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The P-α equation of state (EOS) and a nonlinear yield criterion are utilized to characterize the dynamic constitutive behavior of
concrete targets subjected to projectile normal penetration. A dynamic cavity expansion model considering the compressibility
and nonlinear constitutive relations for concrete material is developed. Then, a theoretical model to calculate the depth of
penetration (DOP) for rigid projectile is established. Furthermore, the proposed model is validated based on the available test
data as well as the calculation results by the linear compressible EOS and linear yield criterion. This study shows that the
proposed model derived using the P-α EOS and nonlinear yield criterion can effectively reflect the plastic mechanical properties
of concrete and is also suitable for predicting the DOP of concrete targets. In addition, the influence law of concrete constitutive
parameters such as the cohesion strength, shear strength, internal friction coefficient, and elastic limit pressure on the DOP is
revealed.

1. Introduction

The dynamic response and destruction of concrete structures
under explosive or impact loading have important theoretical
and application value in the field of weapon damage and
engineering protection [1]. Li et al. [2] systematically
reviewed the empirical formulas, theoretical analyses, and
numerical methods related to the concrete penetration prob-
lem. To evaluate the damage and failure behavior of concrete,
a large number of penetration tests [3–8] have been con-
ducted. The penetration process is driven not only by the
mortar strength, aggregate size, aggregate sliding, and redis-
tribution behavior but also by pore breakage and compac-
tion. Therefore, the compressibility and nonlinear effect of
concrete must be considered in the process of theoretical
analysis.

Cavity expansion theory is an accepted analytical method
for studying the penetration mechanism of projectiles into a
target. Bishop et al. [9] proposed quasi-static cylindrical and
spherical cavity expansion equations in a semi-infinite target.

Hill [10] modified a spherically symmetric dynamic cavity
expansion equation for an incompressible medium. To date,
the cavity expansion model is widely used to evaluate the
penetration resistance of projectiles into concrete [11–17],
rock [18–20], ceramics [21, 22], sand [23, 24], soil [25], and
metal [26, 27] targets. When the appropriate EOS and yield
criterion are adopted, the numerical and analytical solution
for the model will be solved by the similarity transformation
method.

In the current works that focus on reducing the complex-
ity in the cavity expansion analysis, the simplified EOS is usu-
ally used such as incompressible [12], linearly compressible
[12, 22], and locked hydrostatic [11, 13] models. Although
the incompressibility hypothesis can reduce the difficulty of
the analysis step, the DOP obtained by the incompressible
EOS is much shallower than the corresponding test data
[12]. The linearly compressible model is approximately avail-
able for the case of low striking velocities. Therefore, neither
the linear model nor the locked model can accurately reflect
the compression process of concrete.
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After reviewing the yield criteria, it was found that the
original and revised forms of the Tresca [11], Mohr-
Coulomb [12, 14, 19, 22–24], and Drucker-Prager [15]
models have been widely used in dynamic cavity expan-
sion analyses for concrete-like material. However, all the
above-mentioned yield criteria are in linear form. When
considering the triaxial shear data in the present paper,
the results show that the relationship between the pressure
and shear strength is nonlinear, especially under high
pressure. In summary, a model considering pore compac-
tion, a nonlinear EOS, and nonlinear yield criterion are
needed to calculate the DOP of projectiles into concrete
targets.

This paper proposes a P-α EOS and nonlinear yield crite-
rion for rigid projectiles penetrating concrete targets on the
basis of a comparative analysis of existing concrete constitu-
tive models. A spherical cavity expansion model considering
the compressibility and nonlinear constitutive relations of
concrete is established, and the cavity pressure is calculated.
Furthermore, the calculation model for the DOP is derived,
and the validity of the model is demonstrated by a compari-
son with the results of the widely recognized model as well as
the available penetration test data [12]. Eventually, the influ-
ences of the constitutive parameters on the DOP are
discussed.

