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Mine water inrush seriously threatens the safety of coal mine production. Quick and accurate identification of mine water inrush
sources is of great significance to preventing mine water hazards. This paper combined partial least squares-discriminate analysis
(PLS-DA) with inrush water chemical composition to identify the source of water inrush from multiple aquifers in mines. The
Renlou Coal Mine in the Linhuan mining area was selected for this study, and seven conventional water chemical compositions
from 54 water samples in three aquifers were collected and tested, of which 45 water samples were used to establish the PLS-DA
discriminant model, and nine were used to test the prediction effect. To improve model accuracy and predictive ability,
hierarchical clustering analysis method was used to eliminate seven unqualified water samples to reduce the errors caused by
improper data. PCA and PLS-DA methods were used to analyze and process the remaining water sample data, and on the basis
of PCA analysis, the remaining 38 water samples were used to establish the PLS-DA discriminant model. The model was
validated using permutation and external prediction tests. The research shows the following results: (1) Both PCA and PLS-DA
methods can distinguish water samples from three different water sources, but the classification effect of PLS-DA was better
than PCA because it can strengthen the difference of water chemical composition between different water sources. (2) The
correct discrimination rate of the PLS-DA discriminant model was as high as 100%, and permutation tests showed that the
model was not overfit. External validation found that the model had good stability and discrimination. (3) HCO3

- and total
dissolved solids (TDS) were the most important differential marker compositions that affected the discrimination results based
on Variable Importance for the Projection (VIP) scores. The discriminant model established in this study combined the
advantages of principal component analysis and multiple regression analysis, providing a new method for accurately identifying
the sources of water inrush in mines.

1. Introduction

Coal resource is an important basic resource for the long-
term rapid and stable development of the national economy
in China [1]. As mining depth has increased, water inrush
disaster occurrence has also increased, which poses a serious
threat to the safety of coal mine production [2, 3]. Quickly
and accurately identifying the sources of mine water inrush
is important for the prevention and control of coal mine
water inrush disasters, and it is also a top concern in mine

water disaster management research [4]. Many scholars
have proposed various methods to identify the source of
water inrush in mines, such as groundwater chemistry [5,
6], trace elements and isotopes [7, 8], water temperature
[9, 10], and groundwater level dynamic observations [11].
After comparing groundwater chemistry with other
methods, Wu et al. [12] concluded that the water chemistry
discrimination method had more advantages in practical
applications. Because groundwater chemistry can reflect
the essential characteristics of groundwater, and can
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accurately, quickly, and economically identify water sources,
it has been more commonly used to identify water inrush
water sources in mines [13].

At present, mathematical statistical methods and
machine learning methods are typically applied when using
the chemical composition of groundwater to identify water
inrush sources, such as fuzzy mathematical theory [14, 15],
grey relational analysis [16, 17], back propagation neural net-
work (BP neural network) [18], Fisher’s discriminant
method [19], Bayes’ discriminant method [20], distance dis-
criminant method [21], extension identification method [22],
support vector machine (SVM) [23], and extreme learning
machine (ELM) [24]. The application of these mathematical
and machine learning methods enriches the content of mine
water source discrimination theory, improves identification
accuracy, and demonstrates good practicability and effective-
ness. However, most of these present discriminant methods
have not considered the complicated information superposi-
tion problem between water chemistry indicators, a problem
that results in misdiscrimination of the established model in
the practical application process, and their recognition accu-
racy still needs to be further improved [25]. Therefore, some
scholars have adopted the principal component analysis
(PCA) method in the water source discriminant analysis
and obtained better analysis results [26]. PCA can extract
and compresses the information of hydrochemical data of
different water sources, transform original data into mutually
independent new data without information superposition,
and eliminate the effects caused by information superposi-
tion between indicators so that characteristics of different
water sources can be described more effectively [27].

In this paper, a new promising method (partial least
squares-discriminate analysis (PLS-DA)) is presented, and
this method can effectively solve the problem of multicolli-
nearity between multiple variables and is reliable especially
when there is a high degree of correlation between them.
PLS-DA is a supervised multivariate statistical method that
integrates the basic functions of PCA, canonical correlation
analysis and multiple regression analysis [28, 29]. Similar to
PCA, PLS-DA is also a multidimensional vector analysis
method based on dimensionality reduction. However, differ-
ent from PCA, the PLS-DA method performs orthogonal
decomposition of the measurement matrix while also per-
forming orthogonal decomposition of the response matrix.
In other words, PLS-DA can preset classifications and add
grouping variables for supervised analysis to further
strengthen the differences between groups [29]. Its advantage
is that it can remove the influence of uncontrolled variables
on data analysis as much as possible, further mine the infor-
mation in the data, and quantify the degree of component
difference caused by characteristic ions [30]. Barker and
Matthew [30] used statistical theory to show that PLS-DA
performed good classification. In recent years, PLS-DA has
been widely used for screening pharmaceutical ingredients;
tracing the origins of wine, meat, etc.; and identifying and
classifying tea and navel oranges [31]. However, few studies
have used it to identify water inrush in mines. Yan et al.
[32] used laser-induced fluorescent (LIF) technology to
obtain the fluorescence spectrum of inrush water sources

and used it as an indicator for PLS-DA discrimination with
good effect. However, it is difficult to obtain the fluorescence
spectrum of the inrush water sources using this technology
for all mines, and the test cost is relatively high. This paper
used the conventional ion compositions of the inrush water
as indicators to establish a PLS-DA discriminant model and
further broaden the application range of PLS-DA in identify-
ing mine water inrush sources. Seven conventional water
chemical compositions from water samples of three aquifers
were used as indicators in this study and the hierarchical
clustering analysis method was used to eliminate the unqual-
ified water samples. The PCAmethod was used to analyze the
remaining water sample data, and then the PLS-DA discrim-
ination model based on chemical compositions of inrush
water was established. Permutation and external verification
tests demonstrated model stability and discriminative ability.

