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Geological factors are key elements to control shale gas enrichment and influence the accurate estimation of shale gas reserve.
However, the impact of the main geological factors, such as porosity, mineralogy, and organic matter, on marine shale gas
enrichment and reserve calculation has not yet been fully clarified. Herein, we measured gas adsorption, porosity, mineralogical
composition, and total organic carbon content of the marine shale samples from the Jiaoshiba area of Fuling gas field in Sichuan
Basin, South China, and investigate the relationships between the geological factors and the adsorbed gas content. The results
show that adsorbed gas content is positively correlated with total organic carbon and porosity; the larger specific surface area of
samples with more clay minerals essentially contributes to shale gas enrichment. Additionally, the sealing of faults imposes a
significant impact on shale gas accumulation. The probability volume method was applied to calculate the shale gas reserve. The
reserves of P90 (the most pessimistic reserve), P50 (the most likely reserve), and P10 (the most optimistic reserve) were calculated,
respectively, which provides useful information to reduce the risk in shale gas development.

1. Introduction

Shale gas, as a new type of clean energy, has recently influ-
enced the world’s energy supply pattern because of the large
reserves and wide distribution around the world [1]. The
shale gas production of the USA is 6669 × 108 m3, accounting
for 63.4% of the total natural gas production [2, 3]. The
recoverable resources of shale gas in China are about 2600
× 1010 m3, and the resource potential is also huge [4, 5].
The accumulation mechanism of shale gas is complex and
has the characteristics of self-generation, self-storage, and
self-protection [6, 7]. Thus, the accurate evaluation of the
scale and quantity is relatively difficult. According to the dif-
ferent characteristics of shale gas reserves, taking appropriate

resource assessment methods is of great significance for the
future exploration and development of shale gas.

Many different geological factors control shale gas
enrichment, such as porosity, pore structure, total organic
carbon (TOC), clay, and the structural characteristics of
strata [8, 9]. The marine shale gas in South China is more
complex because of the heterogeneity of shale organic matter
content, mineral composition, and other evolutionary condi-
tions [10–12]. At present, the geological factors controlling
shale gas enrichment in southern China are still unclear
[13, 14]. The research about the relationship between shale
gas supply, gas storage, gas preservation, structural style,
and spatial-temporal matching of reservoir formation is
urgently needed [15–18].
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The volume method is generally used for resource calcu-
lation [19, 20]. However, due to the complicated accumula-
tion mechanism of natural gas in unconventional
reservoirs, shale gas reservoirs usually do not have a clear
physical boundary, and the related parameters in the calcula-
tion of reserves are difficult to determine. Therefore, the
probabilistic volume method is currently an ideal method
for shale gas reserve assessment [21–23]. Shale gas resource
evaluation method and evaluation parameter assignment
have been explored [24]. The principle and method of calcu-
lating shale gas resources by volume method are described in
detail [25]. Zhang et al. applied the probabilistic volume
method to evaluate shale gas resources based on the current
situation of shale gas exploration and development in China
[26]. According to the principle of the probabilistic volume
method [27, 28], the parameters for reserve calculation were
selected, assigned, analyzed, and characterized, which not
only reflects the uncertainty in the calculation but also
ensures accuracy within a certain risk range.

In this study, the relationships between various geological
factors and adsorbed gas content were established, and the
main geological factors controlling shale gas enrichment
were investigated. In the process of reserves calculation, only
18 tests were required to calculate the probability distribution
of shale gas reserves using the orthogonal test design method,
which greatly improved the efficiency of the calculation and

provided a basis for the formulation of development plans
and reduced development risks.

