A Study on the Heterogeneity Characteristics of Geological Controls on Coalbed Methane Accumulation in Gujiao Coalbed Methane Field, Xishan Coalfield, China

Taotao Yan,1,2 Shan He,3 Yadong Bai,4 Zhiyong He,5 Dameng Liu,2 Fangui Zeng,1 Xiaozhen Chen,1 and Xinyu Fu1

1Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024 Shanxi, China
2Coal Reservoir Laboratory of National Engineering Research Center of CBM Development & Utilization, China University of Geosciences, Beijing 100083, China
3Shanxi CBM Exploration and Development Branch, PetroChina Huabei Oilfield Company, Shanxi 048000, China
4Research Institute of Petroleum Exploration and Development-Northwest, Petrochina, Lanzhou 730000, China
5Exploration Company, Sinopec, Chengdu 610041, China

Correspondence should be addressed to Taotao Yan; taotao87225@163.com

Received 31 December 2020; Revised 31 January 2021; Accepted 16 February 2021; Published 13 March 2021

Commercial exploration and exploitation of coalbed methane (CBM) in Gujiao coalbed methane (CBM) field, Xishan coalfield, have rapidly increased in recent decades. The Gujiao CBM field has shown strong gas distribution heterogeneity, low gas content, and wide distribution of wells with low production. To better understand the geological controlling mechanism on gas distribution heterogeneity, the coal reservoir evolution history and CBM accumulation process have been studied on the base of numerical simulation work. The burial history of coal reservoir can be classified into six stages: shallowly buried stage; deeply buried stage; uplifting stage; short-term tectonic subsidence stage; large-scale uplifting stage; and sustaining uplifting and structural inversion stage. Mostly, coal seams have experienced two-time thermal metamorphisms with twice hydrocarbon-generation processes in this area, whereas in the southwest part, the coal seams in there suffered three-time thermal metamorphisms and hydrocarbon-generation processes. The critical tectonic events of the Indosinian, Yanshanian, and Himalayan orogenies affect different stages of the CBM reservoir accumulation evolution process. The Indosinian orogeny mainly controls the primary CBM generation. The Yanshanian orogeny dominates the second and third gas generation and migration processes. The Himalayan orogeny mainly affects the gas dissipation process and current CBM distribution heterogeneity.

1. Introduction

As a clean and unconventional natural gas resource, coalbed methane (CBM) is considered to be the most potential source of energy with broad prospects for commercial development. In recent years, the exploitation of CBM in coal-bearing basins has achieved tremendous success in China, especially in Qinshui Basin and Ordos Basin [1–9]. The exploration and exploitation of CBM in Xishan coalfield start relatively late, and the research bases of CBM geology are poor in there. Previous research works show that the geological background of Xishan coalfield is very unique. The coalfield had experienced multistage tectonic deformation accompanied with complex structural morphology [10, 11]. The maturity of the Pennsylvanian and Permian coal seams in Xishan coalfield shows strong heterogeneity and ranges from high-volatile bituminous A to anthracite [12]. Gujiao CBM field is one of the most important areas for the exploration and exploitation of CBM in Xishan coalfield. The proved CBM resource in this area is about 82.9 billion m³, showing strongly economic developmental potential [13]. Since 2011, more than 700 CBM wells have been drilled in this
However, the exploitation performance of these CBM wells is not very well. The average of daily gas production is only about 277 m3 [14]. Bian et al. proposed that the complicated structural character of coal reservoir and the ambiguity of resource evaluation process are the main reasons for this poor gas production phenomenon [15].

In recent years, many research works have been carried out in Gujiao CBM field, including geological structural character analysis [16], sedimentary environment restoration [17–24], coal reservoir energy field dissection [25–28], coal reservoir physical property characterization [29, 30], favorable area evaluation [16, 25, 31–33], and qualitative research on CBM accumulation [12, 34–44]. However, to the best of the authors’ knowledge, effective research on the coal reservoir evolution and CBM accumulation process has not been conducted in Gujiao CBM field.

The coal reservoir evolution process is a complex dynamic process which includes coal organic matter maturation, gas generation, sorption, migration, diffusion, pooling, and accumulation processes [45]. These dynamic processes were mainly controlled by the evolution characteristics (tectonic subsidence history, geothermal and paleotectonic stress field evolution history) of coal bearing basin [45]. Basin-scale investigations of the CBM reservoir evolution process have been performed in the United States [46, 47], Australia [48, 49], Russia [50], Belgium [51], Ukraine [52], and China [45, 53, 54].

