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An appropriate well spacing plan is critical for the economic development of shale gas reservoirs. The biggest challenge for well
spacing optimization is interpreting the subsurface uncertainties associated with hydraulic and natural fractures. Another
challenge is the existence of complex natural fractures. This work applied an integrated well spacing optimization workflow in
shale gas reservoirs of the Sichuan Basin in China with both hydraulic and natural fractures. The workflow consists of five
components: data preparation, reservoir simulation, estimated ultimate recovery (EUR) analysis, economic calculation, and well
spacing optimization. Firstly, the multiple realizations of thirteen uncertain parameters of matrix and fractures, including matrix
permeability and porosity, three relative permeability parameters, hydraulic fracture height, half-length, width, conductivity,
water saturation, and natural fracture number, length, and conductivity, were captured by the assisted history matching (AHM).
The fractures were modeled by the embedded discrete fracture model (EDFM) accurately and efficiently. Then, 84 AHM
solutions combining with five well spacing scenarios from 517 ft to 1550 ft would generate 420 simulation cases. After reservoir
simulation of these 420 cases, we forecasted the long-term gas production for each well spacing scenario. Gas EUR degradation
and well interference would imply the critical well spacing. The net present value (NPV) for all scenarios would be calculated
and trained by K-nearest neighbors (KNN) proxy to better understand the relationship between well spacing and NPV. In this
study, the optimum well spacing was determined as 793 ft, corresponding with a maximum NPV of 18 million USD, with the
contribution of hydraulic fractures and natural fractures.

1. Introduction

There is no doubt that the development of unconventional
reservoirs has changed the oil and gas industry. However,
many challenges, such as heterogeneity, nanopore, proppant
distribution, multiphase flow, and complex fractures, have
existed in unconventional reservoirs [1–3]. Reservoir simula-
tion is a rigorous method applied in unconventional reser-
voirs. Among the worldwide unconventional resources,
shale gas and oil are the main components. Optimum well

spacing is one of the key parameters for shale reservoir devel-
opment. It is essential to find a well spacing that can balance
the recovery and economics. Many studies have focused on
this area both numerically and analytically [4, 5]. Some of
them have investigated the controlling factors for the well
spacing determination, such as fracture half-length, reservoir
permeability, rock properties, and natural fractures [6–8].
However, due to shale reservoirs’ complexity, it is still chal-
lenging to quantify the subsurface uncertainty-associated
hydraulic and natural fractures [9, 10]. Several methods,
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including the microseismic method, well test method, and
rate-transient analysis (RTA) method, have applied to cap-
ture the uncertain parameters [11–14]. Nevertheless, the high
data requirement of these methods makes it not easy to be
performed in new wells.

Another method widely used in calibrating uncertainties
is history matching, which is an efficient and inexpensive
approach. Many authors have performed single history
matching to obtain one solution of shale reservoir and
fractures [15–19]. However, the nonuniqueness of history
matching should be considered. Therefore, multiple history
matching was applied. Cao et al. [20] determined the optimal
well spacing for Delaware Basin by multiple history match-
ing. What is more, they did not take the uncertainty of natu-
ral fractures into account, which is another challenge for the
well spacing optimization in shale reservoirs.

Several researchers have investigated that natural frac-
tures could impact the fracture’s propagation during hydrau-
lic fracturing by microseismic event patterns and complex
fracture propagation models [21–24]. [2] modeled the com-
plex natural fractures by the embedded discrete fracture

model (EDFM), a modeling method with accuracy and effi-
ciency. They indicated that the two-set natural fractures
could increase the gas recovery by 23.2% after 30 years.

In this study, we applied an integrated AHM and EDFM
workflow for well spacing optimization in shale gas reservoirs
of Sichuan Basin in China with complex natural fractures.
The hydraulic fractures and natural fractures were modeled
by the EDFM method [2]. According to 84 AHM solutions
for a shale gas well in this reservoir, the multiple realizations
of thirteen uncertain matrix and fracture parameters can be
calibrated. It is worth pointing out that the uncertain param-
eters of natural fractures include the number, the length, and
the conductivity of natural fractures. We also considered
three uncertainties about relative permeability. Then, we
compared the gas EUR in the long-term from the reservoir
simulation results for five well spacing scenarios associated
with these 84 solutions. The well spacing scenarios are
distributed from 517 ft to 1550 ft, corresponding to 6 wells
to 2 wells. The critical well spacing can be determined by
analyzing the gas EUR degradation to minimize well interfer-
ence. Then net present values (NPVs) of all cases can be
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Figure 1: An integrated AHM and EDFM workflow for well spacing optimization in shale gas reservoirs with complex natural fractures.
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Figure 2: A field-scale reservoir model for five well spacing schemes used in this study: (a) a 2-well placement scenario with a spacing of
1550 ft and (b) a 6-well placement scenario with a spacing of 517 ft.
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evaluated and predicted by K-nearest neighbors (KNN)
proxy to identify the optimum well spacing for this shale res-
ervoir with natural fractures.

