernjogenic Thernjogeniq
500 gad gas, 500 - ga7\
1000 - 0°C ‘ 1000 4
i E
1500 - | = 1500
i [
759C A
2000 - 2000 A
I
|
2500 - 2500 -
Regional {00°C " Magma thermal Regional 100°C Magma thermal
3000 {metamorphism metamorphism 3000 1 metamorphjsm metamorphism
300 250 200 150 100 50 0 300 250 200 150 100 50 0
Age (Ma) Age (Ma)
[ Ro:0.5-0.7% [ Ro: 1.3-1.6% [ Ro0:0.5-0.7% [ Ro: 1.3-1.6%
[ Ro:0.7-1.0% B Ro: 1.6-2.0% ] Ro:0.7-1.0% B Ro: 1.6-2.0%
1 Ro:1.0-13% ] Ro:1.0-13%
(c) (d)
0 P P T T 1] T [Js] K NG 0 Pl P O] T [I] o [T K P _[NQ
i \ Thernjogenic i eNC | Thermogeni
500 - g S/\ 500 4  ga g 7\
1000 - ‘\\ E 1000 50 |
|
1500 - < 1500 |
I ou I
75°C l 5 759C 1
2000 - v 2000 ~
2500 - 2500 /
Regional 00°C Dodc Magma thermal Regional 00°C A agma thermal
3000 1 metamorphism 150°C metamorphism 3000 { metamorphjsm metamorphism
300 250 200 150 100 50 0 300 250 200 150 100 50 0
Age (Ma) Age (Ma)
[ Ro:0.5-0.7% [ Ro: 1.3-1.6% [ Ro:0.5-0.7% [ Ro:1.3-1.6%
[ Ro:0.7-1.0% I Ro: 1.6-2.0% [ Ro:0.7-1.0% B Ro:1.6-2.0%
[ Ro: 1.0-1.3% [ Ro: 1.0-1.3%
(e) 69]

FiGure 6: Continued.



Geofluids 9
ol P [T T 1] Jo [ K NG 0 o T W] % [ K P_[NQ
Thermogeni Thernjogeni
500 | a 500 gas
—~ 1000 - ) — 1000 - :
E ‘ E |
< 1500 A = 1500 1
£ 751C ! 2 759 ‘
. |
2 2000 - | 2 2000 A
7 | | . 4
2500 - 2500 - 100°C
Regional [00°CYy 5))° agma thermal Regional  [00°Cy R agma thermal
3000 1 metamorphism 0° metamorphism 3000 4 metamorphjsm 0°C metamorphism
300 250 200 150 100 50 0 300 250 200 150 100 50 0
Age (Ma) Age (Ma)
[ Ro:0.5-0.7% [ Ro:1.3-1.6% [ Ro:0.5-0.7% [ Ro:1.3-1.6%
[ Ro:0.7-1.0% I Ro: 1.6-2.0% [ Ro:0.7-1.0% I Ro: 1.6-2.0%
1 Ro:1.0-1.3% [J Ro:1.0-1.3% [ Ro:2.0-3.0%
(® (h)
ol P2 [Md Ts ] T2 s K | » NQ
eti& Thernpogenic nic
500 A & 27\ I
|
1000 4 50°C |
E | I
S 1500 4 1 |
g 759C Ooocﬂlermal contac
2000 - v metamorphism
2500 -
Regional 00°C ermal
3000 4 metamorphism 1500%’ I phism
T T T T T
300 250 200 150 100 50 0
Age (Ma)

[ Ro:0.5-0.7%
[ Ro:0.7-1.0%
[ Ro:1.0-1.3%

(@

[ Ro:1.3-1.6%
B Ro:1.6-2.0%
[ Ro:2.0-3.0%

FIGURE 6: Temperature and maturity history curve for the coal-bearing strata of well XST-170 (a), XSM-055 (b), XST-019 (c), XSD-051 (d),

XSD-099 (e), GJ-01 (£), GJ-03 (g), GJ-06 (h), and XSM-169 (i).