In this study, the method proposed in our previous work [45] was used to study this complex dynamic process in Gujiao CBM field. The evolution histories of sedimentary-burial process, thermal field, and hydrocarbon generation in CBM reservoir were simulated by analyzing the geophysical logging data. Then, a dynamic equilibrium model was utilized to explain the evolution of CBM reservoir. Finally, the controlling mechanism of four critical tectonic events on CBM accumulation heterogeneity was investigated.

![Location of the study area and structural outline of Xishan coalfield.](image)

Figure 1: Location of the study area and structural outline of Xishan coalfield.
2. Geological Settings

The Gujiao CBM field is located in the northwest part of Xishan coalfield, including Dongqu, Tunlan, Malan, and Xingiashe well fields (Figure 1). The structural contour map of the No. 8 coal seam is shown in Figure 2. Current tectonic structural morphology is mainly controlled by Malan syncline in this area. A series of large-scale NE-SW normal faults developed in this area such as Gujiao fault, Lijiashe fault, and Yuanxiang fault. Some small folds developed in the western region [38]. For the purpose of assessment, the Gujiao CBM field is subdivided into four structural domains (i.e., blocks B1–B4) according to the structural morphology and fracture development character (Figure 2).

Block B1 locates in the region of the Malan syncline’s west limb. This block contains an east-dipping monocline with abundant small-scale folds and normal faults. Block B2 is the nucleus area of the Malan syncline. The structure of this block is relatively simple. Only a few faults and small-scale synclines are developed in the northern region. The region of the Malan syncline’s eastern limb is further subdivided into two domains. Block B3 is the north part, which declines from northeast to southwest. A series of parallel large-scale northeast-southwest normal faults are developed in this area. Block B4 is the south part, whose structural characteristic is definitely inconsistent with block B3. The structure is relatively simple in this domain.

The strata preserved in the Gujiao CBM field include rocks of the Archaeozoic, Proterozoic, Cambrian, Ordovician, Pennsylvanian, Permian, Triassic, and Quaternary Systems. The main coal-bearing strata are the Benxi Formation and the Taiyuan Formation of the Pennsylvanian System and the Shanxi Formation and the Lower Shihezi Formation of the Permian System [38]. The principal targets for CBM development are coal seam No. 2 in the Shanxi Formation and Nos. 8 and 9 in the Taiyuan Formation (Figure 3), with thicknesses of 1-8 m, 1-4 m, and 1-6 m, respectively [42]. No.8 coal seam is the target in this research.

3. Method and Dataset

3.1. Sampling and Experiments. Four coal blocks were collected in the study area (Figure 1). All samples were collected from fresh coal mining face in underground coal mines. In order to minimize the influence of tectonic deformation and macroscopic coal type on the experimental results, the primary structural semibright coal samples were selected for experiment. These samples were treated to 60-80 mesh (0.18-0.25 mm). After moisture-equilibrium treatment, isothermal adsorption experiments were carried out at 25, 30,
40, 50, 60, and 70°C under an equilibrium pressure of up to 20 MPa. Combining with the simulated results of coal reservoir condition (pressure and temperature) evolution, these isotherms were used to characterize the adsorption capacity evolution character of coal reservoir during an uplifting process.

3.2. Simulation Process. Data of 9 exploration wells were used to simulate the evolution of reservoir formation (Figure 2). The data of proximate analysis, coal seam burial depth, thickness, vitrinite reflectance, gas content, and others were used for simulation research. Table 1 provides an example of the input database of the XST-019 well.

The dynamic equilibrium model proposed by Wei et al. [53, 54] was used to simulate the geological evolution history in this study. The tectonic subsidence history, geothermal field evolution history, and methane generation features were simulated by using a commercial computer software program PetroMod 2012. More details can be found in our previous work [45].

4. Results and Discussion

4.1. The Evolution History of Xishan Coalfield. As a part of Xishan coalfield, the geological evolution histories (the
tectonic and subsidence evolution, geothermal evolution, and
cal maturation history) of coal reservoir in Gujiao CBM
field were strongly controlled by the evolution process of
Xishan coalfield. Since the Hercynian movement, the tec-
tonic and subsidence evolution process of Xishan coalfield
can be divided into six stages, accompanied with two mag-
matic activities (Figure 4).