2. Well Spacing Optimization Workflow

The integrated well spacing optimization workflow consists
of five components: data preparation, reservoir simulation,
EUR analysis, economic calculation, and well spacing opti-
mization. The framework is shown in Figure 1. First, we need
to prepare the input data for the reservoir simulation. There
are two main things we need to decide. One is which uncer-
tain parameters of matrix and fractures are essential to the
shale gas reservoir. According to the short-term production
data, we apply AHM to calibrate the distribution of these
uncertain parameters and screen the results of AHM solu-
tions with the lowest global error. Another is to design the
minimal and maximum numbers of well placed into the
reservoir to figure out the optimum well spacing. If the well
spacing is too small, the well interference will reduce the
gas production per well; if the well spacing is too large, the
recovery may not satisfy. Therefore, it is essential to deter-
mine the range of well spacing and design several well
spacing scenarios. The input of simulation cases can then
be generated by integrating the AHM solutions and well
spacing scenarios and modeled by EDFM considering
hydraulic and natural fractures.

Subsequently, the reservoir simulation is performed for
all cases to forecast the long-term gas production. Cumula-
tive gas production and gas EUR of each case can be calcu-
lated and analyzed in a lognormal probability plot. By
comparing gas EUR degradation, the influence of well inter-
ference is observed, and the corresponding critical well spac-
ing minimizing well interference can be obtained. Next, we
evaluate the NPV for all the cases and plotted them into a
boxplot. The equation of NPV is discussed in our previous
work [25]. The P50 NPV for each well spacing scenario can
be obtained directly. Besides, to better understand the rela-
tionship between NPV and well spacing, we predict the
NPV for more well spacing using the KNN proxy method.
The calculated NPV is considered as a predictor, and the cor-
responding well spacing is added into the prediction features.
Finally, we can identify the optimum well spacing, which
leads to the maximum NPV.

3. Field Application

3.1. Reservoir Model. Our integrated AHM and EDFM work-
flow is applied to a shale gas reservoir in the Sichuan Basin in
China with complex natural fractures to determine the opti-
mum well spacing for hydraulic-fractured wells. First, it is
essential to build a field-scale model to represent the shale
gas reservoir. The schemes of the model are shown in
Figure 2. The model is 5840 ft long in the x-direction and
3100 ft long in the y-direction. The thickness is 65 ft in the
z-direction. The red lines are the horizontal wells with a con-
stant length of 4921 ft. We set 2 to 6 wells in the model to
illustrate the different well spacings. Figure 2(a) represents
the well spacing of 1550 ft at two wells per section, while

Figure 2(b) shows the well spacing of 517 ft at six wells per
section. The blue lines distributed in the wells represent the
54 hydraulic fractures. They were separated into 18 stages,
which are 145 ft away from each other. And each stage con-
tains 3 clusters with cluster spacing of 67 ft. The green lines
are the natural fractures distributed at 45° or 135°. Although
there are other degrees of fracture growth azimuth existing,

Table 2: Summary of ranges of 13 uncertain parameters used in this
study [26].

Uncertain parameters Unit Min value Max value

Matrix permeability md 0.00001 0.0001

Fracture height ft 25 65

Fracture half-length ft 200 780

Fracture conductivity md-ft 10 200

Fracture water saturation — 0.5 0.9

Fracture width ft 0.1 4

Porosity — 0.038 0.083

Exponent of krg — 1 4

Endpoint of krw — 0.5 1

Exponent of krw — 1 4

Number of natural fractures — 200 1200

Natural fracture length ft 100 500

Natural fracture conductivity md-ft 1 10

Table 1: Summary of reservoir and fracture properties used in this
study.