Then, in the next stage (stage V from 165 to 65Ma), coal-
bearing strata suffered denudation due to a long-term struc-
tural uplift. For the early period in stage V (165-141 Ma),
structural uplifting led to further decreasing of coal seam
temperature, and coal organic matter maturing continued
to stagnate (Table 2). For the middle period in stage V
(141-125Ma), the formation of the Huyan mountain rock
mass resulted in a significant increase of geothermal gradient
in the western part of the Xishan coalfield (Figures 4(e) and
6(1)). The thermal contact metamorphism caused further
maturation of coal organic matter (Table 2). The coal rank
was distributed around the Huyan mountain in a circular
belt. Within a short distance, the coal rank changed from
super anthracite to high-volatile bituminous C [22]. Limited
by the scale of the intrusive rock mass, only a small range of
the study area was affected by this magma thermal event,
which corresponds to the vicinity of the XSM-169 well in
the southwest study area. For the last period in stage V
(125-65Ma) and stage VI (65 Ma-Now), the geothermal gra-
dient reverted to a lower level gradually, the coal reservoir

temperature decreased substantially, and the maturation of
coal organic matter stopped (Table 2).

4.4. CBM Accumulation Process. In each evolution stage, the
in situ gas content of the coal seam was mainly affected by the
coal adsorption capacity and reservoir conditions (pressure
and temperature) during the evolution process. An experi-
mental simulation method modified from Bustin and Bustin
[62] was used to investigate the evolutionary process of CBM
accumulation in our previous work [45]. In this work, a sim-
ilar experimental simulation work was also conducted. As the
pressure and temperature of coal reservoir decreased, the
coal adsorption capacity increased firstly and then decreased
(i.e., the uplifting process) (Figure 7). Table 3 shows the
adsorption capacity evolution characteristics in the domains
of B1 and B3.

Combining with the results from simulation using the
dynamic equilibrium model, the experimental results shown
in Figure 7 and Table 3 were used to simulate the CBM accu-
mulation processes and the formation history in the study
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TaBLE 2: The vitrinite reflectance and reservoir temperature of the coal reservoir during geothermal evolution processes.

Geofluids

v

Stage I I I v v, v, v, VI
losical From 306.5 250 215 180 165 141 125 65
Geological time To 250 215 180 165 141 125 65 Now
XST-170 R, (%) 0.45 0.7 1.03 1.03 1.03 1.03 1.03 1.03
Tyax (C) 38.78 104.32 207.98 105.56 94.26 83.16 60.76 43.60
R, (%) 0.45 0.72 16 1.6 1.6 25 2.5 25
XSM-169 Tyax (C) 44.01 105.77 217.71 111.00 100.44 271.32 61.24 47.29
NSML055 R, (%) 0.45 0.71 12 12 12 12 12 1.2
Tyax (C) 4181 104.90 212.47 108.12 103.32 91.80 69.40 53.58
XST-019 R, (%) 0.45 0.71 1.46 1.46 1.46 1.46 1.46 1.46
Tyax (C) 42.96 104.90 211.72 107.80 98.20 86.68 65.88 48.55
R, (%) 0.45 0.71 1.72 1.72 1.72 1.72 1.72 1.72
XSD-099 Tyax (C) 51.25 104.90 211.72 107.80 95.00 83.48 64.28 46.95
XSD.051 R, (%) 0.45 0.72 1.88 1.88 1.88 1.88 1.88 1.88
Tyax (C) 39.60 105.19 213.97 109.40 96.60 84.76 63.96 46.00
R, (%) 0.45 0.72 1.83 1.83 1.83 1.83 1.83 1.83
Gl-o1 Tyax (C) 44.02 104.32 212.47 108.76 100.76 88.92 66.52 46.04
R, (%) 0.45 0.73 1.93 1.93 1.93 1.93 1.93 1.93
CJ-03 Tyax (C) 39.73 104.90 215.46 11036 102.36 90.36 67.96 48.11
R, (%) 0.45 0.74 2.06 2.06 2.06 2.06 2.06 2.06
GJ-06 Tyax (C) 42,65 105.19 217.71 111.64 103.64 91.48 69.08 49.56