2. Constitutive Model

In the following section, the hydrostatic behavior and
strength model for concrete are treated separately and
described by the P-α EOS and nonlinear yield criterion,
respectively.

2.1. Equation of State. The concrete exhibits pore compaction
and permanent densification effect when subjected to high-
pressure loading [28]. The P-α EOS originally proposed by
Herrmann [29] can be used to describe the compressibility
of concrete. The P-α EOS for concrete can be expressed by
Eq. (1).

α =

α0 P ≤ Pe

1 + α0 − 1ð Þ Ps − P
Ps − Pe

� �3
Pe < P ≤ Ps

1 P > Ps

8>>>><
>>>>:

, ð1aÞ

α = ρs
ρ

≥ 1, ð1bÞ

where α and α0 are the porosities of the current and ini-
tial material, respectively; ρ and ρs are the densities of
the current and fully compacted material, respectively; P
is the current pressure, Pe is the pressure at which pore
compaction occurs, and Ps is the fully compacted
pressure.

2.2. Nonlinear Yield Criterion. The mechanical properties
and yield criterion for rock-like materials are always the con-

cern of researchers in fields as mining science [30], geology
[31], and rock engineering [32–34]. In the plastic range, to
describe the confining pressure effect on yield strength for
rock-like materials, the experimental data are smoothed
and approximated according to the method first proposed
by Lundborg [35], considering the similarities between con-
crete and rock in terms of mechanical response. For intact
concrete, there is an initial tensile strength f t and a cohesion
strength τ0. The local slope of the strength-pressure curve is
called the internal friction coefficient μ; the shear strength
reaches a constant τm at a sufficiently high-pressure state.
The nonlinear yield criterion in a spherically symmetric
Euler coordinate system is

σr − σθ = τ0 +
P

1/μ + 1/τm − τ0ð ÞP , ð2aÞ

P = σr + 2σθð Þ
3 , ð2bÞ

where σr and σθ are the radial and hoop Cauchy stress com-
ponents, which are taken as positive in compression. In sum-
mary, setting τ0 = a0, 1/μ = a1, and 1/ðτm − τ0Þ = a2, and
then, Eq. (2a) can be expressed as σr − σθ = a0 + P/ða1 + a2P
Þ. a0, a1, and a2 are constants which obtained by a series of
triaxial compression test data.

3. Development of Dynamic Spherical Cavity
Expansion Model

The cavity expansion generates an elastic-cracked-
compacted response (Figure 1(a)) or elastic-compacted
response (Figure 1(b)) which depends on the cavity expan-
sion velocity Vr , where r is the radial Eulerian coordinate, c
and c1 are the boundary velocities, cd is the dilatational veloc-
ity, and t is the time.

3.1. Compacted Region. The mass conservation and momen-
tum conservation equations of the compressible medium in
Euler coordinates are

ρ
∂v
∂r

+ 2v
r

� �
= −

∂ρ
∂t

+ v
∂ρ
∂r

� �
, ð3aÞ

∂σr
∂r

+ 2 σr − σθð Þ
r

= −ρ
∂v
∂t

+ v
∂v
∂r

� �
, ð3bÞ

where r is the radial Eulerian coordinate and v is the particle
velocity (outward is positive).
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By defining the following dimensionless variables and
introducing similar transformations,

ξ = r
ct
,

U = v
c
,

ε = Vr

c
,

F = f t
f c
,

S = σr
f c
,

T = P
f c
,

β1 =
c1
cp
,

β = c
cp
,

cp =
ffiffiffiffiffiffiffiffiffiffi
K/ρ0

p
: ð4Þ

Transform Eq. (3) into the following dimensionless forms

dU
dξ

+ 2U
ξ
= f Tð Þ ξ −Uð Þ dT

dξ
, ð5aÞ

h Tð Þf c
dT
dξ

+ 2g Tð Þ
ξ

= i Tð Þ ξ −Uð Þ dU
dξ

, ð5bÞ

where f c and f t are the static uniaxial compressive and tensile
strength of concrete. f ðTÞ, gðTÞ, hðTÞ, and iðTÞ can be
derived with Eqs. (1) and (2).