Reservoir description Value Unit

Model dimension (x × y × z) 5480 × 3100 × 65 ft

Number of grid blocks (x × y × z) 137 × 31 × 1 —

Grid block dimension (x × y × z) 40 × 100 × 65 ft

Initial reservoir pressure 8847.3 psi

Reservoir temperature 215 °F

Residual water saturation 20% —

Residual gas saturation 10% —

Matrix water saturation 39% —

Total compressibility 3 × 10−6 psi-1

Reservoir depth 10499 ft

Well length 4921 ft

Number of stages 18 —

Stage spacing 145 ft

Clusters per stage 3 —

Cluster spacing 67 ft

Number of natural fracture set 2 —

Natural fracture height 65 ft

Natural fracture theta NF1 45; NF2 135 Degree

Natural fracture dip angle 90 Degree

Natural fracture width 0.1 ft

Total simulated time 20 Year
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we would only consider the ideal condition to simplify the
method. One of the biggest reasons is lacking fracture diag-
nostic data. In this study, we assume the natural fractures
have a constant height of 65 ft and a width of 0.1 ft. And
the dip angle of natural fractures is 90°. All fractures were
modeled by EDFM. It is worth noting that the model is ideal,
and the heterogeneity of the reservoir is not considered.
Other properties of our reservoir model are listed in Table 1.

After demonstrating all the certain parameters, we need
to calibrate the uncertain parameters of matrix and fractures
for the shale gas reservoirs by history matching. The first step
is to determine the critical parameters and their range based
on prior expert experience. This study chose 13 parameters as
uncertainties: matrix permeability, porosity, exponent of rel-
ative permeability for gas, exponent, and endpoint of relative
permeability for water, hydraulic fracture height, half-length,
conductivity, water saturation, and width, natural fracture
number, length, and conductivity. These three parameters
of natural fractures reflect the ability of fluid transport within
the complex natural fractures. We limited the number of nat-
ural fractures from 200 to 1200 in this reservoir. Moreover,

the natural fracture length is between 100 ft to 500 ft, while
the hydraulic fracture half-length is between 200 ft and
780 ft. Other parameters’ ranges are listed in Table 2. The
assisted history matching was then performed to capture
the multiple realizations of these parameters. Details of
AHM workflow are discussed Tripopoom et al. [26]. For this
reservoir, there are a total 84 assisted history solutions.
Figures 3(a)–3(d) show the AHM results compared with
short-term production data [26]. It is observed that the
bottomehole pressure (BHP) and gas flow rate can match
with the field production data properly. The water flow rate
and water-gas ratio (WGR) match the production data over-
all, except for 50 days to 250 days, but we can find the water
flow rate from production data during this period changes
without the similar trend with BHP, which can be ignored
for the overall results. Therefore, the history matching solu-
tions are accurate enough for the following well spacing
optimization.

The multiple realizations of uncertain parameters from
AHM solutions are shown in Figure 4. Figures 4(a)–4(m)
represent the posterior distribution of matrix permeability,
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Figure 3: Comparison between 84 history matching solutions and field data [26]: (a) bottomhole pressure, (b) gas flow rate, (c) water-gas
ratio, and (d) water flow rate.
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Figure 4: Continued.
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fracture height, fracture half-length, fracture water satura-
tion, fracture width, fracture conductivity, matrix porosity,
three components of relative permeability, number of natural
fractures, nature fracture length, and nature fracture con-
ductivity, respectively. Each plot’s x-axis reflects the range
of this uncertain parameter, and the range is divided into
ten bins. The y-axis is the probability of each bin. We
combined the AHM solutions with well spacing scenarios,
which would generate 420 cases. One dot represents one
possible case. It can be easily observed the highest proba-
bility of uncertain parameters with most points in a spe-
cific bin. The distribution of natural fracture number is
shown in Figure 4(k), which implies that more than half

of the points distribute between 200 and 500. Moreover,
the bin of 400 to 500 has most points compared with
other bins. Therefore, the possible value of the number
of natural fractures would be 200 to 500, especially in
the range of 400 to 500. Similarly, we can find that the
possible natural fracture length is about 100 ft to 140 ft,
and the possible natural fracture conductivity is 6.8md-ft
to 7.2md-ft. Compared with hydraulic fracture half-length,
concentrating on 316 ft to 374 ft, the natural fractures are
much shorter. And the hydraulic fracture conductivity is
about 67md-ft to 105md-ft, which is larger than that of
natural fractures. It indicates that hydraulic fractures would
contribute more to gas production than natural fractures.
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Figure 4: Histogram of posterior vs. prior distributions of 13 uncertain parameters: (a) matrix permeability, (b) fracture height, (c) fracture
half-length, (d) fracture water saturation, (e) fracture width, (f) fracture conductivity, (g) matrix porosity, (h) the endpoint of water relative
permeability, (i) the exponent of gas relative permeability, (j) the exponent of water relative permeability, (k) number of natural fracture,
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The probability distribution of other uncertainties can be
analyzed in the same way.