2. Geological Setting

The Fuling Shale Gas Field is located in the east of the
Sichuan Basin (Figure 1(a)), west of the Qiyueshan Fault,
and Chuandong barrier-type fold-thrust belt. The main shale
gas reservoirs are found in the Jiaoshiba (JSB) area, which is a
NE-trending anticline with diamond-shaped controlled by
two groups, NE-trending faults and NS-trending faults
(Figure 1(b)). The top of the JSB area has a gentle slope
without faults, while the two wings of the structure show a
steep dip angle and well-developed faults. The partition
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Figure 1: (a) Sichuan Basin; (b) the regional location of Fuling shale gas field; (c) Faults distribution in the JSB area (modified after [30]).
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Figure 2: The profile of the structural deformation area of Sichuan
Basin (modified after [30]).
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deformation zone inside the basin is developed in the west of
the Qiyueshan fault zone. The Qiyueshan fault zone has good
vertical and horizontal continuity. It is characterized by the
development of low-microamplitude fold structural styles
with little tectonic erosion. The section position of Figure 2
is shown in Figure 1(b). Figure 2 shows that the JSB area,
located in such a tectonic background, has well-developed
Mesozoic and Paleozoic stratigraphy, which provides good
conditions for oil and gas preservation.

The drilled wells showed that the sedimentary environ-
ment of Wufeng-Longmaxi Shale varies upward gradually
from a deep-water continental shelf to a shallow-water conti-
nental shelf environment. The continuous thickness of the
shale with a TOC content of more than 2% is over 30m in
Wufeng-Longmaxi Formations. Eight exploration wells from
the Y1 well to the Y8 well and nearly 200 development wells
were conducted in the main body of the JSB area. The
organic-rich shale in the JSB area is well distributed on the
plane. The thickness of the high-quality shale reservoir varies
from 38m to 48m. The lithology of the top gas formation in
the JSB area is mainly composed of gray-black clay silty shale,
gray-black silty clay mixed shale, and silty clay rock with
bands or agglomerate pyrite [29]. The high-quality shale res-
ervoir at the bottom of Wufeng-Longmaxi Formations has
the characteristics of high clay content, low siltstone content,
high carbon content, and well-developed fractures.

3. Samples and Methods

3.1. Samples. Eight shale samples were collected from the
lower part of Wufeng-Longmaxi Formations. The samples
were divided into several parts for different experiments.
First, the density of shale samples that were cut into cylinders
was measured using the volumetric method. Porosity mea-
surement was performed by ULTRA PORO300 Porosity,
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Figure 3: Adsorption isotherms of eight shale samples from Wufeng-Longmaxi Formation, JSB area in Fuling gas field.
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Figure 4: Relationship between TOC and adsorbed gas content of
samples from Wufeng-Longmaxi Formation, JSB area in Fuling
gas field.
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following the standard GB/T 29172-2012 of China (GB/T
29172-2012). The pure calcium carbonate (0.2 g) and the
shale sample powder (0.2 g) were mixed with enough dilute
hydrochloric acid, respectively. The carbonate content of
shale samples can be obtained by comparing the pressure of
carbon dioxide.

3.2. Experiment and Calculation Methods. The samples,
which were crushed into ∼150 mesh using SPEX 8000M
Mixer/Mill, were mixed with ethanol and then laid on glass
slides. Dmax-2500 X-ray diffractometer (XRD) was used to
test the clay content. Before the TOC test, the inorganic car-
bon in the samples was removed using hydrochloric acid
(4%-4.13%). The Cornerstone™ carbon-sulfur analyzer that
combusts a 130mg sample of powdered shale samples was
used to test the TOC content at 704.4°C [3, 31].

Isothermal adsorption experiments were conducted by
using GAI-100 high-accuracy isotherm instrument and
AJP-100 volume calibrator. The maximum working pressure
of GAI-100 is 10000Psi (69MPa), and the accuracy of the
pressure sensor is 0.05%. The eight samples were crushed
into 50-80 mesh size, and the adsorbed moisture and capil-
lary water in the samples were removed at around 120°C
for approximately 24 h. The isotherms were obtained under
pressure ranging from 0.01 to 14MPa at 177°C. The accuracy
of the temperature sensor is 0.1°C. The maximum adsorption
volume can be calculated by the software automatically using
Langmuir theory [32, 33].