In stage I (306.1-250 Ma), affected by the Hercynian
movement, the North China plate began to subside, and a
series of near north-south direction coal accumulation
depressions were formed in Xishan coalfield [25, 55]. Then,
Pennsylvanian paralic coal-bearing rock series, Permian con-

tinental coal-bearing rock series, and continental clastic rock
series were deposited continuously (Figure 4(a)).

In stage II (250-215 Ma), during the Indosinian orogeny
period, the coalfield subsided rapidly and Triassic strata were

deposited. For the southeast part, the Qixian coal-

field was separated with the north-

tern Ningwu coal

field, a series of normal faults were formed in the coal-

field. Malan syncline separated from Shuiyuguan
syncline in this period (Figure 4(e)) [20].

In stage III (215-180 Ma), the whole coalfield experienced
tectonic uplift and sedimentary rocks suffered denuda-
tion. As a result of the Early Yanshanian orogeny, the coalfield
had shown heterogeneous evolution characteristics. Affected
by the continuous development of the east-west direction
tectonic zone of Yangqu-Meng county in the north of Xishan
coalfield, the northern part of Xishan coalfield was uplifted
(Figure 4(c)) [55]. The Permo-Pennsylvanian coal seams
and Ordovician limestone were exposed to the surface in this
area, and the Xishan coalfield was separated with the north-
ern Ningwu coalfield. For the southeast part, the Qixian con-

celated rock was developed in this stage which caused an
uplift and denudation in this area (Figure 4(c)) [36].

In stage IV (180-165 Ma), the coalfield experienced tec-
tonic subsidence. Jurassic strata were deposited in depression
areas in this stage [20]. Influenced by the east-west compres-
sion force, a series of north-south direction syncline struc-
tures were formed. Malan syncline and Shuiyuguan
syncline were formed initially (it is estimated that they were
connected at this time). The Jiaocheng fault was also formed
initially, and it was thrust nature at this time (Figure 4(d))
[58].

In stage V (165-65 Ma), during the Middle-Late Yansha-

nian orogeny period, influenced by the composite effects of
regional east-west compressive stress, slowly uplifting of
Lvliang mountain (120-65 Ma), and the development of
Huyan mountain intrusion (141-125 Ma) [22], the whole
coalfield experienced tectonic uplift, especially the western
part of the coalfield. The direction of Malan syncline’s axis
changed, and the Malan syncline separated from Shuiyuguan
syncline in this period (Figure 4(e)) [20].

In stage VI (65 Ma-Now), affected by the accelerated
uplift of Lvliang mountain in the Himalayan orogeny period
[59, 60], Xishan coalfield sustained uplift and suffered denu-
dation. Influenced by the northwest-southeast tension stress
field, a series of normal faults were formed in the coalfield
[59, 61]. At this time, the Jiaocheng fault changed from thrust
to normal fault [25]. Significant subsidence occurred in the
area on the upper wall of the fault (Figure 4(f)). Finally, the
current structural character was formed.

4.2. Tectonic and Subsidence Evolution in Gujiao CBM Field

As a part of Xishan coalfield, the evolution process of coal-

bearing strata in Gujiao CBM field could also be divided into
six stages, which are deposition, burial, uplift, reburial, rapid
uplift, and step erosion (Figure 5).

4.2.1. Stage I: Late Pennsylvanian and Permian Periods (306.1-250 Ma)

Affected by the Hercynian movement, the
Gujiao CBM field began to subside, and coal-bearing strata
from the Pennsylvanian to the Lower Permian Systems were
deposited (Figure 4(a)) [25, 55]. During the Pennsylvanian