To have an intuitive embodiment of natural fractures’
properties, we built the fracture model using EDFM for
different natural fracture numbers and lengths. Figure 5
illustrates the minimal, average, and maximum number
of natural fractures: 211, 453, and 1196. All other proper-
ties are the same. Moreover, Figure 6 shows minimal,
average, and maximum length of natural fractures: 102 ft,
1855 ft, and 456 ft. The more and the longer natural frac-

tures, the better communication through the fracture
system.

In addition, we need to consider the relative permeability
of different realizations. The relative permeability of water
and gas can be obtained using the following equations:

Krw = Ko
rwS

NWwn , ð1Þ

Krg = 1 − Swnð ÞNg , ð2Þ

(a) (b)

(c)

Figure 5: Different numbers of natural fractures under the constant length considered in the well spacing optimization: (a) minimal number,
(b) P50 number, and (c) maximum number.

(a) (b)

(c)

Figure 6: Different lengths of natural fractures under the constant number considered in the well spacing optimization: (a) minimal length,
(b) P50 length, and (c) maximum length.
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where Krw is the water relative permeability, and Krg is the
gas relative permeability. Ko

rw is the endpoint of water relative
permeability, Nw is the water exponent, and Ng is the gas
exponent.

Swn =
Sw − Swir

1 − Swir − Sgrw
, ð3Þ

where Swn is the normalized water saturation, Sw is water sat-
uration, Swir is irreducible or residual saturation of water, and
Sgrw is residual saturation of gas for a water/gas displacement.

The distribution of endpoint of water relative permeabil-
ity and the exponent of relative permeability to gas and water
is reflected in Figures 5(h)–5(j). The relative permeability
curves related to water saturation of 84 solutions are plotted
in Figure 7. Red solid lines represent gas relative permeabil-
ity, and blue lines represent water relative permeability. It is
reflected that water relative permeability distributes wider
than that of gas, which is corresponding with the greater
number of uncertain parameters used in the calculation
equations.

After history matching, we captured the pressure distri-
bution in 2 years based on the 690-day production data.
The initial pressure is 8000psi used in the reservoir simula-
tion. It drops to 1000 psi dramatically in 2 years. Then, the
pressure remains constant at 1000 psi in the following 18
years. It implies that most gas will be produced in the first five
years, especially in the first two years. It is also worth pointing
out that the pressure drawdown rate decreases slightly after
100 days compared to that within 100 days.

3.2. Production Analysis.After preparing the reservoir model,
we generated the 420 input cases by integrating the 84 history
matching solutions with five well spacing scenarios. Then, we
performed reservoir simulation for the long-term production
simulation of all cases.

Firstly, the gas flow rate and water flow rate change of all
cases in 20 years can be obtained, as shown in Figure 8. Dif-
ferent cases of the same well spacing scenario were plotted
with the same color. During the production, the gas flow rate

decreases first due to the pressure drop. Then, it increases a
bit. It is because the pressure decrease becomes slower than
the beginning, shown in Figure 9. It would lead to a larger
pressure difference between the reservoir and the wellbore.
Therefore, more gas and water would be produced. If the
pressure drawdown rate did not change, the flow rate would
decrease continuously. After two years, the gas flow rate
reaches a peak and turns to decrease, which means the
bottomhole pressure drops to the target pressure of
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1000 psi. The water flow rate has the same trend. This is the
result of the pressure change. Moreover, it is observed that
the six-well scenario with well spacing of 517 ft has the largest
gas flow rate and water flow rate at the beginning. The gas
flow rate drops to 0.2 MMscf per day averagely for the six-
well scenario, which is the lowest among all scenarios. It
implies the existence of well interference for the small well
spacing.

The cumulative gas production and cumulative water
production in 20 years can be obtained and plotted in
Figure 10. The cumulative gas production increases dramat-
ically in the first two years. Finally, the cumulative gas pro-

duction is in the range of 10 billion cubic feet (Bcf) to
20Bcf. The cumulative water production increases from
200MSTB to 400MSTB averagely with the well number
increases. In addition, cumulative gas production is more
concentrating than cumulative water production. It reflects
the uncertainty of water and gas relative permeability.