f Tð Þ = 3f c α0 − 1ð Þ Ps − f cTð Þ2
Ps − Peð Þ3 + α0 − 1ð Þ Ps − f cTð Þ3 ,

ð6aÞ

g Tð Þ = a0 +
f cT

a1 + a2 f cT
, ð6bÞ

h Tð Þ = 1 + 2
3 a1 + a2 f cTð Þ − 2a2 f cT

3 a1 + a2 f cTð Þ2
, ð6cÞ

i Tð Þ = α0β
2K

1 + α0 − 1ð Þ Ps − f cTð Þ3/ Ps − Peð Þ3
: ð6dÞ

From Eq. (2), the dimensionless relation between the pres-
sure T and radial stress S obeys

S = 2
3f c

a0 +
f cT

a1 + a2 f cT

� �
+ T: ð7Þ

Eq. (5) is transformed by the Runge-Kutte method to eval-
uate it numerically.

dU
dξ

= 2 ξ −Uð Þf Tð Þg Tð Þ + 2Uf ch Tð Þ
ξ ξ −Uð Þ2 f Tð Þi Tð Þ − f cξh Tð Þ

, ð8aÞ

dT
dξ

= 2g Tð Þ + 2U ξ −Uð Þi Tð Þ
ξ ξ −Uð Þ2 f Tð Þi Tð Þ − f cξh Tð Þ

: ð8bÞ

When the Hugoniot jump condition is given, the initial
values for U and T in Eq. (8) can be determined by the solu-
tions in the cracked region (Figure 1(a)) or elastic region
(Figure 1(b)) at ξ = 1. These two types of target responses are
presented separately below.

3.2. Elastic-Cracked-Compacted Response. In the elastic
region, the stress-strain relation is governed by Hooke’s law.

σr = −
E

1 + νð Þ 1 − 2νð Þ 1 − νð Þ ∂u∂r + 2ν u
r

� �
, ð9aÞ

Cavity
Compacted

Cracked
Elastic

Undisturbed

r
cdtc1tctVrt

𝜉

1/ω

𝛽1/𝛽
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𝜀

(a)

Cavity
Compacted

Elastic
Undisturbed

r
cdtctVrt

𝜉

1/𝜔

1

𝜀

(b)

Figure 1: Two types of target responses: (a) elastic-cracked-compacted response and (b) elastic-compacted response.
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σθ = −
E

1 + νð Þ 1 − 2νð Þ ν
∂u
∂r

+ u
r

� �
, ð9bÞ

where u is the outward radial displacement (positive
direction).

Considering that elastic deformation is very small, ignor-
ing the convective term in Eq. (3b) [14, 22] and substituting
Eq. (9) into Eq. (3b) obeys the wave equation

∂2u
∂r2

+ 2
r
∂u
∂r

−
2u
r2

= 1
cd2

∂2u
∂t2

, ð10aÞ

cd
2 = E 1 − νð Þ

1 + νð Þ 1 − 2νð Þρ0
: ð10bÞ

By introducing a new dimensionless variable u = u/ct and
adopting the similarity transformation, Eq. (10a) can be
expressed in another form.

1 − ω2ξ2
� � d2�u

dξ2
+ 2
ξ

d�u
dξ

−
2
ξ2

�u = 0, ð11aÞ

ω = c
cd

= β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 1 + νð Þ 1 − 2νð Þ/ E 1 − νð Þð Þ

p
: ð11bÞ

Integrating Eq. (11a) gives the following general solution.

�u = A0ωξ − B0
1 − 3ω2ξ2

3ω2ξ2
, ð12Þ

where A0 and B0 are the unknown integral constants, which
can be obtained using the following boundary conditions.