Tiax is the maximum temperature of coal reservoir in each geothermal evolution stage.

area. The output of the simulation includes burial depth;
cumulative gas production; cumulative gas diffusion; R; in
situ gas content at each geological time; and gas production,
diffusion, and retention features during each geological evo-
lutionary stage. Table 4 provides two examples of the simula-
tion results for simulation nodes that contain well XSM-169
and XST-019, which represent that the coal reservoir experi-
enced three-stage and two-stage thermal metamorphism
processes, respectively. The evolution of the CBM reservoir
of the No. 8 coal is shown in Figure 8. Consisting with the
tectonic evolution history (Figure 4) and thermal evolution
history (Figure 6), the entire CBM reservoir formation evolu-
tion can also be divided into six stages (Figure 8 and Table 4).

In the first stage (306.5-250 Ma), the shallowly buried-
immature stage, biogenerating gas was the main products
in this low-temperature reservoir condition. However, the
biogenic gas was almost dissipated due to the shallow depth
and absence of an effective local reservoir cap. In the second
stage (250-215Ma), the deeply buried stage, the coal seam
had undergone deep metamorphism process, accompanied
with the generation of primary plutonic metamorphism
gases. A few amounts of this primary CBM were stored in
coal seam, which was the most dissipated. In the third stage,
during the Late Triassic-Early Jurassic (215-180 Ma), affected
by the concealed rock mass in Qixian County, an abnormal
geothermal field was formed which made the coal organic
matter maturated rapidly in most parts of the study area
(Figure 8 and Table 4). A large amount of secondary coalbed
gas generated in this stage, accompanied with strong gas dif-

tusion. The fourth stage was the short-term deposition stage
occurring between 180 and 165Ma. As the organic matter
maturation and hydrocarbon generation stagnated, only gas
diffusion existed in this period. The fifth stage (165-
130 Ma) was subdivided into three substages. The substage
V, was a dissipation stage, from 165 to 141 Ma. The organic
matter maturation and hydrocarbon generation continue to
stagnate; only gas diffusion existed in this substage
(Table 4). Then, in the substage V,, the thermal contact
metamorphism caused further maturation of coal organic
matter in the southwest part of research area (e.g., well
XSM-169), whereas the gas further diffused in the other areas
(e.g., well XST-019) as shown in Figure 8 and Table 4. In the
southwestern part, the generation of third coalbed gas led to
strong gas diffusion (Table 4). For the substage V (125-
65Ma) and stage VI (65 Ma-Now), affected by the Late Yan-
shanian orogeny and Himalayan orogeny, the overlying
strata were uplifted and eroded continuously, and more gas
escaped from coal reservoir.

4.5. Hydrocarbon System Evolution and Geological Control
Effects. The Gujiao CBM field contains one hydrocarbon sys-
tem, as shown in Figure 9. During the histories of hydrocar-
bon generation, expulsion, and migration processes, there are
three major hydrocarbon generation and accumulation
periods, i.e., the Indosinian, the Early Yanshanian, and the
Middle  Yanshanian,  respectively. = The  Permo-
Pennsylvanian coal seams are the source rocks of gas in this
hydrocarbon system. The Late Permian strata are seal rocks
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FiGure 7: The methane adsorption capacity at different temperatures and pressures. Four samples DQ (a), ML (b), TL (c), and XQ (d) are
from the domains of B1 (sample b) and B3 (samples a-d), respectively. The sorption capacities curve (red line) was plotted at the pressure
and temperature conditions from reservoir subsidence and geothermal field history (the pressure gradient was set as 1.0 MPa/100 m).

that prevent gas diffusion. Hydrogeological conditions and
tectonic structures had different effects on hydrocarbon
migration and preservation. Four critical tectonic events have
had a significant impact on gas production, accumulation,
and diffusion (Figure 9).

Coal-bearing strata were deposited in the Late Pennsylva-
nia and Early Permian periods (stage I) during which the pri-
mary biogenic methane was produced and almost dissipated
(Figure 8). After this shallowly buried period, the generation,
expulsion, and accumulation processes of CBM were affected
by the following episodic tectonic movements.