To figure out how well spacing influences gas production,
gas EUR per well for each well spacing scenario is calculated
and plotted in the lognormal cumulative probability plot, as
shown in Figure 11. The y-axis is the lognormal cumulative
probability, and the x-axis shows the gas EUR per well. Five
well spacing scenarios are represented in different colors.
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Figure 10: Cumulative gas and water productions for different well scenarios: (a) cumulative gas production and (b) cumulative water
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More dots falling on the corresponding dashed fitting line
indicate a higher possibility of the gas EUR distributes in
the lognormal format. What is more, the larger the well spac-
ing, the larger the gas EUR per well. We can find the P50 gas
EUR for each scenario, listed in Table 3.

Then, the P50 gas EUR degradation related to well spac-
ing is calculated and plotted in Figure 12. It implies that when
the well spacing is smaller than 775 ft, the gas EUR degrades
significantly up to 37%. This means there is a strong well
interference under this well spacing. Then, the well interfer-
ence becomes smaller and smaller when then well spacing
increases from 775 ft to 1033 ft. When the well spacing is
larger than 1033 ft, the degradation curve changes is little,
which means the well interference could be ignored. There-
fore, we need to make sure the well spacing is larger than
775 ft to reduce the influence of well interference.

3.3. Well Spacing Optimization. Next, we calculated the net
present value (NPV) to determine the optimal well spacing.
The values of NPV calculation inputs are listed in Table 4.
The operation cost is 4.5 million USD per well, and the gas
price is 1.8 USD/MScf. Other values can be seen in the table.

The result of NPV is plotted in the boxplot, as shown in
Figure 13. The x-axis represents the NPV while the y-axis
represents the well spacing. The NPV result of each scenario
is drawn in one box. The three lines of the box from higher to
lower are the P25, P50, and P75 NPV of each scenario. The
highest line outside the box means the maximum NPV, and
the lowest line outside the box represents the minimum
NPV. There exists a maximum NPV along with the well
spacing. Therefore, the optimum well spacing is 775 ft at

where the NPV reaches the highest. The highest P50 NPV
is about 18 million USD.

Then, we applied the KNN proxy model to train the data
and predict the NPV relationship with well spacing. Each
point in Figure 14 represents one prediction result and is
regressed on one polynomial curve, shown as a blue line. It
is observed that the optimal well spacing is 793 ft with 18 mil-
lion USD. Also, this well spacing can satisfy the requirement
of critical well spacing. It is worth pointing out that this result
is similar to the boxplot result, but this curve is smoother
with more points. Therefore, the KNN proxy method could

Table 3: P10, P50, and P90 of gas EUR of five different well spacing
scenarios.

Well spacing scenario Gas EUR P50 (Bscf/well)

2 wells, 1550 ft apart 4.94

3 wells, 1033 ft apart 4.60

4 wells, 775 ft apart 4.05

5 wells, 620 ft apart 3.49

6 wells, 517 ft apart 3.07
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Figure 12: Gas EUR degradation of P50 with varying well spacing.

Table 4: Summary of economic input variables used in this study.

NPV calculation inputs Value Unit

Well cost 4.5 Million USD/well

Gas price 1.8 USD/MScf

Water disposal cost 1.35 USD/bbl

Gas tax rate 9.0 %

Other tax rates 5.00 %

Annual discount rate 15 %

Total simulation time 20 Year
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Figure 13: Economic uncertainty distribution with different well
spacing scenarios.

20

18

16

14

12

10
400 600 800 1000

Well spacing (ft)

N
PV

 (M
ill

io
n 

U
SD

)

1200 1400 1600

Figure 14: Interpolated relationship between NPV and well
spacing.
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provide a more reliable result for the optimum well spacing
decision.

3.4. Pressure Distribution Visualization. Finally, we com-
bined the optimal well spacing of 793 ft with the lowest global
error AHM solution to perform the reservoir simulation and
predict the pressure distribution in the long time. The matrix
permeability is 202Nd, and porosity is 0.04. The water expo-
nent, the gas exponent, and the endpoint of relative water
permeability are 2.46, 3.91, and 0.55, respectively. Fracture