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent burial depth** (m)</td>
<td>4192416.47</td>
<td>Reservoir pressure** (MPa)</td>
<td>19598982.88</td>
</tr>
<tr>
<td>Recent burial depth** (m)</td>
<td>609.96</td>
<td>V** (m^3/t)</td>
<td>25.93</td>
</tr>
<tr>
<td>P** (MPa)</td>
<td>3.04</td>
<td>Reservoir pressure** (MPa)</td>
<td>7.93</td>
</tr>
<tr>
<td>Gas content in air-dry basis** (m^3/t)</td>
<td>16.46</td>
<td>Gas saturation** (%)</td>
<td>95.19</td>
</tr>
<tr>
<td>Moisture** (%)</td>
<td>0.65</td>
<td>Ash yield** (%)</td>
<td>16.87</td>
</tr>
<tr>
<td>Vitrinite** (%)</td>
<td>74.90</td>
<td>Inertinite** (%)</td>
<td>24.70</td>
</tr>
<tr>
<td>Liptinite** (%)</td>
<td>3.60</td>
<td>Volatile matter** (%)</td>
<td>17.14</td>
</tr>
<tr>
<td>Coal thickness** (m)</td>
<td>284.87, 250, 215, 200.62</td>
<td>R* at turning point** (%)</td>
<td>0.37, 0.47, 0.76, 1.33</td>
</tr>
<tr>
<td>Turning point of R* (Ma)</td>
<td>299.7, 285.3, 250.5, 215.4, 180.2, 165.6, 144.7, 130, 64.9, 46.1, 10.6, 0</td>
<td>Burial depth of bottom coal seam at turning point** (m)</td>
<td>43.9, 146.9, 822.9, 3017.9, 2579.9, 2833.9, 2535.9, 2184.9, 1530.9, 1038.9, 843.9, 609.9</td>
</tr>
<tr>
<td>Turning point of geotemperature gradient** (Ma)</td>
<td>306.5, 235, 215, 200, 180, 50, 0</td>
<td>Geo-temperature gradient at turning point** (°C/100 m)</td>
<td>2.8, 3, 3.2, 6.46, 3.2, 3.05, 2.9</td>
</tr>
</tbody>
</table>

V** and P** are Langmuir volume (in air-dry base) and Langmuir pressure. **The data are obtained from wellbore, geophysical logging, and experiments (isothermal adsorption tests, maceral measurements, vitrinite reflectivity measurements, proximate analysis). *The data are obtained from the subsidence, geothermal, and organic maturation history simulations.
Taiyuan period, the paralic sedimentary coal-bearing strata had been deposited with a deposition rate of 12.3-19.7 m/Ma and a sedimentary thickness of 92-146 m. Then, in the Permian Shanxi period, the sedimentary environment transited from paralic to continental. The deposition rate and sedimentary thickness were 2.6-3.8 m/Ma and 38-55 m, respectively. After the deposition of these Permo-Pennsylvanian coal-bearing strata, the sedimentary environment became relatively dryer in the Permian Shihezi-Shiqianfeng period. Continental variegated clastic rocks were deposited with a deposition rate of 48.3-59.8 m/Ma and a sedimentary thickness of about 654-810 m.

4.2.2. Stage II: Early and Middle Triassic Periods (250-215 Ma). Abundant river-lake face red clastic rocks were deposited in this stage with a deposition rate of 62.3-
66.6 m/Ma and a sedimentary thickness of about 2182-2332 m. The strata of the Triassic (Liujiagou Formation, the Heshanggou Formation, and the Ermaying Formation) were deposited successively in the study area [38]. The coal reservoir reached its maximum depth at the end of Middle Triassic (Figure 4(b)).

4.2.3. Stage III: Late Triassic and Early Jurassic Periods (215-180 Ma). In this stage, the study area was in a state of uplifting with a rate of 11.4-14.3 m/Ma and suffered denudation with an erosion thickness of 401-498 m. The eroded thicknesses of northern and southeast part of research area were more than elsewhere due to the development of the east-west direction tectonic zone of Yangqu-Meng county in the north and Qixian concealed rock in the southeast, respectively (Figure 4(c)) [22, 55].

4.2.4. Stage IV: Middle Jurassic Period (180-165 Ma). During the fourth stage, subsidence occurred due to the Middle Yanshanian orogeny in the North China platform. The Permo-Pennsylvanian coal-bearing strata were buried deeply again, and approximately 263-298 m of continuous sedimentary strata was deposited with a rate of 17.5-19.8 m/Ma [20].

4.2.5. Stage V: Late Jurassic Period to Late Cretaceous Period (165-65 Ma). In this stage, the Middle-Late Yanshanian Epoch, the tectonic environment of the study area changed from subsiding to uplifting. Once again, the coal-bearing strata suffered denudation with a rate of 12.1-15.6 m/Ma. Affected by the forming of Huyan mountain intrusion and uplifting of Lviang mountain, the sedimentary rocks in the southwestern part of the study area were eroded most (Figure 4(e)) [22, 59].