�u
ξ = 1
ω

= 0, ð13aÞ

σθ
ξ = β1
β

= −f t: ð13bÞ

Combining Eqs. (12) and (13) yields

B0 = −
3
2A0, ð14aÞ

A0 =
2f t
E

⋅
ω2β1

3 1 + νð Þ 1 − 2νð Þ
2ω3β1

3 1 + νð Þ + β3 1 − 2νð Þ − 3ω2ββ1
2	 
 :

ð14bÞ
Furthermore, the relation between the particle velocity

and radial displacement is

v 1 − ∂u
∂r

� �
= ∂u

∂t
: ð15Þ

Substituting Eq. (12) into Eq. (15) and considering the

strain in elastic region is small, Eq. (15) can be revised as

U = �u − ξ
du
dξ

: ð16Þ

Using Eqs. (9b), (12), (13), and (16), the dimensionless
radial stress S1 and particle velocity U1 in the elastic region
at ξ = β1/β are derived as

S1 = 2F 1 − 2νð Þ + 3ν γβ1ð Þ2 − 1 + νð Þ γβ1ð Þ3
1 − 2ν − 3 γβ1ð Þ2 + 2 1 + νð Þ γβ1ð Þ3

" #
, ð17aÞ

βU1 =
3f tβ1 1 + νð Þ 1 − 2νð Þ

E
1 − γβ1ð Þ2

1 − 2ν − 3 γβ1ð Þ2 + 2 1 + νð Þ γβ1ð Þ3
" #

,

ð17bÞ

γ2 =
cp
cd

� �2
= 1 + ν

3 1 − νð Þ : ð17cÞ

Using the Hugoniot jump conditions in the cracked
region at ξ = β1/β, the dimensionless radial stress S2 and par-
ticle velocity U2 can be obtained, i.e.,

S2 = S1 +
2F β1 − βU1ð Þ2
3 − β1 − βU1ð Þ2

, ð18aÞ

βU2 = βU1 +
2f t/Kð Þ β1 − βU1ð Þ
3 − β1 − βU1ð Þ2

: ð18bÞ

Moreover, concrete is considered to be a linear compress-
ible material in the cracked region when σθ = 0, and then, the
general solutions in the cracked region can be described as

S ξð Þ = C0
βξ

+D0 1 + 3
βξð Þ2

" #
, ð19aÞ

U ξð Þ = −f c
2Kβ

C0
3 + C0

βξð Þ2
+ 4D0

βξ

" #
, ð19bÞ

where C0 and D0 are the integral constants. Based on the
boundary conditions in Eq. (18), it can be determined as fol-
lows:

C0 =
−6β1

2 2β1 f cS2 + K β1
2 + 3

� �
βU2ð Þ	 


f c β1
2 − 3

� �2 , ð20aÞ
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D0 =
β1

2 f cS2 β1
2 + 3

� �
+ 6β1K βU2ð Þ	 


f c β1
2 − 3

� �2 : ð20bÞ

The above-mentioned nonlinear yield criterion is satis-
fied in the cracked region at ξ = β1/β; thus,

σr = a0 +
σr/3

a1 + a2σr/3
, ð21aÞ

σr
f c

= C0
β

+D0
1 + 3
β2 : ð21bÞ

By using Eq. (21), β can be expressed as

β = C0 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0

2 + 12D0 E0 −D0ð Þ
p

2 E0 −D0ð Þ , ð22aÞ

E0 =
−3a1 + a0a2 + 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a12 + a02a22+2a0a2 + 6a0a1a2 − 6a1 + 1

p
2a2 f c

:

ð22bÞ
In the cracked region at ξ = 1, the dimensionless radial

stress S3, pressure T3, and particle velocity U3 can be
obtained as

S3 = E0,

T3 =
E0
3 ,

U3 = −
f cC0 β2 + 3

� �
6Kβ3 −

2f cD0
Kβ2 :

ð23Þ

3.3. Elastic-Compacted Response. The target response can be
simplified to the elastic-compacted type when c > c1. The
solution for u is consistent with Eq. (12), while the integral
constants should be obtained from the following boundary
conditions.

