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In this study, to investigate the mechanical properties and microscopic geological features, a series of uniaxial compression,
petrophysical properties, X-ray diffraction, elements, and conductivity tests were conducted. The results indicate that quartz and
plagioclase are essential minerals determining Upper Triassic sandstone compositions, while quartz plays a dominant role in the
Lower Permian sandstones. Due to microcracks, the relationships between porosity and permeability of Upper Triassic
sandstones are better than those of Lower Permian sandstones. Observations have shown that silicon and aluminum are the
main elements of those rocks. The rocks which have large porosity and permeability have a strong capacity of anticompression
resistance. There are good consistencies between the mechanical behavior and the high proportion of rigid minerals. Similarly,
the rocks which have abundant silicon and aluminum could better support the structural integrity of rocks. High pore structure
heterogeneity and abundant clay minerals have positive influence on the mechanical resistance. Shales have distinct plastic
deformation features when compared with the sandstones.

1. Introduction

Cores are confined to a stress circumstance in the oil or gas
reservoir [1, 2]. Field monitoring suggests that stresses of
cores, which are rarely axisymmetric, increase with depth.
Due to the differences in petrophysical properties, minerals,
elements, and conductivity, cores have different geological
features [3–5]. Many defects, such as fissures and fractures,
existed in cores, and those geological features have a signif-
icant impact on the formation of the defects [6]. Under-
standing the mechanical properties of cores is essential in
dealing with reservoir reformation. Therefore, the relation-
ships between mechanical properties and geological charac-
teristics attracted much attention, and the findings have
been well documented experimentally, analytically, and
numerically [7–10].

To figure out the mechanical properties of cores, uniaxial
compression experiments have been intensively performed
to investigate the core’s mechanical characteristics under dif-
ferent stress states [11–13]. After the pioneer who conducted
the true uniaxial experiments in the 1970s, various similar
investigations were performed under quasistatic uniaxial
confinement [14–16]. Some scholars have studied the defect
(especially features) behaviors of cores and their relation-
ships with geological features [17, 18]. However, more
detailed research is required because the minerals, elements,
and conductivity that impact the crack of cores could still
be a myth.

The Ordos Basin of China is rich in sandstones (Figure 1)
and is mainly distributed in the Upper Triassic Formation and
Lower Permian Formation [19]. However, sandstones’ geolog-
ical conditions in different areas are involved, revealing that
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the mechanical properties may vary a lot [20, 21]. Owing to
the differences, it is vital to suggest the mineral composition,
elements, and conductivity of tight sandstones in different
areas, and the comparison of those two kinds of rocks from
different formations has great significance. Besides, those
cores’ mechanical properties are quite different, and the rock
deformation’s underlying mechanisms still need to be
investigated.

Therefore, in the present study, the physical properties,
X-ray diffraction, element composition, and rock-electrical
experiments were performed on the Chang 7 segment’s
shales. The mechanical properties, including stress and
strain measurements, were also conducted. Finally, how geo-
logical properties impact the mechanical features were inves-
tigated. Special attention was paid to the governing factors
on the rock ruptures and the cracking thresholds of different
core types.

2. Test Methodology

2.1. Physical Properties. The physical properties here were
defined as porosity and permeability. After being washed
with oil, dried, and vacuumed, the cores were put into the
HKC-2 and HBSST-3 instruments for porosity and perme-
ability determination, respectively. The samples are of cylin-
der shape with a diameter of 2.5 cm and a length of 4.6-
4.8 cm. The porosity was based on the volumetric method,
and the permeability was conducted by pulse amplifier.
Helium served as the medium.

2.2. X-Ray Diffraction. The samples were first dried at 60°C
and 40% humidity for 48 h and then crushed under 40μm
and put into the drying chamber for test waiting. Based on
the K value method, which is mainly concerned with the rela-
tionships between characteristic peak intensity in the
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Figure 1: Geological setting of the Ordos Basin.
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Figure 2: XRD results of the sandstones from two different strata. UT: Upper Triassic; LP: Lower Permian; Q: quartz; PF: potassium feldspar;
Pc: plagioclase; Ca: calcite; Do: dolomite; Si: siderite; An: anatase; Ank: ankerite; Cl: clay.
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Figure 3: Relationship between porosity and permeability. UT: Upper Triassic; LP: Lower Permian.
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Figure 4: Element results of the sandstones from two different strata. Na: sodium; Mg: magnesium; Al: aluminum; Si: silicon; P: phosphorus;
S: sulfur; K: potassium; Ca: calcium; Ti: titanium; Mn: manganese; Fe: ferrum.
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spectrum and mineral composition, the mineral patterns were
determined by the Rigaku SmartLab9 X-ray diffractometer.

2.3. Major and Trace Elements. The major and trace elements
were measured with an EDX3600B energy-dispersive X-ray
fluorescence spectrometer. Similar to X-ray diffraction, the

samples were put into the environment with 23°C tempera-
ture and 40% relative humidity.