4.2.6. Stage VI: Cenozoic Era (65 Ma-Now). Since the Cenozoic Era, the study area had experienced three stages of uplift [51]: first, uplifting with a rate of 20.34-31.17 m/Ma (65-46 Ma); second, uplifting with a relative slower rate of 4.29-6.58 m/Ma (46-10 Ma); and third, uplifting rapidly with a rate of 23.19-35.53 m/Ma (10 Ma-Now). The study area suffered stepped erosion, correspondingly (Figure 5) [59, 61].

4.3. Geothermal Evolution and Coal Maturation. The geothermal evolution and coal maturation characters are illustrated in Figure 6. In stage I (306.5-250 Ma), the main deposition period of the coal-bearing strata, the geothermal gradient was about 2.8°C/100 m and the coal reservoir was buried shallowly. The low temperature of coal seam led to a limited organic matter maturity (Table 2). In stage II (250-215 Ma), the study area experienced a short-term subsidence and deposited the Jurassic strata. The geothermal field returned to normal level, and the geotemperature decreased substantially (Figure 6). Coal organic matter maturing stagnated in this stage (Table 2).
Figure 6: Continued.
Then, in the next stage (stage V from 165 to 65 Ma), coal-bearing strata suffered denudation due to a long-term structural uplift. For the early period in stage V (165-141 Ma), structural uplifting led to further decreasing of coal seam temperature, and coal organic matter maturing continued to stagnate (Table 2). For the middle period in stage V (141-125 Ma), the formation of the Huyan mountain rock mass resulted in a significant increase of geothermal gradient in the western part of the Xishan coalfield (Figures 4(e) and 6(i)). The thermal contact metamorphism caused further maturation of coal organic matter (Table 2). The coal rank was distributed around the Huyan mountain in a circular belt. Within a short distance, the coal rank changed from super anthracite to high-volatile bituminous C [22]. Limited by the scale of the intrusive rock mass, only a small range of the study area was affected by this magma thermal event, which corresponds to the vicinity of the XSM-169 well in the southwest study area. For the last period in stage V (125-65 Ma) and stage VI (65 Ma-Now), the geothermal gradient reverted to a lower level gradually, the coal reservoir temperature decreased substantially, and the maturation of coal organic matter stopped (Table 2).

4.4. CBM Accumulation Process. In each evolution stage, the in situ gas content of the coal seam was mainly affected by the coal adsorption capacity and reservoir conditions (pressure and temperature) during the evolution process. An experimental simulation method modified from Bustin and Bustin [62] was used to investigate the evolutionary process of CBM accumulation in our previous work [45]. In this work, a similar experimental simulation work was also conducted. As the pressure and temperature of coal reservoir decreased, the coal adsorption capacity increased firstly and then decreased (i.e., the uplifting process) (Figure 7). Table 3 shows the adsorption capacity evolution characteristics in the domains of B1 and B3.

Combining with the results from simulation using the dynamic equilibrium model, the experimental results shown in Figure 7 and Table 3 were used to simulate the CBM accumulation processes and the formation history in the study.
area. The output of the simulation includes burial depth; cumulative gas production; cumulative gas diffusion; \(R_o \) in situ gas content at each geological time; and gas production, diffusion, and retention features during each geological evolutionary stage. Table 4 provides two examples of the simulation results for simulation nodes that contain well XSM-169 and XST-019, which represent that the coal reservoir experienced three-stage and two-stage thermal metamorphism processes, respectively. The evolution of the CBM reservoir of the No. 8 coal is shown in Figure 8. Consisting with the tectonic evolution history (Figure 4) and thermal evolution history (Figure 6), the entire CBM reservoir formation evolution can also be divided into six stages (Figure 8 and Table 4).