2. Description of the Study Area

The Renlou Coal Mine is located in the Linhuan mining area
of northern Anhui Province, China. Its geographic location is
shown in Figure 1. The mine field is located in the middle of
the Huaibei Plain, and the terrain is flat. There is only a small,
artificially dredged seasonal river in the mine field and its
flow is controlled by rainfall. The average annual rainfall in
the study area is 820mm, mostly concentrated from June to
September, and the maximum rainfall in July is 268.5mm.
The annual average temperature is 14.3°C, with the lowest
temperature in January of -23.2°C and the highest in July of
41°C. The maximum evaporation occurs from June to
August, with a multiyear average evaporation of 1774mm.

The Renlou Coal Mine is located in the southeast wing of
the Tongting Anticline, and the stratigraphic occurrence in
the area is relatively gentle, generally 13°~20°. At present,
the primary mines are No. 72 coal, No. 73 coal, and No. 82
coal. Water inrush is an important threat to the safe produc-
tion of the Renlou Coal Mine, where 21 inrushes occurred
from January 1989 to February 2013. The water inrush dura-
tion at some points was long with a large amount of water.
For example, during the excavation process of working face
7222, the maximum instantaneous water influx reached
34570m3/h due to the karst collapse column connected to
other aquifers, causing the entire well to be flooded. There-
fore, accurate identification of water inrush sources is very
important for the prevention and control of water disasters
in the Renlou Coal Mine.

There are multiple groundwater aquifer layers in the
minefield. From top to bottom, there are loose pore aquifers,
coal-measure formation sandstone fractured aquifers, Tai-
yuan formation limestone karst fractured aquifers, and
Ordovician karst fractured aquifers. Of these, the fourth
aquifer in the loose layer (referred to as the “fourth aquifer”)
may enter the mine through a crack or a vertical guide chan-
nel and affect production, and it is also the main hidden
water hazard in shallow coal mining. The sandstone frac-
tured aquifer (referred to as the “coal-bearing sandstone
aquifer”) is mainly stored in the structural fissures of sand-
stone layers as static reserves. Due to the influence of geolog-
ical structure, the fissures are unevenly developed. When the
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fissures are developed or connect with other aquifers, the
water output will increase, causing other aquifers to become
indirect water sources for the main coal seams. The limestone
karst fissure aquifer of the Taiyuan Formation (referred to as
the “limestone aquifer”) is the main water source for the
mine. The average distance between the aquifer and the No.
82 coal seam floor is about 140m. However, due to the
development of hidden karst water-conducting subsidence
columns and water-conducting faults in the minefield, these
passages may cause limestone aquifer water to enter the

mine. The water content of the Ordovician karst fissure aqui-
fer is very rich, but the aquifer is nearly 290m away from the
No. 82 coal floor. Therefore, it does not have hydraulic
connections with the mine under normal conditions and
does not directly threaten the safety of the mine.

3. Materials and Methods

3.1. Sampling and Testing. In this study, 54 original water
samples were collected from three main water inrush aquifers
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Figure 1: Map showing the location of the study area, with the distribution of faults, folds, sampling sites, and hydrogeologic section within
the Renlou Coal Mine.
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Table 1: Test data for water samples.