According to the basic principle of the probabilistic vol-
ume method, the amount of shale gas resources is the proba-
bility product of shale mass and natural gas (gas content)
contained in mud shale per unit mass. The calculation for-
mula is as follows:

Qt = 0:01 × S ⋅H ⋅ ρ ⋅ q: ð1Þ

Qt is the amount of shale gas resources (108m3); S is the
area of gas shale (km2); H is the effective thickness of shale
(m); ρ is the shale density (t/m3); q is the gas content (m3/t).

The shale gas content is a key parameter in the calcula-
tion and evaluation of shale gas resources. And it is a param-

eter with a large range of numerical values and is difficult to
obtain accurately. Therefore, shale gas content can be
obtained by using the decomposition method. The mode of
occurrence of natural gas could be free, adsorbed, or
dissolved, which can be calculated by different methods,
as follows:

Qt = qa + qf + qd: ð2Þ

qa is the adsorption gas content (m3/t), qf is the free
gas content (m3/t), and qd is the dissolved gas content
(m3/t).

At present, the main method to obtain adsorption gas
content is the isothermal adsorption experiment. The sam-
ples were placed in the environment of approximate under-
ground temperature, and the maximum adsorbed gas was
measured under different pressure conditions as follows:

Qa = 0:01 × S ⋅H ⋅ ρ ⋅ qa, ð3Þ

qa = VL ⋅ P/ PL + Pð Þ: ð4Þ
qa is the adsorption gas content (m3/t), VL is the Lang-

muir volume (m3), PL is the Langmuir pressure (MPa), and
P is the stratum pressure (MPa).

The free gas content (qf ) can be obtained by porosity
(including pore and fracture volume) and gas saturation
[34], as follows:

Qf = 0:01 × S ⋅H ⋅ ρ ⋅ qf , ð5Þ

qf = ϕg ⋅ Sg/Bg: ð6Þ
Φg is the porosity (%), Sg is the gas saturation (%), and Bg

is the volume factor, which is used to convert the volume of
underground natural gas into the volume under standard
conditions.

Natural gas in shale can be dissolved in the formation
water, kerogen, asphaltene, or crude oil to varying degrees.
Because the natural gas content dissolved in kerogen and
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Figure 5: The relationship between (a) carbonate content, (b) carbonate minerals content, and adsorbed gas content.
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asphaltenes is tiny, and the formation water is not the main
fluid of shale, the dissolved gas content can be ignored in
gas content analysis.

4. Results and Discussion

4.1. Relationship between the TOC and Adsorption Gas
Content. The isotherms of the samples were shown in
Figure 3, indicating that the lower part of the shale in
Wufeng-Longmaxi Formations had good adsorption perfor-
mance, and the content of adsorbed gas in the shales has a
positive correlation with pressure. Wufeng-Longmaxi Shale
in the study area is mainly developed in shallow water and
deep-water continental shelf sedimentary environments.
The continuous thickness of the shale with TOC content
larger than 2% is over 30m. The organic matter in the shale
not only controls the pore structure but also significantly
controls the adsorbed gas content in the shale. Figure 4 shows
that the adsorbed gas content in shale samples increases with
the content of TOC. This is because the presence of organic
carbon generates more organic pores and larger specific
surface area in the samples, which can increase the adsorbed
gas content [35–37]. The relationships have been suggested

in previous studies on shales from some North American
basins [38, 39].

4.2. Relationship between Clay, Carbonate Content, and
Adsorbed Gas Content. Figure 5(a) shows the relationship
between the carbonate content and the adsorbed gas content
in the shale samples. It can be seen that as the content of car-
bonate increases, the content of adsorbed gas in the sample
decreases; this is because the presence of carbonate minerals
occupies the pore space, which reduces the specific surface
area of the shale samples and content of adsorbed gas. How-
ever, as shown in Figure 5(b), as the clay mineral content
increases, the adsorbed gas content in the samples gradually
increases. This is because the presence of clay minerals
increases the pores and their related specific surface area of
the samples [14, 31, 40, 41], which can absorb more natural
gas in the shale.