In the first stage (306.5-250 Ma), the shallowly buried-immature stage, biogenerating gas was the main products in this low-temperature reservoir condition. However, the biogenic gas was almost dissipated due to the shallow depth and absence of an effective local reservoir cap. In the second stage (250-215 Ma), the deeply buried stage, the coal seam had undergone deep metamorphism process, accompanied with the generation of primary plutonic metamorphism gases. A few amounts of this primary CBM were stored in coal seam, which was the most dissipated. In the third stage, during the Late Triassic-Early Jurassic (215-180 Ma), affected by the concealed rock mass in Qixian County, an abnormal geothermal field was formed which made the coal organic matter matured rapidly in most parts of the study area (Figure 8 and Table 4). A large amount of secondary coalbed gas generated in this stage, accompanied with strong gas diffusion. The fourth stage was the short-term deposition stage occurring between 180 and 165 Ma. As the organic matter maturation and hydrocarbon generation stagnated, only gas diffusion existed in this period. The fifth stage (165-130 Ma) was subdivided into three substages. The substage \(V_1 \) was a dissipation stage, from 165 to 141 Ma. The organic matter maturation and hydrocarbon generation continue to stagnate; only gas diffusion existed in this substage (Table 4). Then, in the substage \(V_2 \), the thermal contact metamorphism caused further maturation of coal organic matter in the southwest part of research area (e.g., well XSM-169), whereas the gas further diffused in the other areas (e.g., well XST-019) as shown in Figure 8 and Table 4. In the southwestern part, the generation of third coalbed gas led to strong gas diffusion (Table 4). For the substage \(V_3 \) (125-65 Ma) and stage VI (65 Ma-Now), affected by the Late Yanshanian orogeny and Himalayan orogeny, the overlying strata were uplifted and eroded continuously, and more gas escaped from coal reservoir.

4.5. Hydrocarbon System Evolution and Geological Control Effects. The Gujiao CBM field contains one hydrocarbon system, as shown in Figure 9. During the histories of hydrocarbon generation, expulsion, and migration processes, there are three major hydrocarbon generation and accumulation periods, i.e., the Indosinian, the Early Yanshanian, and the Middle Yanshanian, respectively. The Permo-Pennsylvanian coal seams are the source rocks of gas in this hydrocarbon system. The Late Permian strata are seal rocks

| Table 2: The vitrinite reflectance and reservoir temperature of the coal reservoir during geothermal evolution processes. |
|-----------------|---|---|---|---|---|---|---|
| Geological time | I | II | III | IV | \(V_1 \) | \(V_2 \) | \(V_3 \) |
| From 306.5 250 215 180 165 141 125 65 Now | | | | | | | |
| XST-170 | 306.5 | 250 | 215 | 180 | 165 | 141 | 125 | 65 |
| XSM-169 | 38.78 | 104.32 | 207.98 | 105.56 | 94.26 | 83.16 | 60.76 | 43.60 |
| XSM-055 | 44.01 | 105.77 | 217.71 | 111.00 | 100.44 | 271.32 | 61.24 | 47.29 |
| XST-019 | 42.96 | 104.90 | 211.72 | 107.80 | 98.20 | 86.68 | 65.88 | 48.55 |
| XST-099 | 51.25 | 104.90 | 211.72 | 107.80 | 95.00 | 83.48 | 64.28 | 49.65 |
| XST-051 | 39.60 | 105.19 | 213.97 | 109.40 | 96.60 | 84.76 | 63.96 | 46.00 |
| GJ-01 | 44.02 | 104.32 | 212.47 | 108.76 | 100.76 | 88.92 | 66.52 | 46.04 |
| GJ-03 | 39.73 | 104.90 | 215.46 | 110.36 | 102.36 | 90.36 | 67.96 | 48.11 |
| GJ-06 | 42.65 | 105.19 | 217.71 | 111.64 | 103.64 | 91.48 | 69.08 | 49.56 |

\(T_{\text{MAX}} \) is the maximum temperature of coal reservoir in each geothermal evolution stage.
that prevent gas diffusion. Hydrogeological conditions and tectonic structures had different effects on hydrocarbon migration and preservation. Four critical tectonic events have had a significant impact on gas production, accumulation, and diffusion (Figure 9).

Coal-bearing strata were deposited in the Late Pennsylvanian and Early Permian periods (stage I) during which the primary biogenic methane was produced and almost dissipated (Figure 8). After this shallowly buried period, the generation, expulsion, and accumulation processes of CBM were affected by the following episodic tectonic movements.