Num Ca2+ (mg/L) Mg2+ (mg/L) Na++K+ (mg/L) Cl- (mg/L) SO4
2- (mg/L) HCO3

- (mg/L) TDS (mg/L) Water source type

Training set samples

1 17.88 20.77 195.36 118.9 112.8 302.66 630 FA

2 349.2 109.6 488.24 1072 585.6 319.25 2765 FA

3 268.2 105 396.27 823.2 515.7 323.14 2270 FA

4 272.5 111.8 335.66 709.1 544.4 370.1 2159 FA

5 9.4 0.74 290.18 432 8.26 30.63 765 FA

6 143.2 3.99 449.98 912.2 6.05 72.31 1552 FA

7 55.73 92.33 381.66 763.3 230.5 28.74 1543 FA

8 45.69 43.67 118.29 181.9 90.55 225.29 602 FA

9 4.35 18.11 228.89 104.7 121.7 243.71 667 FA

10 8.24 3.83 479.27 250.3 20.17 785.92 1193 CBSA

11 7.01 3.89 867.41 685.4 16.81 1028.2 2661.6 CBSA

12 10.62 6.8 788.32 739.7 24.47 762.13 2377.7 CBSA

13 31.45 3.62 910.1 967.5 131.7 508.68 2298.7 CBSA

14 5.97 2.52 967.95 580.9 11.38 1384.4 2363 CBSA

15 13.35 2.52 710.35 559.2 48.03 854.46 2219 CBSA

16 4.05 0.98 755.27 395.5 3.65 1213.4 1829 CBSA

17 141.2 253.1 563.09 999.3 561.8 539.16 2788 CBSA

18 1.29 4.33 526.03 267.7 5.76 918.03 1278 CBSA

19 1.48 3.07 608.81 235.8 9.06 1146.8 1465 CBSA

20 11.36 24.56 812.22 572.5 135 1129.8 2121 CBSA

21 2.86 4.33 655.2 514.9 4.12 835.46 1618 CBSA

22 1.91 4.33 635.42 442.1 6.59 897.63 1560 CBSA

23 3.19 4.37 845.18 682.5 19.21 1075.8 2630.2 CBSA

24 5.65 2.68 851.11 621.5 311.1 754.33 2582.1 CBSA

25 6.27 2.18 732.16 613.4 12.54 788.99 2212.8 CBSA

26 110.6 62.38 242.51 355.1 247.4 367.7 1202 LA

27 341 97.16 505.66 1019 621.4 324.9 2746 LA

28 402.6 64.75 516.53 1050 638.7 305.12 2825 LA

29 375.9 91.2 262.78 1194 361.5 76.27 2432.5 LA

30 374.9 66.52 323.01 978.3 273.8 301.44 2167.3 LA

31 378 81.23 340.48 1079 262.2 271.54 2412.5 LA

32 369.5 81.35 363.7 1089 318 220.28 2331.5 LA

33 296.8 116.5 278.18 972.4 293.9 169.64 2047.6 LA

34 321.6 114.6 523.08 952.5 558.1 243.62 2591.7 LA

35 235.1 98.84 460 996.2 225 334.39 2182 LA

36 324.2 77.34 467.62 908.3 594 298.33 2670 LA

37 369.5 81.35 363.7 1089 318 220.28 2331.5 LA

38 4.15 7.61 129.02 55.42 37.32 150.78 360 LA

39 297.2 113.9 366.67 897.4 488.4 238.47 2306 LA

40 268.5 92.24 531.6 981.1 598.9 244.3 2594 LA

41 66.25 112.7 680.75 964.6 324.3 409.47 2353 LA

42 277.4 120.9 514.82 1079 531.9 270.32 2666 LA

43 231.4 140.5 380.9 729.8 447.5 308.09 2089 LA

44 62.49 202 375.22 641.3 416.1 291.44 1843 LA

45 77.8 210.5 406.89 697.8 440.8 349.73 2009 LA
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in the Renlou Coal Mine. Of these, 45 samples were used to
establish the water source discrimination model and nine
were used to validate the model. Of the 45 water samples used
for modeling, nine were from the fourth aquifer, 16 were
from the coal-bearing sandstone aquifer, and 20 were from
the limestone aquifer. Of the nine samples used for valida-
tion, two were from the fourth aquifer, three were from the
coal-bearing sandstone aquifer, and four were from the lime-
stone aquifer. The water sample locations are shown in
Figure 1. Samples were collected through underground
drainage holes or surface hydrological observation holes.
The underground drainage holes were directly collected from
the mine, and the surface hydrological observation holes
were collected with a self-made deep-water sampler. When
collecting samples, a 2.5 L polyethylene bucket was rinsed
with sampling water three times before a sample was taken.
After that, the samples were kept in a clean place to prevent
contamination and placed in a low-temperature environ-
ment to inhibit the oxidation-reduction reaction and bio-
chemical effects. Water sample chemical testing included
K++Na+, Ca2+, Mg2+, CI-, SO4

2-, HCO3
-, and TDS. HCO3

-

was tested using the acid-base titration method, Cl- and
SO4

2- were tested using ion chromatography, Ca2+ and
Mg2+ were tested using EDTA titration, K++Na+ was tested
by flame atomic absorption spectrophotometry, and TDS
was calculated according to the mass concentration of each
component. The water sample test data are shown in Table 1.

3.2. Hierarchical Clustering Analysis. Hierarchical clustering
analysis is an unsupervised identification method that can
group samples based on the data itself without known cate-
gory information. The basic idea is to first treat n samples
as n classes, and then specify the distance between samples
and the distance between classes. Then, select the two classes
with the smallest distance, merge them into a new class, and
calculate the distance between the new class and other clas-
ses. Continue reducing the number of classes in this way,
until all samples are clustered into one class, to obtain a clas-
sification system from small to large that can reflect the close
relationships between individuals or groups and use a cluster
dendrogram to represent them [33]. Classes with stronger
correlations are therefore merged, and then the degree of
affinity between a new merged class and other classes is con-

sidered, and then merged, so that differences within catego-
ries are as small as possible and differences between
categories are as large as possible.

Generally, R-type and Q-type cluster analyses are used.
The R-type cluster analysis classifies variables, and the Q-
type cluster analysis classifies samples [34]. If you are inter-
ested in the mathematical basis of hierarchical clustering
analysis, you can find it in the literature [35, 36]. In this
paper, the Wald method was used to perform Q-type cluster-
ing analysis on the original water samples, and the square
Euclidean distance was used as the metric to determine the
relationships between them by using the statistical software
IBM SPSS Statistics 26. Finally, the cluster dendrogram of
the original water samples was obtained. The data were
screened to eliminate water samples that did not meet the
requirements.

3.3. Partial Least Squares-Discriminate Analysis. PLS-DA is a
supervised multivariate statistical method that integrates the
basic functions of principal component analysis, canonical
correlation analysis, and multiple regression analysis [37]
and is capable of compressing data and extracting character-
istic information. The principle of PLS-DA is to separately
train the characteristics of different samples, generate a train-
ing set, and test the reliability of the training set. This method
can group the required observation variables in advance and
perform statistical analysis on the data according to the
nature of the groups, and the key variables that affect the
grouping can be learned [38].