4.3. Relationship between Porosity and Adsorbed Gas
Content. The porosity of Wufeng-Longmaxi Shale gas reser-
voirs in the JSB area of the Fuling gas field is between 1.45%
and 6.38%, with an average of about 3.65%. The overall
porosity is relatively high, which provides good conditions
for natural gas storage. Figure 6 shows a positive correlation
between porosity and gas content in the samples; that means

Table 1: Five factors and three levels orthogonal table.

Shale density TOC Porosity Gas saturation
Shale gas volume

coefficient

-1 -1 -1 -1 -1

0 0 0 0 0

1 1 1 1 1

Table 2: The calculation results of shale gas reserves of 18 tests.

No. ρ TOC φ Sg Bgi
Ga Gf Gt

(108m3) (108m3) (108m3)

1 1 1 1 1 1 55.37 81.74 137.11

2 1 0 0 0 0 54.63 71.52 126.15

3 1 -1 -1 -1 -1 54.39 61.30 115.69

4 0 1 1 0 0 54.83 75.10 130.93

5 0 0 0 -1 -1 54.09 64.53 118.62

6 0 -1 -1 1 1 53.85 73.95 127.80

7 -1 1 0 1 -1 54.28 86.04 140.32

8 -1 0 -1 0 1 53.55 64.71 118.26

9 -1 -1 1 -1 0 53.30 64.37 117.67

10 1 1 -1 -1 0 55.37 58.24 113.61

11 1 0 1 1 -1 54.63 90.34 144.97

12 1 -1 0 0 1 54.39 68.12 122.51

13 0 1 0 -1 1 54.83 58.39 113.22

14 0 0 -1 1 0 54.09 77.65 131.74

15 0 -1 1 0 -1 53.85 79.05 132.90

16 -1 1 -1 0 -1 54.28 71.52 125.80

17 -1 0 1 -1 1 53.55 61.30 114.85

18 -1 -1 0 1 0 53.30 81.74 135.04

y = 0.0133x + 0.5753
R2 = 0.8356
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Figure 7: The relationship between SGR index and pressure
coefficient.
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that porosity has a significant control effect on the gas con-
tent of the shale. The porosity of gas reservoirs in the lower
part of Wufeng-Longmaxi Formations is significantly higher
than that of the upper part. The TOC in the lower part is sig-
nificantly higher than that of the upper gas layer. This could
be the main reason for the significant difference in the total
amount of adsorbed gas and free gas between the lower part
and upper part of Wufeng-Longmaxi Formations.

4.4. Relationship between Regional Tectonic Deformation and
Shale Gas Content. The intense tectonic movement promoted
many large faults, making the shale gas preservation condi-
tions in the Fuling area vary greatly. The strength of struc-
tural deformation in the Fuling area is gradually weakened
from east to west. The scale of the faults in the Baima syncline
belt is very large. As a result, the pressure coefficient in the
east is about 1.2, and the pressure coefficient in some areas
with few faults exceeds 1.3, reflecting the poor preservation
conditions in the eastern tectonic belt. The pressure coeffi-
cient of Fenglai syncline and JSB anticline is larger than 1.2,
and some areas (Y8 and Y10 well area) exceed 1.5, reflecting
that the overall gas preservation of the West Belt is in good
condition, as shown in Figure 1(c).

Also, fault sealing has a significant control effect on the
shale gas content [3]. In this study, the shale gouge ratio
(SGR) index is used to evaluate the fault sealability quantita-
tively [42–44]. SGR index refers to the proportion of mud
that is squeezed into the fault zone due to various mecha-
nisms or dynamics (Formula (7)). A larger SGR indicates
the better lateral sealing of faults. It can be seen from the rela-
tionship between the SGR index and the pressure coefficient
of a single well, the better the fault sealing, the greater the
pressure coefficient, indicating more gas content in the shale
reservoirs (Figure 7).