During stage II, the Early-Middle Triassic Indosinian orogeny was the first critical tectonic event that affected the generation of primary CBM (Figure 9). The maturity of coal increased with the increase of depth from the edge of the basin to the center (i.e., from north to south). Gas content at the end of this stage and gas diffusion during this stage were 6.2-7.4 m³/t and 11.2-13 m³/t, respectively (Figure 10). The distribution of gas content was consistent with the distribution characteristic of coal organic vitrinite reflectance (Table 2). The deeper buried coal seams had a higher paleotemperature, accompanied with a higher organic maturity. The higher organic maturity led to a higher gas production capacity and gas diffusion (Figure 10). The retention and dissipation of primary gases were controlled by the amount of gas produced and the sealing conditions of the coal reservoir.

The second critical tectonic event was the Early Yanshanian orogeny (Stage III in Figures 5 and 9). In this stage, the development of the Late Triassic-Early Jurassic Qixian concealed rock mass led to an abnormal geothermal field, which accelerated the maturation process of coal organic matter. The reservoir temperature decreased gradually from southeast to northwest (Table 2). The retention and dissipation of primary gases were controlled by the amount of gas produced and the sealing conditions of the coal reservoir.

The second critical tectonic event was the Early Yanshanian orogeny (Stage III in Figures 5 and 9). In this stage, the development of the Late Triassic-Early Jurassic Qixian concealed rock mass led to an abnormal geothermal field, which accelerated the maturation process of coal organic matter. The reservoir temperature decreased gradually from southeast to northwest (Table 2). The retention and dissipation of primary gases were controlled by the amount of gas produced and the sealing conditions of the coal reservoir.
140.97 m³/t in this stage, showing a downward trend from southeast to northwest. The amount of gas diffusion was determined by the gas generation characteristics. Gas content at the end of this stage and gas diffusion during this stage were 17.2-59.4 m³/t and 17.2-89 m³/t, respectively (Figure 11). The distributions of vitrinite reflectance, gas
content, and gas diffusion were similar to the distribution of paleotemperature (Figure 11 and Table 2). The second critical tectonic event controlled the paleotemperature field variation which resulted in the high gas content in B4 and the south area of B2.

During the following period of 185-145 Ma (stages IV and V₁ in Table 4), the study area was deposited briefly and then uplifted. Due to the low temperature of coal reservoir, hydrocarbon generation stagnated, and only gas diffusion existed in this period. Gas content at the end of this stage and gas diffusion during this stage were 10.7-35.6 m³/t and 6.5-23.8 m³/t, respectively (Figure 12). The amount of gas diffusion was high in the southeast (B4 and the south area of B2 domain), which inherited the gas content distribution characteristic at the previous stage (Figures 11(a) and 12(b)). This result implies that the methane concentration was a much more important factor than others for gas diffusion in this stage.

After this gas diffusion period, the third critical tectonic event occurred in the Middle Yanshanian orogeny (145-130 Ma: stage V₂ in Table 4) (i.e., the formation of the Huyan mountain rock mass). Due to the intrusion of Huyan mountain rock mass, an abnormal geothermal field was formed in the southwest part of study area and the coal seams in there experienced their third hydrocarbon-generation process. The reservoir temperature was distributed in a ring band and decreased from the southwest corner to the northeast in southwest research area (south area of B1 and southwest of B2). Hydrocarbon generation and gas diffusion showed the same trend that decreased from the southwest to the northeast (Figure 12(b)). The coal rank reached 2.5% in the area of well XSM-169, and the volume of gas production was 101.4 m³/t in this area during this stage. As for the other areas, due to the further decrease of temperature, the hydrocarbon generation stopped and the gas in coal seams further escaped. In these low-paleotemperature field areas, the gas diffusion was dominated by the in situ hydrocarbon
concentration. The gas content at the end of the previous evolution period (Figure 12(a)) controlled the variation of gas accumulation and dissipation in these low temperature areas. Gas content at the end of this stage and gas diffusion during this stage were 9.7-38.8 m³/t and 1-90.6 m³/t, respectively (Figure 13). The gas content and gas diffusion reached their maximum value in the southwest region and decreased radially to the northeast, whereas in the areas unaffected by Huyan mountain rock mass, the hydrocarbon variation characteristics of the previous period were inherited.

In substage V₃, influenced by the uplifting of Lvliang mountain in this period and the intrusion of Huyan mountain rock mass in the former period, the west to southwest part of the study area uplifted more than elsewhere.

Figure 9: Extended essential element diagram showing the hydrocarbon system present in the study area with relation to tectonic activity and general tectonic behavior.