Based on the PLS regression, PLS-DA inputs class mem-
ber information provided by the auxiliary matrix in the form
of code when constructing the factors, uses the independent
variable matrix X and the categorical variable Y from the
training set samples to establish a regression model, and
determines the sample category based on its predicted PLS
value. It also reduces the dimensionality of the high-
dimensional data matrix to a lower-dimensional space. Sim-
ilar to PCA, the new variables obtained are also not related to
each other, but the difference is that PLS needs to introduce
the information from category matrix Y into matrix X while
decomposing the independent variable matrix X, and then
perform orthogonal decomposition. This processing can
effectively eliminate any useless noise in the independent

Table 1: Continued.

Num Ca2+ (mg/L) Mg2+ (mg/L) Na++K+ (mg/L) Cl- (mg/L) SO4
2- (mg/L) HCO3

- (mg/L) TDS (mg/L) Water source type

Validation set samples

Y1 117.4 23.97 471.5 905.8 23.63 39.66 1562 FA

Y2 12.1 15.19 160.59 35.5 165.9 218.02 523 FA

Y3 16.88 11.82 759.57 631.5 96.89 658.19 1972.8 CBSA

Y4 8.42 4.86 860.25 496.3 11.53 1139.2 2021 CBSA

Y5 3.68 4.33 699.52 596.4 2.88 818.46 1735 CBSA

Y6 335.7 76.85 451.06 1096 330.9 250.13 2439.3 FA

Y7 274.3 86.8 563.71 1026 538.3 317.55 2647 FA

Y8 292.7 93.61 464.6 933.1 593.8 205.09 2495 FA

Y9 311.7 82.94 518.77 915.2 688 296.25 2665 FA

FA: fourth aquifer water; CBSA: coal-bearing sandstone aquifer water; FA: limestone aquifer water.
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variable matrix X and any useless information in category
matrix Y . The use of this method to analyze mine water
inrush water sources can eliminate overlapping parts from
water chemical information to solve the multiple correlation
problem and make the data more accurate and reliable to
ensure the best calibration model [30]. If you are interested
in the mathematical basis of partial least squares (PLS)
regression, you can find it in the literature [39]. The specific
steps of the PLS-DA analysis method are as follows and this
method can be completed by SIMCA 14.1 software.

(1) Establish categorical variables of training set samples

(2) Decompose the independent variable matrix X and
the category matrix Y at the same time, and ensure
their principal components are linearly correlated to
the highest degree. The model can be expressed as

X = TPT + E,
Y =UQT + F,

ð1Þ

where T and U are respective score matrices of X and Y ; P
and Q are respective load matrices of X and Y ; E and F are
respective fitting residual matrices of X and Y .

(3) Conduct linear regression on T and U to obtain
regression factor B

U = TB,
B = TT� �−1

TTU :
ð2Þ

(4) According to the load matrix P, obtain the score
vector ttest of the sample xtest to be tested during
prediction, and then obtain the predicted value YP
according to the following formula

YP = ttestBQ: ð3Þ

(5) Determine the type of sample to be tested according
to the following rules

When YP > 0:5 and deviation D < 0:5, it belongs to this
category; when YP < 0:5 and deviation D < 0:5, it does not
belong to this category; when deviation D ≥ 0:5, it is
uncertain [40].

4. Results and Discussion

4.1. Processing and Analysis of Water Sample Data

4.1.1. Water Sample Screening Using the Q-Type Cluster
Analysis Method. With either method, the water samples
have to be screened before establishing the recognition model

to identify water sources [39]. There were three main reasons
for screening the original water samples. First, in order to
reduce the impact of external human factors (such as possible
contamination of water samples during sampling, storage
and testing, measurement deviations during testing, etc.), it
was necessary to screen the original water samples to elimi-
nate unqualified samples and avoid large errors in the
discrimination results [33].

Second, although the water chemical composition within
an aquifer may be significantly different due to different
hydrogeological conditions, it should maintain a dynamic
balance through a series of physical and chemical reactions.
Therefore, samples from the same aquifer generally have
the same water chemistry characteristics. Due to the influ-
ence of factors such as hydraulic connections between differ-
ent aquifers and groundwater movement, however, the water
chemical composition from the same aquifer sometimes dif-
fer greatly. Abnormal water chemical compositions in the
same aquifer cannot reflect the hydrochemical characteristics
of underground water in this aquifer. We therefore had to
identify the water sample that best represented the aquifer
water chemical composition and establish a high-precision
water inrush water source discrimination model [25].

Third, PLS-DA model performance may have deterio-
rated due to the presence of abnormal sample values. In order
to reduce the influence of abnormal samples on the PLS-DA
model, the original water samples were also screened [41].

Before screening the water samples, we performed the
Piper trilinear diagram analysis on 45 original water samples,
as shown in Figure 2. It can be seen from Figure 2 that among
the 45 original water samples of three different water sources
in the study area, some of the water samples of the same type
were scattered and significantly deviated from the formation
center in the Piper trilinear diagram and these samples
should be regarded as abnormal water samples and excluded.
Hierarchical clustering analysis is a commonly used unsuper-
vised agglomerative clustering analysis method that can be
used for this task [33]. In this paper, the ion contents of 45
original water samples were used as the analysis variable,
and the Q-type cluster analysis of the original water sample
was completed by SPSS software. A clustering dendrogram
for the samples was obtained (Figure 3). According to the dis-
tance of each original water sample in the dendrogram, each
original water sample category was compared, and water
samples with numbers 2, 3, 4, 17, 26, 38, and 41 were
excluded. The remaining 38 original water samples were kept
for subsequent analysis and modeling, as shown in Table 1.