�u
ξ = 1
ω

= 0, ð24aÞ

σr ξ = 1ð Þ − σθ ξ = 1ð Þ = a0 +
σr ξ = 1ð Þ + 2σθ ξ = 1ð Þ

3a1 + a2 σr ξ = 1ð Þ + 2σθ ξ = 1ð Þð Þ :

ð24bÞ
Substituting the boundary conditions into the displace-

ment solution in Eq. (12), we have

B0 ′ = −
3
2A0 ′, ð25aÞ

A0 ′ =
−y0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y02 − 4x0z0

p
2x0

, ð25bÞ

where x0, y0, and z0 are constants, which can be written as

x0 = 3a2E2 1 − ω2� �
, ð26aÞ

y0 = 3a1E 1 − 2νð Þ 1 + ωð Þ − 2E a0a2 + 1ð Þ 1 + νð Þω2, ð26bÞ

z0 =
2a0a1ω2 1 + νð Þ 1 − 2νð Þ

ω − 1ð Þ : ð26cÞ

In the elastic region at the elastic-compacted interface
(ξ = 1), using Eqs. (9), (12), (24), (25) and (26), then S3, T3,
and U3 are obtained.

S3 =
EA0 ′ 1 + νð Þω3 − 3νω2 + 2ν − 1

	 

f c 1 + νð Þ 2ν − 1ð Þω2 ,

T3 =
EA0 ′ ω − 1ð Þ
f c 2ν − 1ð Þ ,

U3 =
3
2

1
ω2 − 1
� �

A0 ′:

ð27Þ

3.4. Hugoniot Jump Conditions. To solve the dimensionless
conservation equation in Eq. (8) still requires a dimensionless
pressure and particle velocity in the compacted region at the
cracked-compacted interface or elastic-compacted interface;
it can be obtained with the Hugoniot jump conditions. Notic-
ing that subscript 3 represents the variable in the cracked or
elastic region at ξ = 1, and subscript 4 represents the variable
in the compacted region at ξ = 1. The concrete is treated as a
linear compressible material in the elastic or cracked regions
at ξ = 1, i.e.,

T3 f c = K 1 − ρ0
ρ3

� �
: ð28Þ

The P-α EOS is used for the compacted region; therefore,

ρ4 =
α0ρ0

1 + α0 − 1ð Þ Ps − T4 f cð Þ3/ Ps − Peð Þ3
: ð29Þ

For the dimensionless Hugoniot jump conditions, it fol-
lows that

U4 = 1 + ρ3
ρ4

� �
U3 − 1ð Þ, ð30aÞ

S4 =
S3 + ρ3c

2 1 −U3ð Þ U4 −U3ð Þ
f c

: ð30bÞ

By solving Eqs. (7) and (28)-(30), S4, T4, and U4 in the
compacted region at ξ = 1 are obtained, and then used as
the initial values of the dimensionless conservation equation
in Eq. (8).
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To establish the penetration model, it is necessary to clar-
ify the relationship between σr and Vr . The cavity expansion
resistance of concrete is generally expressed as the following
three components [15], i.e.,

σr
f c

= A + B
Vrffiffiffiffiffiffiffiffiffiffi
f c/ρ0

p
 !

+ C
Vrffiffiffiffiffiffiffiffiffiffi
f c/ρ0

p
 !2

, ð31Þ

where A, B, and C denote the dimensionless resistance
constants.