During stage II, the Early-Middle Triassic Indosinian
orogeny was the first critical tectonic event that affected the
generation of primary CBM (Figure 9). The maturity of coal
increased with the increase of depth from the edge of the
basin to the center (i.e., from north to south). Gas content
at the end of this stage and gas diffusion during this stage
were 6.2-7.4m’/t and 11.2-13 m’/t, respectively (Figure 10).
The distribution of gas content was consistent with the distri-

bution characteristic of coal organic vitrinite reflectance
(Table 2). The deeper buried coal seams had a higher paleo-
temperature, accompanied with a higher organic maturity.
The higher organic maturity led to a higher gas production
capacity and gas diffusion (Figure 10). The retention and dis-
sipation of primary gases were controlled by the amount of
gas produced and the sealing conditions of the coal reservoir.

The second critical tectonic event was the Early Yansha-
nian orogeny (Stage III in Figures 5 and 9). In this stage,
the development of the Late Triassic-Early Jurassic Qixian
concealed rock mass led to an abnormal geothermal field,
which accelerated the maturation process of coal organic
matter. The reservoir temperature decreased gradually from
southeast to northwest (Table 2). Hydrocarbon generation
and dissipation in most parts of the study area reached their
maximum values over the entire geological evolution history.
The maturity of coal organic matter increased significantly,
reaching a maximum of 2.06% (well GJ-06) in the southeast
part of study area. The gas production was about 28.12-
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TaBLE 3: The sorption capacity, gas content, and saturation evolution characteristics of the sampling sites after thermal metamorphism
processes.

Structural domain Sample Age (Ma) 0 10 46 65.5 125
Depth (m) 829.68 1090.78 1264.84 1700.00 2346.15
Qs (cm’/g) 5.25 9.05 10.06 11.58 14.74
Bl ML P (MPa) 8.30 10.91 12.65 17.00 23.46
Qc (cm?/g) 9.93 10.23 10.18 10.13 9.74
S (%) 52.85 88.45 98.81 114.36 151.35
Depth (m) 555.08 850.56 1047.54 1540.00 2093.85
Qs (cm’/g) 12.22 16.82 18.24 20.59 25.82
DQ P (MPa) 5.55 8.51 10.48 15.40 20.94
Qc (cm?/g) 13.33 13.54 13.70 12.93 11.73
S (%) 91.65 124.24 133.16 159.23 220.20
Depth (m) 445.45 740.82 937.73 1430.00 2076.15
Qs (cm’/g) 5.50 6.54 7.19 8.10 9.73
B3 TL P (MPa) 4.45 7.41 9.38 14.30 20.76
Qc (cm’/g) 8.67 9.55 9.71 8.77 8.20
S (%) 63.43 68.48 74.07 92.40 118.71
Depth (m) 610.00 904.00 1100.00 1590.00 2190.00
Qs (cm*/g) 12.10 14.64 16.22 18.44 2241
XQ P (MPa) 6.10 9.04 11.00 15.90 21.90
Qe (cm®/g) 12.07 13.03 13.48 12.76 10.70
S (%) 100.22 112.32 120.34 144.52 209.40

Qg and P are the gas content and reservoir pressure obtained from the simulations of CBM reservoir accumulation history. Q.. is the sorption capacity obtained
from the adsorption capacity evolution simulation. S is the gas saturation of the sampling sites.

TaABLE 4: The simulation results of the simulation nodes that contain well XSM-169 and XST-019.

\Y% VI
Stage I 11 111 v v, v, v, VI, VI, VI,
. . From 306.5 250 215 180 165 141 125 65 46 10
Geological time
To 250 215 180 165 141 125 65 46 10 Now
R, (%) 0.45 0.72 1.6 1.6 1.6 2.5 2.5 2.5 2.5 2.5
Reservoir temperature (°C) 44.01 105.77 217.71 111.00 100.44 27132 61.24 4729 41.21 3449
Cumulative gas production (ms/t) 2.78 18.88 107.71 107.71 107.71 209.10 209.10 209.10 209.10 209.10
XSM-169 Gas production in each stage (m’/t) 2.78 1611 88.83 0 0 101.39 0 0 0 0