4.1.2. Correlation Analysis of Water Chemical Compositions.
Ion concentrations in the water samples of each aquifer
reveal the chemical characteristics of different groundwater
sources and are the basis for distinguishing water from each
aquifer. These kinds of hydrochemical components are not
completely independent in groundwater, but are related to
each other to a certain degree. However, most prior studies
have not considered this connection [42].

This paper used Python software to draw heat maps of
the correlation coefficients between water chemical composi-
tions of water samples from three aquifers (Figure 4). There
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were both positive and negative correlations as well as strong
and weak correlations between the evaluated ions, and some
ions had strong correlations with each other. For example,
the correlations between Mg2+ and SO4

2-, as well as between
Cl- and Na++K+, Ca2+, HCO3

-, and TDS values in the water
samples from the fourth aquifer were all greater than 0.8
(Figure 4(a)). The correlations between Na++K+ and TDS,
as well as between Cl- and Na++K+ and TDS values in the
water samples from the coal-bearing sandstone aquifer were
all greater than 0.8 (Figure 4(b)). Finally, the correlations
between Mg2+ and Cl-, as well as between Ca2+ and Mg2+

and Cl- in the water samples from the limestone aquifer were
all greater than 0.8 (Figure 4(c)). This indicated that the
hydrogeological information reflected between water chemi-
cal compositions overlapped. If this kind of information
overlap was not considered in water source identification, it
would cause information redundancy, which can cause
serious multicollinearity, affect the accuracy of the mine
water inrush source identification model, and lead to poor
judgment [43].

4.2. PCA of the Training Samples. PCA is an unsupervised
multivariate statistical method, which is one of the most
commonly used dimensionality reduction methods.
Through orthogonal transformation, multiple indicator data
are converted into a set of linear and uncorrelated few new
comprehensive variables. PCA is helpful to analyze hydro-
chemical data and can be considered on hydrochemical data

to screen the variation between composition and sample
variation [44].

This study imported the water chemistry data of 38 water
samples into the SIMCA 14.1 software for principal compo-
nent analysis. The analysis results show that the eigenvalues
of the first two principal components were greater than 1
(the first and second principal components were 3.85 and
2.53, respectively), and the cumulative contribution rate
reached 91.1%, which means that the selection of two princi-
pal components can fully reflect the hydrochemical informa-
tion of the training samples [33]. Therefore, using the first
and second principal components as the abscissa and
ordinate, respectively, the PCA score plot (Figure 5) and
PCA loading plot (Figure 6) of the three different water
sources were obtained. The PCA score plots can explain the
variation among sample sources, and loading plots can
explain the variation among compositions.

It can be seen from the PCA score plots (Figure 5) that
the first principal component scores of the water samples of
the fourth aquifer water, coal-bearing sandstone aquifer
water, and limestone aquifer water ranged from -56.32 to
-5.54, -47.56 to 8.22, and 2.00 to 50.60, respectively. The sec-
ond principal component scores of the water samples of the
fourth aquifer water, coal-bearing sandstone aquifer water,
and limestone aquifer water ranged from -47.64 to -22.45,
-3.00 to 56.67, and -23.24 to 0.20, respectively. Therefore,
PCA can roughly divide water samples from three different
water sources into three categories. However, it was
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impossible to distinguish the three water sources based on
the first or second principal component alone.

It can be seen from the PCA loading plot (Figure 6) that
HCO3

-, Na++K+, and TDS were far from the origin, indicat-
ing that these three water chemical composition variables
played a greater role in water source identification. The first
principal component was mainly composed of TDS, SO4

2-,
and Cl-, and the second principal component was mainly
composed of HCO3

-, Na++K+, and TDS.

4.3. PLS-DA Discriminant Model Establishment Based on
Water Chemical Compositions for Mine Water Inrush
Sources. On the basis of principal component analysis, the
PLS-DAmethod was used to further analyze the water chem-
istry data of different water sources to discover and screen
out the characteristic water chemical components, and estab-

lish the PLS-DA discrimination model based on water chem-
ical compositions for mine water inrush sources.

4.3.1. Determining Classification Variable Values. The PLS-
DA discriminant model for mine water inrush sources is a
PLS-based regression model between the classification vari-
ables and the ion component content of the water samples.
This paper used SIMCA 14.1 software to establish and
analyze the PLS-DA model. Taking 38 water samples as the
training set, first the classification variable values of the train-
ing set samples were assigned. The classification variable
group Y was manually set according to the water sample cat-
egory, as shown in Table 2. Then, the PLS method was used
to perform regression analysis on the content of the seven
ion components for the training set samples and the classifi-
cation variable Y , and a model of the ion components and the
classification variable Y was established.

4.3.2. Determining the Number of Principal Components.
When modeling, the appropriate number of principal com-
ponents must be determined. Generally speaking, increasing
the number of principal components can extract more infor-
mation, but using too many principal components will intro-
duce some redundant information [40]. When selecting the
number of principal components, therefore, the cumulative
explanatory power (expressed by R2X(cum)) and the predic-
tion accuracy of the model (expressed by cumulative cross-
validity Q2(cum)) should be considered [40, 45].Table 3
shows the relevant statistical results when the number of
principal components was used for modeling. When there
were five principal components, the cumulative cross-
validity value Q2(cum) began to decrease, so the prediction
accuracy of the model decreased. Therefore, the appropriate
number of principal components was four.