SGR = ∑n
i=1 Hi × Sið Þ

H
× 100%: ð7Þ

n is the number of broken stratum, Hi is the thickness of

broken stratum, Si is the clay content of broken stratum, and
H is the total thickness of broken strata.

4.5. Reserve Calculation

4.5.1. Parameter Optimization and Assignment. Based on the
above analysis, TOC, the shale gas density, porosity, gas sat-
uration, and original natural gas volume coefficient are
selected as the main parameters for calculating shale gas
reserves in the study area. To calculate shale gas reserves
based on three-dimensional geological models, the construc-
tion model, the shale density model, the TOC model, the
porosity model, and the gas saturation model were estab-
lished by using the Sequential Gaussian method.

The value of shale density was analyzed statistically from
samples. The minimum value was 2.4 g/cm3, the maximum
value was 2.8 g/cm3, and the average value was 2.6 g/cm3.
The density is mainly distributed in 2.55-2.65 g/cm3. The
-1% model, the benchmark model, and the +1% model are
regarded as the pessimistic value, the possible value, and
the optimistic value, respectively. TOC, porosity, and the
original natural gas volume coefficient are also taken from
three equal percentage levels. The -5%model, the benchmark
model, and the +5% model are regarded as the pessimistic
value, the possible value, and the optimistic value. The
-10% model, the benchmark model, and the +10% model of
the gas saturation are regarded as the pessimistic value, the
possible value, and the optimistic value.

4.5.2. Calculation of Shale Reserves Based on Probability
Volume Method. Three levels of pessimism (-1), possibility
(0), and optimism (1) were selected for each type of uncertain
parameters affecting shale gas reserves. A factor level table
was established for the calculation, as shown in Table 1.

If the five factors in the three levels are fully designed, we
must establish 243 models and calculate the reserves. In this
study, the experimental design method was used to analyze
the uncertain parameters that affect the reserve. Only 18 tests
were required to calculate the probability distribution of
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shale gas reserves, which greatly improved the calculation
efficiency. Also, the geological factors that affect the calcula-
tion of reserves can be quantitatively evaluated through the
analysis of variance. The adsorbed gas (Ga) and the free gas
(Gf ) are calculated, respectively, and then the total reserves
(Gt) are calculated, as shown in Table 2.

The geological process and its products can be regarded
as random events; that means various geological observations
have random variables. Thus, the method of probability
statistics can be used to study the regularity of geological
variable changes. The method of orthogonal test design is
used to evaluate the uncertainty of geological variables, and
the cumulative probability distribution curve of shale gas
reserves was obtained (Figure 8). The reserves of P90, P50,
and P10 were chosen by using the method of queuing proba-
bilistic reserves [45]. The reserves of P90, P50, and P10 corre-
spond to the most pessimistic reserve, the most likely, and
the most optimistic reserve, respectively. To reduce the risk
in shale gas development, the three possible values of shale
gas reserves should be fully considered.

5. Conclusion

In this paper, the adsorbed gas content, porosity, mineralog-
ical composition, and total organic carbon content of shale
samples from the Jiaoshiba area, Sichuan Basin were investi-
gated using a series of experiments. The following conclu-
sions were obtained:

(1) The main factors controlling the shale gas enrich-
ment of the Fuling gas field are TOC, carbonate con-
tent, clay minerals, and porosity. Shales with higher
TOC, clay, and porosity have more adsorption gas

(2) Fault sealing has a significant control effect on the
enrichment of shale gas. The better the sealing of faults,
the greater the pressure coefficient of strata, indicating
more shale gas accumulated in the formations

(3) The reserves of P90, P50, and P10 correspond to the
most pessimistic reserve, the most likely, and the
most optimistic reserve, respectively. To reduce
the risk in shale gas development, the three possible
values of shale gas reserves should be fully consid-
ered. The corresponding geological model can be
selected for shale gas numerical simulation to evalu-
ate the impact of geological uncertainty on develop-
ment quantitatively and reduce the risk in shale gas
development
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