Here, we can choose concrete with uniaxial compressive
strength of 51MPa to analyze the proposed dynamic cavity
expansion model in detail. For the EOS, referring to the iso-
tropic compression data of 51.2MPa concrete [36], the fitting
results using Eq. (1a) are shown in Figure 2(a). The initial
and fully compacted densities of the concrete are
2350 kg/m3 and 2767 kg/m3, respectively. Using the P-α
EOS with α0 = 1:177, Pe = 17MPa, and Ps = 6370MPa gives
satisfying agreement with the test data. For the relation
between the shear strength and pressure, the existing litera-
ture lacks the triaxial data of 51MPa concrete, so the
48MPa concrete triaxial data fromHanchak et al. [37] is used
instead, and the fitted results by Eq. (2) are presented in
Figure 2(b). Obviously, the nonlinear yield criterion pre-
sented in this paper can effectively reproduce the test data
(adjusted R2 = 0:975) with a0 = 26:67MPa, a1 = 0:82, and a2
= 1:84 × 10−3MPa-1. In contrast, the Mohr-Coulomb yield
criterion shows poor agreement with the experimental data.
The constitutive parameters for 51MPa concrete are summa-
rized as follows:

ρ0 = 2350 kg/m3, ρs = 2767 kg/m3, α0 = 1:177, Pe = 17
MPa, and Ps = 6370MPa

a0 = 26:67MPa, a1 = 0:82, and a2 = 1:84 × 10−3MPa-1

4. Model Validation

4.1. Deep Penetration Analysis of an Ogive-Nosed Projectile.
The axial resistance acting on the projectile nose is given by
the following expression.

dFx = σr cos θdS: ð32Þ

If the tangential friction stress is neglected [38], the final
axial penetration resistance Fx can be expressed as

Fx =m
dV
dt

= πd2

4 AN0 f c + BN1

ffiffiffiffiffiffiffiffiffi
ρ0 f c

q
V + CN2ρ0V

2
� �

,

ð33Þ
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𝛼
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Eq. (2), R2=0.975 
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Figure 2: Test data and proposed constitutive laws for 51MPa concrete: (a) EOS and (b) yield criterion.
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Figure 3: Diagram of an ogive-nosed projectile.
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where N0, N1, and N2 are the nondimensional quantities
related to the projectile nose shape, i.e.,

N0 = 1,

N1 =
8
d2

ðb
0

yy′2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + y′2

q dx,

N2 =
8
d2

ðb
0

yy′3

1 + y′2
dx:

ð34Þ

As Figure 3 shows, for ogive-nosed projectile, it follows that

N0 = 1,

N1 ψð Þ = 4ψ − 1ð Þ3/2
3ψ + 2ψ − 1ð Þ2 4ψ − 1ð Þ1/2

2ψ
− ψ 2ψ − 1ð Þ π − 2θ0ð Þ,

N2 ψð Þ = 8ψ − 1
24ψ2 , θ0 = sin −1 2ψ − 1

2ψ

� �
, ð35Þ

whereψ = s/d and s is defined in Figure 3. The final DOPH can
be derived by integrating Eq. (33).

H = m
2πa2CN2ρ0

ln 1 + BN1
A

ρ0
f c

� �1/2
V1 +

CN2ρ0
Af c

V1
2

" #(

+ 2BN1
D

arctan BN1
D

� �
− arctan BN1 + 2CN2 ρ0/f cð Þ1/2

D

 !" #)

+ 4a, H > 4a,
ð36Þ

where D = ½4ACN2 − ðBN1Þ2�
1/2
, and V1 is projectile velocity

at penetration depth 4a which was obtained from

m
4πa3 f c

+ CN2
f c/ρ0ð Þ

� �
⋅ V1

2 + BN1
f c/ρ0ð Þ1/2

⋅ V1 + A −
mVs

2

4πa3 f c

� �
= 0:

ð37Þ

For Eqs. (35)-(37), m is the projectile mass, d = 2a is the
shank diameter, and V s is the initial striking velocity.