4.3.3. Analysis of Discriminant Model Results. The model
quality parameter R2X(cum) is 0.979, R2Y(cum) is 0.889,
and Q2(cum) is 0.848, indicating good model fit [46]. In
the model space, the first and second principal component
scores for the water samples are shown in Figure 7. Each
point in the PLS-DA model score map represents a water
sample, and the degree of aggregation reflects the similarity
between them. The results of PLS-DA analysis were consis-
tent with the results of PCA analysis. All data points were
within the 95% confidence interval, and the water samples
of the three aquifers had obvious clustering. However, the
number of water samples in the fourth aquifer was relatively
small, and the distribution dispersion was relatively large. At
the first principal component t½1�, the limestone aquifer
water samples were easily distinguished from fourth aquifer
water samples and coal-bearing sandstone aquifer water
samples, but it was impossible to further accurately distin-
guish the water samples between the fourth aquifer and
coal-bearing sandstone aquifer. At the second principal
component t½2�, the fourth aquifer samples were easily distin-
guished from coal-bearing sandstone aquifer water samples
and limestone aquifer water samples, but it was impossible
to further accurately distinguish between the sandstone and
limestone samples. The schematic diagram of the PLS-DA
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model in three-dimensional space using the first principal
component t½1�, the second principal component t½2�, and
the third principal component t½3� of the water samples
(Figure 8) showed that the three-dimensional space diagram
could significantly distinguish the water samples from the
three different sources.

Figure 9 shows the loading scatter plot of the PLS-DA
model, which clearly demonstrates the relationship between
the characteristic variable X and the categorical variable Y ,
reflecting the contribution of each water chemical composi-
tion variable on the score plot. Blue dotted DA (100), DA
(010), and DA (001) in Figure 9 represent the positions of
the Y values for the three water source categories in the scat-
ter plot, and each green point represents an ion variable. The
farther the point is from the origin, the greater the weight
value, or the greater the effect of determining the sample dif-
ference [47]. It can be seen in Figure 6 that TDS, HCO3

-, and
Na++K+ were far from the origin, indicating that these three

water chemical composition variables played a greater role in
water source identification. On the first principal component
t½1�, the loading values of HCO3

-, SO4
2-, and Cl- were larger,

and on the second principal component t½2�, the loading
values of TDS, HCO3

-, and Na++K+ were larger. Therefore,
the first principal component mainly reflected the content
characteristics of HCO3

-, SO4
2-, and Cl- in different water

sources, and the second principal component reflected the
content characteristics of TDS, HCO3

-, and Na++K+ in differ-
ent water sources.

Compared with PCA, PLS-DA has the function of quan-
tifying the difference of different water sources caused by the
characteristic chemical compositions of water. To further
analyze the effect of each water chemical composition vari-
able X on the categorical variable Y , a VIP score plot was cre-
ated (Figure 10). It summarizes the importance of the
variables to explain X and correlate to Y . VIP scores can
quantify the contribution of each variable in the PLS-DA
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model to the classification. The larger the VIP value, the
more obvious the difference of the variable in different water
source categories. When the VIP value of a variable is greater
than 1.0, it indicates a higher than average contribution of the
variable to the overall model with a statistically significant

impact on the water sample classification, which can be used
as the difference marker composition [47]. When the value is
less than 0.5, it indicates that the variable is unimportant in
the process of model classification and discrimination. The
interval between 1 and 0.5 is a gray area, where the impor-
tance level depends on the size of the data set. Figure 7 shows
that in the explanatory water chemical composition variable
X, there were two variables with VIP scores greater than 1,
followed by HCO3

- and TDS, indicating that HCO3
- and

TDS played an important role in distinguishing three differ-
ent types of water sources. The VIP scores for Cl-, Na++K+,
and SO4

2- were between 0.9 and 1.0, indicating that these
three ion variables played roles in distinguishing three
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Table 2: Classification variables of different water source types.

Water source
type

Fourth
aquifer
water

Coal-bearing
sandstone aquifer

water

Limestone
aquifer water

Classification
variables

[100] [010] [001]
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different water source types to some degree. The VIP score
for Mg2+ was the lowest among the seven hydrochemical
components, indicating that Mg2+ played the least important
role in discrimination.

The statistical results of the PLS-DA discriminant model
for 38 water samples are shown in Table 4 and Figure 11.
Table 4 shows good correlations between the water sample
hydrochemical composition variables and the categorical
variables established by PLS regression. The correlation coef-
ficients R between the actual values of the categorical vari-
ables and the predicted values of the model were 0.8876,
0.9608, and 0.9778, respectively. Root mean square error of
estimation (RMSEE) is an index to predict the average error
of training set samples by using the model built by training
set samples. Root mean square error of cross validation
(RMSEcv) is an important parameter in internal cross vali-
dation, which is used to measure the accuracy of prediction
results of training set samples. The discriminant rate of all
training set samples was 100%, indicating that the model
fit well.