Gas diffusion in each stage (m*t) 194 1016 47.81 1434 538 90.63 16.15 4.84 3.23 8.07
Cumulative gas diffusion (m3/t) 1.94 12.10 5991 7425 79.63 170.26 186.41 191.25 194.48 202.55

Gas content (m?/t) 0.83 6.78 47.80 3346 28.08 38.84 2270 17.85 14.62 6.55
R, (%) 045 071 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46
Reservoir temperature (°C) 4296 10490 211.72 107.80 9820 86.68 6588 48.55 4122 32.69
Cumulative gas production (m®t) 278 1815 91.54 9154 9154 9154 91.54 9154 91.54 91.54
XST-019 Gas production in each stage (m*/t) 2.78 1538 74.39 0 0 0 0 0 0 0

Gas diffusion in each stage (m*t) 194 973 3994 1197 3.17 2.38 3.96 222 1.59 2.54
Cumulative gas diffusion (m3/t) 194 11.67 51.61 6358 66.75 69.13 73.09 7531 76.9 79.44
Gas content (m3/t) 0.83 6.48 3993 2796 24.78 2241 1844 1622 14.64 12.1

Well XSM-169 and XST-019 represent that the coal reservoir had experienced three-stage and two-stage thermal metamorphism processes, respectively.

140.97 m*/t in this stage, showing a downward trend from  at the end of this stage and gas diffusion during this stage
southeast to northwest. The amount of gas diffusion was ~ were 17.2-59.4m’/t and 17.2-89m’/t,  respectively
determined by the gas generation characteristics. Gas content  (Figure 11). The distributions of vitrinite reflectance, gas
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FIGURre 8: Curves show the CBM reservoir formation evolution history: (a) cumulative gas generation; (b) coal organic maturity; (c)

cumulative gas diffusion; (d) gas content.

content, and gas diffusion were similar to the distribution of
paleotemperature (Figure 11 and Table 2). The second criti-
cal tectonic event controlled the paleotemperature field vari-
ation which resulted in the high gas content in B4 and the
south area of B2.

During the following period of 185-145Ma (stages
IV and V, in Table 4), the study area was deposited
briefly and then uplifted. Due to the low temperature
of coal reservoir, hydrocarbon generation stagnated, and
only gas diffusion existed in this period. Gas content
at the end of this stage and gas diffusion during this
stage were 10.7-35.6m’/t and 6.5-23.8m’/t, respectively
(Figure 12). The amount of gas diffusion was high in
the southeast (B4 and the south area of B2 domain),
which inherited the gas content distribution characteristic
at the previous stage (Figures 11(a) and 12(b)). This
result implies that the methane concentration was a
much more important factor than others for gas diffu-
sion in this stage.

After this gas diffusion period, the third critical tectonic
event occurred in the Middle Yanshanian orogeny (145-
130 Ma: stage V, in Table 4) (i.e., the formation of the Huyan
mountain rock mass). Due to the intrusion of Huyan moun-
tain rock mass, an abnormal geothermal field was formed in
the southwest part of study area and the coal seams in there
experienced their third hydrocarbon-generation process.
The reservoir temperature was distributed in a ring band
and decreased from the southwest corner to the northeast
in southwest research area (south area of B1 and southwest
of B2). Hydrocarbon generation and gas diffusion showed
the same trend that decreased from the southwest to the
northeast (Figure 12(b)). The coal rank reached 2.5% in the
area of well XSM-169, and the volume of gas production
was 101.4 m*/t in this area during this stage. As for the other
areas, due to the further decrease of temperature, the hydro-
carbon generation stopped and the gas in coal seams further
escaped. In these low-paleotemperature field areas, the gas
diffusion was dominated by the in situ hydrocarbon
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concentration. The gas content at the end of the previous
evolution period (Figure 12(a)) controlled the variation of
gas accumulation and dissipation in these low temperature
areas. Gas content at the end of this stage and gas diffusion
during this stage were 9.7-38.8 m*/t and 1-90.6 m*/t, respec-
tively (Figure 13). The gas content and gas diffusion reached
their maximum value in the southwest region and decreased

radially to the northeast, whereas in the areas unaffected by
Huyan mountain rock mass, the hydrocarbon variation char-
acteristics of the previous period were inherited.