4.2. Comparisons with the Penetration Test Data. First, the
proposed model is verified based on the test data of projectile
penetration into 51MPa concrete [4]. The P-α EOS and non-
linear yield criterion shown in Figure 2 are employed. Then,
the predicted and experimental DOP are compared in
Figure 4(a). It shows that the proposed model gives better
agreement than the model in Ref. [12], especially at relatively
high-impact velocities. Figure 4(b) illustrates the cavity sur-
face radial stress versus the cavity expansion velocity of the
elastic-cracked-compacted and elastic-cracked-plastic [12]
models. Correspondingly, the cavity expansion resistance
function parameters calibrated as A = 7:4, B = 2:5, and C =
1:1 and A = 5:8, B = 3:0, and C = 1:2, respectively. When Vr

/ð f c/ρ0Þ1/2 < 1:8, the cavity surface radial stress σr calculated
by the elastic-cracked-compacted model is slightly larger
than that of the elastic-cracked-plastic model. When Vr/
ð f c/ρ0Þ1/2 > 1:8, the σr in the elastic-cracked-compacted
model is smaller than the elastic-cracked-plastic model, and
the difference between the two models becomes greater with
increasing of the cavity expansion velocity. This also explains
why the elastic-cracked-plastic model cannot effectively pre-
dict the penetration depth under relatively high-impact
velocities.
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Figure 4: Model verification for 51MPa concrete: (a) comparison of predicted and experimental DOP and (b) cavity surface radial stress
calculation results of the elastic-cracked-compacted and elastic-cracked-plastic model.
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For 23MPa concrete, the test results [39] with P-α EOS
and nonlinear yield criterion by data fitting are plotted in
Figures 5(a) and 5(b), where ρ0 = 1:97 g/cm3, α0 = 1:345, Pe

= 7:6MPa, Ps = 2138MPa, a0 = 8:49MPa, a1 = 0:79, and a2
= 2:12 × 10−4MPa-1. As Figure 5(c) shows, the predicted
DOP by the proposed model is in better agreement with the
test data than the classic model in Ref. [12].

For 36MPa concrete, using the hydrostatic pressure-shear
strength test data from Ref. [3], the fitting results with nonlin-
ear least squares are plotted in Figure 6(a). For the EOS, since
the pressure-porosity data of 36MPa concrete are absent, the
concrete exhibits similar compaction characteristics when
the strength is very close. Therefore, using the EOS parameters
from 35MPa [40] concrete seems reasonable. The constitutive
parameters for 36MPa concrete are summarized as follows:

ρ0 = 2:31g/cm3, α0 = 1:19, Pe = 23:3MPa, Ps = 6000MPa, a0
= 22:89MPa, a1 = 0:72, and a2 = 2:17 × 10−3MPa-1.
Figure 6(b) demonstrates that the proposed model provides
better predictions than the classic model, and it can be inferred
that the underestimation DOP of the classic model mainly
comes from the use of the linear constitutive relations.

4.3. Further Discussions. To obtain the parameters of the
nonlinear constitutive in Eqs. (1) and (2), i.e., Pe, Ps, a0, a1,
and a2, the pressure-porosity data from flyer-plate impact
tests and the hydrostatic pressure-shear strength data from
triaxial compression tests are needed. However, most DOP
tests lack the necessary data required for analysis and calcu-
lation models. Under this circumstance, the parameters of
a0, a1, and a2 are taken from the method proposed by
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Figure 5: Comparison of theoretical model and test data for 23MPa concrete: (a) EOS, (b) yield criterion, and (c) DOP.
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Figure 6: Comparison of theoretical model and test data for 36MPa concrete: (a) yield criterion and (b) DOP.
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Figure 7: Comparison of predicted and experimental DOP for (a) 58.4MPa and (b) 62.8MPa concrete.
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Figure 8: Influence of the target material parameters on the DOP (a) a0, (b) a1, (c) a2, (d) Pe, and (e) Ps.
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Markovich et al. [41] as well as the value of Pe suggested by
Holmquist et al. [42]. The default values of Ps for 35MPa
and 140MPa concrete are both equal to 6GPa in AUTODYN
version 6.1 [43]. Here, the compacted pressure Ps is also rec-
ommended to be 6GPa for f c = 58:4MPa and f c = 62:8MPa
concrete. Thus, the constitutive parameters of normal con-
crete are summarized as follows:

a0 = 2:442f c0:4369,

a1 = 1:084f c−0:2463,

a1 = 0:03276f c−0:6416, ð38aÞ

Pe =
f c
3 ,

Ps = 6GPa, ð38bÞ
where f c is measured in MPa.

Figure 7 gives the experimental data from Refs. [4, 5] and
the predicted DOP by Eq. (36), where the parameters of the
P-α EOS and nonlinear yield criterion are given in Eq. (38).
Most of the predictions show reasonable agreement with
the test data except for two points, which are marked by a cir-
cle in Figure 7(b). The overestimations of the DOP for these
two data points may lie in that if the striking velocity exceeds
987m/s, the projectile mass loss will aggravate, and the mass
abrasive penetration regime occurs.

5. The Influence of the Concrete Constitutive
Parameters on the DOP

Taking 51MPa concrete target as an example, the influences
of the concrete constitutive parameters on the DOP are dis-
cussed below. Figure 8 illustrates the effects of one specific
variable on the DOP while maintains other variables to be
same. During the theoretical analysis, ρ0 = 2:35 g/cm3 and
α0 = 1:177.

From Figure 8(a), it is observed that if a0 increases by
50%, the DOP decreases by 3.8%, 3.4%, and 3.2% when the
striking velocity is 400m/s, 800m/s, and 1200m/s, respec-
tively. Obviously, the DOP is relatively less affected by the
cohesion in different velocity ranges.

As Figure 8(b) shows, if a1 increases by 50%, the DOP
increases by 6.8%, 7.1%, and 7.2% when the striking velocity
is 400m/s, 800m/s, and 1200m/s, respectively. In this
respect, the coefficient of internal friction μ has a consider-
able influence on the DOP.

As can be seen in Figure 8(c), if a2 increases by 50%, the
DOP increases by 7%, 10.2%, and 12.5% when the striking
velocity is 400m/s, 800m/s, and 1200m/s, respectively.
Therefore, we believe the von Mises plastic limit τm has a
substantial influence on the DOP.

As is observed in Figure 8(d), if Pe increases by 50%, the
DOP decreases by 2.5%, 1.9%, and 1.6% when the striking
velocity is 400m/s, 800m/s, and 1200m/s, respectively. In
general, the influence of the elastic limit on the DOP

decreases with increasing striking velocity and is negligibly
small at high striking velocities.

From Figure 8(e), if Ps increases by 50%, the DOP
decreases by 6.8%, 12.0%, and 16.6% when the striking veloc-
ity is 400m/s, 800m/s, and 1200m/s, respectively. It is
observed that the influence of compacted pressure on the
DOP increases with increasing striking velocities. For lower
impact velocities, the effect of Ps on the DOP is relatively
small, and for higher striking velocities, it may become con-
siderably large.

6. Conclusions

(1) The P-α EOS and nonlinear yield criterion are
employed to characterize the plastic mechanical
response of concrete under impact loading. Then,
an improved dynamic spherical cavity expansion
model considering the concrete compressibility and
nonlinear constitutive relations is established

(2) A penetration model to predict the DOP is obtained,
and the proposed model seems to better predict the
available test results compared to the classic model
derived from the linear EOS and yield criterion

(3) The parameters a2 and Ps have a great influence on
the DOP while the internal friction coefficient μ has
a considerable influence on the DOP. In contrast, a1
and Pe have a relatively small influence on the DOP
and are weakly dependent on the striking velocities

Data Availability
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calculation data files used to support the findings of this
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