Figure 11 shows regression curves for the PLS predicted
values and actual values of classification variables for all
training samples. The straight lines are the regression curves

of the model prediction and classification results. The three
models clearly distinguished the three types of water source
samples: water sample points scattered on the line where
the actual values were equal to 1 and the other two water
source water points on the line where the actual values were
equal to 0 were obviously separated. The PLS-DA model
established in this study had high reliability and can be used
to test and discriminate new water samples.

4.4. PLS-DA Discriminant Model Validation for Mine Water
Inrush Sources

4.4.1. Permutation Test. Statistical inference analysis was
used to further validate the built PLS-DA discriminant
model. Two hundred permutation tests were performed to
iteratively analyze the predictor variable Y based on the
known measured data variable X and obtain statistics on
these variables (Figure 12). By examining the intercept of
the fitting line formed by the calculated values of R2 and
Q2 corresponding to all samples on the Y coordinate axis,
the reliability of the model and the degree of overfitting were
determined. The larger the value of Q2, the better the predic-
tive ability of the model, and the larger the value of R2, the

Table 3: Relevant statistical results of modeling with different principal component numbers.

Component R2X R2X(cum) Eigenvalue R2Y R2Y(cum) Q2 Limit Q2(cum)

1 0.516 0.516 3.61 0.494 0.494 0.482 0.05 0.482

2 0.395 0.911 2.76 0.3 0.794 0.577 0.05 0.781

3 0.0399 0.951 0.279 0.0781 0.872 0.277 0.05 0.842

4 0.0278 0.979 0.195 0.0168 0.889 0.0389 0.05 0.848

5 0.0152 0.994 0.106 0.00415 0.893 -0.0745 0.05 0.836

6 0.00521 0.999 0.0365 0.000976 0.894 -0.0658 0.05 0.826

7 0.00102 1 0.00717 0.00307 0.897 -0.018 0.05 0.823

t[1]

t[
2]

–80

–60

–40

–20

0

20

40

60

0 20 40 60 80–20–40–60–80–100

R2X[1] = 0.516 R2X[2] = 0.395 Ellipse: Hotelling’s T2 (95%)

100

001
010

Figure 7: Score plot of PLS-DA. 100: fourth aquifer water; 010: coal-bearing sandstone aquifer water; 001: limestone aquifer water.
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stronger the explanatory ability [48]. The permutation tests
(Figure 12) showed that all R2 and Q2 values (Y-axis data)
on the left were lower than the R2 and Q2 values on the far
right. The intercepts of the Q2 regression line were all
negative, indicating that although there were differences in
predictability, the three PLS-DA discriminant models estab-
lished were not overfitted and all had good predictive ability
[49]. Therefore, they can be used for discriminant analysis of
various types of water sources.

4.4.2. External Validation. The actual predictive ability of the
model was further checked by an external validation set test.
The validation set was composed of nine water samples that
were not involved in the modeling, including two fourth

aquifer water samples, three coal-bearing sandstone aquifer
water samples, and four limestone aquifer water samples.
The categorical variable predicted values Yp of the verifica-
tion set water samples were calculated using SIMCA 14.1
software, and the prediction results were evaluated according
to rules described above. The results are shown in Table 5.
The accuracy of this model for the validation set water sam-
ples was 100%.

5. Discussion

This study innovatively combined the PLS-DA method with
the water chemical compositions to establish a discriminant
model to be used in the identification of water inrush sources
in mines, which effectively solved the problem of low dis-
crimination accuracy caused by not considering the overlap-
ping information between hydrochemical identification
indexes. The water sample data were processed by PCA and
PLS-DA methods, and the results showed that both methods
can classify water samples from three different water sources
(as shown in Figures 5 and 7). However, with regard to the
two principal components extracted by the PCA method, it
was impossible to distinguish any one of the three water
sources based on the first or second principal component
alone. For the PLS-DA results, the limestone aquifer water
samples were easily distinguished from fourth aquifer water
samples and coal-bearing sandstone aquifer water samples
based on the first principal component, and the fourth aqui-
fer samples were easily distinguished from coal-bearing
sandstone aquifer water samples and limestone aquifer water
samples based on the second principal component. This
showed that PLS-DA has better data processing and analysis
capabilities than PCA. The reason is that PLS-DA is a super-
vised discriminant analysis method, which artificially adds
grouping variables, further excavates the information in the
water sample data, strengthens the difference of water chem-
ical composition between different water sources, and makes
up for the deficiency of the PCA method [28].

In addition, compared with the PCA method, PLS-DA
has the function of quantifying the degree of difference
between different water sources caused by the characteristic
water chemical composition. The loading scatter plots of
PCA and PLS-DA both showed that TDS, HCO3

-, Na++K+,
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Figure 8: Schematic diagram of the PLS-DA model in three-
dimensional space. 100: fourth aquifer water; 010: coal-bearing
sandstone aquifer water; 001: limestone aquifer water.
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Cl-, and SO4
2- were factors that had a greater impact on the

discrimination results of the three different water sources
(as shown in Figures 6 and 9), but the degree of influence
of each factor could not be accurately determined. Through
the VIP scores in the PLS-DA method, we can accurately
screen out the characteristic water chemical components that
cause differences in different water sources. Through the
analysis of the VIP scores, two difference marker composi-

tions were found from the seven water chemical composi-
tions, followed by HCO3

- and TDS, indicating that HCO3
-

and TDS were the main marker compositions that distin-
guished the difference between the fourth aquifer water, the
coal-bearing sandstone aquifer water, and the limestone
aquifer water in the study area [49]. The influence of other
water chemical components on the water source identifica-
tion results were Cl-, Na++K+, SO4

2-, Ca2+, and Mg2+,

Table 4: Discrimination results of the PLS-DA model of the water sample training set.