Figure 10: Distribution characteristics of gas content (a) at the end of Middle Triassic period and gas diffusion during the Indosinian orogeny (b).
Figure 11: Distribution characteristics of gas content (a) at the end of Early Jurassic period and gas diffusion during the Early Yanshanian orogeny (b).

Figure 12: Distribution characteristics of gas content (a) at the end of the substage V₁ and gas diffusion during the stage IV and substage V₁ (b).
accompanied with a higher gas escape degree. The amount of gas diffusion was 1.6-16.2 m³/t, showing a decrease trend from southwest to northeast (Figure 14(b)). At the end of the stage, the gas content was 8.1-22.7 m³/t, as shown in Figure 14(a).

Since the Cenozoic Era, the study area has experienced three stages of uplift [51]. During the first and second uplifting stages (substage VI₁ and VI₂), under the influence of the Early and Middle Himalayan tectonic movement, the study area was uplifted in a stepped manner. The gas diffusion
was dominated by the hydrocarbon concentration at the end of the previous stage (Figures 14(a) and 15(b)). After this evolution period, the gas content was about 6.5-17.4 m³/t (Figure 15(a)), and its distribution characteristics were roughly consistent with the distribution characteristics at the previous stage (Figure 14(a)). The gas saturation was
relatively low in the west part of study area (B1 domain and north of B2 domain) due to sustaining uplifting of Lvliang mountain in the west (Table 3).

The fourth critical tectonic event occurred in the Late Himalayan period (substage V1). During this stage, the study area experienced a sharp uplift. In this period, the development of the Fenhe graben caused the structural inversion in the northeast to eastern regions of the study area [59]. The stress field transformed from the squeezed state to the stretched state. Affected by the northwest-southeast tension stress, a series of northeast-southwest normal faults were formed, mainly in the northeastern part of the study area. The development of these extensional structures resulted in strong gas diffusion (Figure 16). The gas saturation and gas content decreased rapidly in the northeast part of the study area (east part of B3 domain) (Table 3 and Figure 16). Moreover, during this stage, the limestone areas in the northwest and north part of the coalfield were the main recharge runoff area of the study area. The groundwater flowed from these recharge areas to the low-lying zone of the study area. The gas was carried to the axis area of syncline for accumulation [16, 26].

In general, the combining effects of basin uplifting, tectonic inversion (the formation of extensional faults), and hydrogeological characteristics controlled the gas content and dissipation characteristics of reservoirs in this evolution period.

5. Conclusion

The evolution of coalbed methane reservoir can be subdivided into six evolutionary stages: (1) shallowly buried, immature stage; (2) deeply buried, primary coalbed methane accumulation stage; (3) concealed rock mass influenced secondary gas generation stage; (4) low temperature, maturation stagnated stage; (5) uplifting, locally third gas generation stage; and (6) sustaining uplifting and structural inversion, further coalbed methane dissipation stage.

The formation, preservation, and dissipation of coalbed methane were mainly affected by four critical tectonic events. The first critical tectonic event during the Indosinian period of the Early-Middle Triassic controlled the first hydrocarbon generation process in the study area. The second critical tectonic event in the Early Yanshanian period, Qixian concealed rock mass magma-heat event, affected the distribution of secondary gas generation distribution characteristic and resulted in higher gas generation in southeast part of research area. The third critical tectonic event in the Middle Yanshanian period, Huyan mountain intrusive rock mass magma-heat event, dominated local third gas generation distribution characteristic and resulted in higher gas generation in the southwest research area (south area of B1 and southwest of B2). The fourth critical event, i.e., the Late Himalayan tectonic inversion, caused the further diffusion of gas and reduced the gas content and saturation in coal reservoir, especially in the northeast part of study area (east part of B3 domain). The combination of these four critical tectonic events led to the high gas heterogeneity distribution of coalbed methane reservoirs in Gujiao coalbed methane field, Xishan coalfield.

Data Availability

All data are derived from my experimental results, which can be provided in the appendix of the paper if necessary.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was funded by the National Natural Science Foundation of China (41902178, 41973077, U1910204); Open Fund of Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and Development Engineering, China University of Geosciences (Beijing) (2019BJ02001); the Natural Science Foundation of Shanxi Province, China (201701D221026); and Research project of China United Coalbed Methane Co., Ltd (ZZGSSAYJ-PYTH2020-300).

References