height, fracture half-length, fracture conductivity, fracture
water saturation, and fracture width are 44 ft, 289 ft,
194md-ft, 0.82, and 0.5 ft, respectively. The number of natu-
ral fractures is 418, and its length is 270 ft with a conductivity
of 8.09md-ft. Next, we modeled the fractures by EDFM.
After the reservoir simulation, the pressure distribution in
the matrix is shown in Figure 15. The pressure drops signif-
icantly in the first five years, which implies that most gas
would be produced in the first 5 years. However, we would
like to perform long-term EUR prediction. Therefore, we
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Figure 15: Pressure distributions in the matrix for the optimal well spacing scenario: (a) after 1 year, (b) after 5 years, and (c) after 20 years.
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Figure 16: Pressure distributions in the fractures for the optimal well spacing scenario: (a) after 1 year, (b) after 5 years, and (c) after 20 years.
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would predict the 20-year production in this study. Figure 16.
shows the pressure distributions in the fracture. We can find
that the pressure drop is faster of the hydraulic fractures than
natural fractures far away from the well. It drops from
8000 psi to 3000 psi. This implies that hydraulic fractures
would play a more critical role in the gas production process
in the early time. In addition, the hydraulic fracture pressure
drops to low pressure in the first five years. And the pressure
of the natural fractures far from the wellbores drops more
than that of hydraulic fracture after five years, which implies
natural fractures contribute more after five years. The drain-
age volume is illustrated intuitively in Figure 17, clearly
showing the strong well interference after five years of
production.

4. Conclusions

This study applied the well spacing optimization workflow
for shale gas reservoirs with hydraulic and complex natural
fractures in the Sichuan Basin by integrating AHM and
EDFM. A total of 84 AHM solutions and five well spacing
scenarios were used to predict gas EUR and NPV in 20 years.
Then, the optimum well spacing was identified. We summa-
rize the following conclusions from the study:

(1) The maximum NPV is around 18 million USD,
whether directly calculated or predicted by the
KNN proxy model. The corresponding optimum well
spacing is 775 ft and 793 ft, respectively, for the two
methods. Moreover, the optimum well spacing from
KNN proxy is more accurate as considering more
well spacing scenarios

(2) The gas EUR degradation reaches to 35% when the
well spacing is 517 ft, which shows substantial well

interference. And when the well spacing is more
extensive than 775 ft, the degradation rate starts
becoming slow. It indicates that the influence of well
interference turns to small

(3) The critical well spacing to avoid the influence of well
interference is 775 ft. Therefore, optimum well spac-
ing obtained from the two methods is satisfied with
this critical spacing

(4) The pressure drop of hydraulic fractures is faster than
natural fractures, which implies that hydraulic frac-
tures are more important for early time shale gas pro-
duction. Then, for a longer time, the natural fractures
contribute more to the gas production

Acronyms

AHM: Assisted history matching
BHP: Bottomhole pressure
EUR: Estimated ultimate recovery
EDFM: Embedded discrete fracture model
HM: History matching
KNN: K-nearest neighbor
LGR: Local grid refinement
NPV: Net present value.

Nomenclature

Cfixed: Fixed well maintenance cost
Ci: Total cost of a specific month
Cwater: Water disposal cost
Cwell: Total individual well cost
dNNC: Distance associated with this connection.
Ii: Gross income of a specific month
KNNC: Permeability
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Figure 17: Drainage volume for the optimal well spacing scenario: (a) after 1 year, (b) after 5 years, and (c) after 20 years.
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Nwell: Number of wells
NPVn: Net present value of a specific scenario
Pgas: Gas price (dollars per million standard cubic feet)
q: volume flow rate between two cells in a NNC pair
R: Annual discount rate
Tex: Miscellaneous tax rate
Tg: Gas tax rate
TNNC: Transmissibility factors in each of NNC pair
Vgas,i: Gas production in a specific month (million stan-

dard cubic feet)
Vwater,i: Water production in a specific month (barrels)
λ: Relative mobility.

SI Metric Conversion Factors

ft×3.048e-01=m:
ft3×2.832e-02=m3:
psi×6.895e+00=kPa:
md×1e-15e+00=m2:

Unit Abbreviation Table

Bcf: Billion standard cubic feet
MMscf: Million standard cubic feet
MSTB: Thousand stock tank barrel
md: Millidarcy
nd: Nanodarcy.

Data Availability

Data are available upon request.

Additional Points

Highlights. (1) Optimum well spacing for shale gas reservoirs
was obtained. (2) Both the influences of natural fractures and
hydraulic fractures were considered. (3) AHM calibrated
thirteen uncertainty parameters of fractures and matrix.
(4) EDFM was performed to establish fracture models.
(5) Maximum NPV predicted from the KNN model deter-
mined the optimum well spacing.
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