Types Number of water samples Correlation coefficient R2 RMSEE RMSEcv
Discrimination

accuracy

Fourth aquifer water 6 0.7879 0.180222 0.198207 100%

Coal-bearing sandstone aquifer water 15 0.9232 0.145398 0.143899 100%

Limestone aquifer water 17 0.9561 0.111818 0.142574 100%
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respectively. Quickly determining the iconic ionic compo-
nents in each aquifer not only is conducive to accurately
and quickly identifying mine water inrush sources but also

furthers research on the formation and evolution of aquifers.
However, considering the complexity of hydrogeological
conditions in different mines, the difference marker ions will
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Figure 12: Permutation test validation of the PLS-DA model. 100: fourth aquifer water; 010: coal-bearing sandstone aquifer water; 001:
limestone aquifer water.

Table 5: Discrimination results of the PLS-DA model for the validation set water samples.

Number
Predicted value of categorical variables Types

Discrimination accuracy
Y100 Y010 Y001 Actual type Predicted type

V1 0.7270 0.2027 0.0704 FA FA
100%

V2 0.9309 0.0562 0.0129 FA FA

V3 0.2902 0.7845 -0.0747 CBSA CBSA

100%V4 -0.0872 1.1500 -0.0627 CBSA CBSA

V5 0.2095 0.8554 -0.0649 CBSA CBSA

V6 0.0329 0.0664 0.9007 LA LA

100%
V7 -0.0077 0.1252 0.8825 LA LA

V8 0.0875 -0.0403 0.9528 LA LA

V9 -0.0167 0.0106 1.0061 LA LA

FA: fourth aquifer water; CBSA: coal-bearing sandstone aquifer water; LA: limestone aquifer water.
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vary. Therefore, more ionic components should be tested,
and factors such as water temperature, isotopes, and trace
elements should also be considered in future studies to
perfect the discriminant model as much as possible, so that
it can be better used to identify the source of water inrush
in mines [26].

Furthermore, as a supervised model, the PLS-DA model
has the disadvantage of overfitting, so the model can distin-
guish samples well but performs poorly when used to pre-
dict new sample sets. Therefore, for the supervised
classification model, we need to verify the reliability of the
model [40]. In this study, only seven water chemical com-
positions were tested and used as the identification index
combined with the PLS-DA method to establish a mine
water inrush source discrimination model. A good discrim-
ination effect was achieved with discrimination rates for the
training and validation sets as high as 100%, which indi-
cated that the PLS-DA discriminant model for mine water
inrush sources performed better in identifying water sam-
ples. We used permutation testing to judge the reliability
of the model. The permutation test randomly scrambles
the classification mark of each sample, and then remodels
and predicts. The Q2 of a reliable model should be signifi-
cantly greater than the Q2 obtained by randomly scram-
bling the data. The results of the permutation test showed
that the model had no overfitting and was reliable [46],
which indicated that the established water source recogni-
tion model was successful.

6. Conclusions

Based on the hydrogeological conditions of the study area,
water chemical compositions of water inrush samples from
three aquifers were tested. The water samples were screened
using the hierarchical clustering analysis method, and some
unqualified samples were removed. The PCA and PLS-DA
methods were used to analyze and process the remaining
water sample data. On the basis of PCA analysis, a PLS-DA
discriminant model for mine water inrush sources was estab-
lished. According to the results, the following conclusions
were obtained:

(1) Hierarchical clustering analysis was used to screen
the 45 original water samples and eliminate seven
unqualified samples to reduce errors, so the remain-
ing 38 samples well represented the water chemical
compositions of the aquifers. The 38 samples were
used to establish a discriminant model and avoid
the influence of abnormal water samples

(2) Correlation analysis was carried out on the water
chemical compositions of the water samples from
three aquifers. The results showed that there were
strong correlations between some water chemical
compositions, indicating that the hydrogeological
information reflected between the water chemical
compositions had a significant overlap. It would
cause information redundancy, which could lead to
multicollinearity

(3) The PCA and PLS-DA methods were used to analyze
and process the remaining water sample data, and the
results showed that both methods can distinguish
water samples from different water sources; however,
the classification effect of PLS-DA was better than
PCA. The reason is that PLS-DA is a supervised dis-
criminant analysis method, which artificially adds
grouping variables, further excavates the information
in the water sample data, strengthens the difference
of water chemical composition between different
water sources, and makes up for the deficiency of
the PCA method

(4) The PLS-DA discriminant model for mine water
inrush sources was established. The correct discrimi-
nation rate of the PLS-DA discriminant model was as
high as 100%, and permutation tests showed that the
model was not overfit. External validation found that
the model had good stability and discrimination

(5) PLS-DA has the function of quantifying the degree of
difference between different water sources caused by
the characteristic water chemical composition. VIP
scores were used to identify the most important
difference marker compositions that affected the dis-
crimination results of the three different water source
types, followed by HCO3

- and TDS, while Mg2+ had
little effect in distinguishing them

(6) The discriminant model established in this study
combined the advantages of principal component
analysis and multiple regression analysis, and had a
high discrimination accuracy. Thus, it can meet the
needs of modern mine water inrush source identifica-
tion, and can be applied to other mines as well
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