In substage V,, influenced by the uplifting of Lvliang
mountain in this period and the intrusion of Huyan moun-
tain rock mass in the former period, the west to southwest
part of the study area uplifted more than elsewhere
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accompanied with a higher gas escape degree. The amount of
gas diffusion was 1.6-16.2m’/t, showing a decrease trend
from southwest to northeast (Figure 14(b)). At the end of
the stage, the gas content was 8.1-22.7m’/t, as shown in
Figure 14(a).

Since the Cenozoic Era, the study area has experienced
three stages of uplift [51]. During the first and second uplift-
ing stages (substage VI, and VI,), under the influence of the
Early and Middle Himalayan tectonic movement, the study
area was uplifted in a stepped manner. The gas diffusion
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was dominated by the hydrocarbon concentration at the end
of the previous stage (Figures 14(a) and 15(b)). After this
evolution period, the gas content was about 6.5-17.4m’/t

(Figure 15(a)), and its distribution characteristics were
roughly consistent with the distribution characteristics at
the previous stage (Figure 14(a)). The gas saturation was
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relatively low in the west part of study area (B1 domain and
north of B2 domain) due to sustaining uplifting of Lvliang
mountain in the west (Table 3).

The fourth critical tectonic event occurred in the Late
Himalayan period (substage VI,). During this stage, the
study area experienced a sharp uplift. In this period, the
development of the Fenhe graben caused the structural inver-
sion in the northeast to eastern regions of the study area [59].
The stress field transformed from the squeezed state to the
stretched state. Affected by the northwest-southeast tension
stress, a series of northeast-southwest normal faults were
formed, mainly in the northeastern part of the study area.
The development of these extensional structures resulted in
strong gas diffusion (Figure 16). The gas saturation and gas
content decreased rapidly in the northeast part of the study
area (east part of B3 domain) (Table 3 and Figure 16). More-
over, during this stage, the limestone areas in the northwest
and north part of the coalfield were the main recharge runoft
area of the study area. The groundwater flowed from these
recharge areas to the low-lying zone of the study area. The
gas was carried to the axis area of syncline for accumulation
(16, 26].

In general, the combining effects of basin uplifting, tec-
tonic inversion (the formation of extensional faults), and
hydrogeological characteristics controlled the gas content
and dissipation characteristics of reservoirs in this evolution
period.

5. Conclusion

The evolution of coalbed methane reservoir can be subdi-
vided into six evolutionary stages: (1) shallowly buried,
immature stage; (2) deeply buried, primary coalbed methane
accumulation stage; (3) concealed rock mass influenced sec-
ondary gas generation stage; (4) low temperature, maturation
stagnated stage, (5) uplifting, locally third gas generation
stage; and (6) sustaining uplifting and structural inversion,
turther coalbed methane dissipation stage.

The formation, preservation, and dissipation of coalbed
methane were mainly affected by four critical tectonic events.
The first critical tectonic event during the Indosinian period
of the Early-Middle Triassic controlled the first hydrocarbon
generation process in the study area. The second critical tec-
tonic event in the Early Yanshanian period, Qixian concealed
rock mass magma-heat event, affected the distribution of sec-
ondary gas generation distribution characteristic and
resulted in higher gas generation in southeast part of research
area. The third critical tectonic event in the Middle Yansha-
nian period, Huyan mountain intrusive rock mass magma-
heat event, dominated local third gas generation distribution
characteristic and resulted in higher gas generation in the
southwest research area (south area of B1 and southwest of
B2). The fourth critical event, i.e., the Late Himalayan tec-
tonic inversion, caused the further diffusion of gas and
reduced the gas content and saturation in coal reservoir,
especially in the northeast part of study area (east part of
B3 domain). The combination of these four critical tectonic
events led to the high gas heterogeneity distribution of
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coalbed methane reservoirs in Gujiao coalbed methane field,
Xishan coalfield.
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