2.4. Rock-Electrical Tests. A ZL5 Intelligent LCR measuring
instrument and an AG285 electronic balance were used as
the apparatus with 25°C temperature and 53% relative
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Figure 5: Relationship between porosity and formation factor of (a) Upper Triassic and (b) Lower Permian sandstones.
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humidity. The salinity of the brine is 4 × 104 mg/L with the
Ω·mof the water resistivity in 25°C temperature. The resistiv-
ity of the saturated cores was then determined, and the
porosity was gathered from Section 2.1. The formation factor
F, cementation index m, and saturation index n were simu-
lated by the relationship between resistivity, porosity, and
saturation based on the Archie equation [22].

2.5. Uniaxial Compression Experiments. The cores were
sealed into the chamber, and before the tests, two rigid metal-
lic plates were placed on two ends to reduce the friction effect
when loading was applied. The tests were performed with
35MPa of ambient pressure and 85°C of environmental tem-
perature. During the experiments, the force was imposed on
the samples at a constant speed, and the force was gradually
reduced when the cores were cracked. A linear variable differ-
ential transformer was applied to determine the deformation
of samples.

3. Results

3.1. Mineral Compositions. XRD was used to study rock min-
eral compositions (Figure 2) [23–25]. The result indicates
that the main mineral types of Upper Triassic sandstones
include quartz, plagioclase, clay, etc., while those of Lower
Permian sandstones include quartz, calcite, and clay. Quartz
and feldspar are the main detrital minerals in Upper Triassic
sandstones, and so many kinds of interstitial minerals, such
as calcite, dolomite, siderite, ankerite, and clay, occluded
the pore spaces. The mineral types of Lower Permian sand-
stones are relatively monotonous. Quartz is the only detrital
mineral and calcite and clay are the main interstitial min-
erals, while anatase is in trace amounts.

3.2. Petrophysical Properties. The petrophysical properties of
the samples are shown in Figure 3. The averaged porosity of
Upper Triassic and Lower Permian sandstones is 6.93% and
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Figure 6: Dynamic stress and strain history: (a) Upper Triassic (2#) and (b) Lower Permian sandstones (5#), exemplarily shown. T:
temperature; CP: confining pressure.
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5.71%, respectively. The averaged permeability of Upper Tri-
assic and Lower Permian sandstones is 0.11mD and
0.22mD, respectively. The reasons for these phenomena
might be the depth differences: deeper burial, which corre-
sponds to more considerable stress, would decrease the pore
spaces while creating more microcracks. The burial depth of
Lower Permian sandstones is more profound than Upper
Triassic sandstones, so the former has lower porosity and
higher permeability.

The relationship between porosity and permeability is
approximately exponential lines in the coordinate system
[26, 27]. There is an excellent positive correlation for
Upper Triassic sandstones, while the R-squared for Lower
Permian sandstones is very low. Too many microcracks
lead to high permeability and low porosity, which may
result from abundant rigid minerals and deeper burial
depth (Figure 3).

3.3. Element Characteristics.According to the elemental anal-
ysis results (Figure 4), silicon, which indicates detrital min-
erals, such as quartz, has the highest content in two strata.
Aluminum, which is associated with feldspar and clay, comes
second. The amounts of all types of elements in Upper Trias-
sic sandstones are higher than those in Lower Permian sand-
stones, except silicon.

3.4. Rock-Electrical Results. Because the rock-electrical
parameter of sandstones has a significant impact on the for-
mation properties, it is necessary to extract the rock-electrical
model features [28–32]. The formation factor, which was
determined by the ratio of saturated cores and water resistiv-
ity, averaged 111.10 and 104.33 for Upper Triassic and Lower
Permian sandstones, respectively. The relationships between
porosity and formation factor in the log-log coordinate can
be used for the rock-electrical parameter with the help of
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Figure 7: Stress and strain history: (a) Upper Triassic (2#) and (b) Lower Permian sandstones (5#), exemplarily shown.
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the Archie equation, and for the Upper Triassic and Lower
Permian sandstones, the averagedmis equal to 1.262 and
1.283 and an equivalent to 1.003 and 0.959, respectively
(Figure 5). Highmhas a corresponding complex pore struc-
ture; therefore, those two sandstones may have a similar
pore-throat ratio.

3.5. Uniaxial Compression Data. The compression is defined
as positive in our research, and the signals obtained by uniax-
ial compression tests with unique temperature and confining
pressure are exemplarily shown in Figure 6. The Lower
Permian sandstones are easy to crack when compared to

Upper Triassic sandstones. Detailed figures and analysis are
shown in Figure S1, Table S1, and Discussion.

4. Discussion

4.1. Compression Data Interpretation. The interpretation of
signals of compression is necessary to achieve the mechanical
rock properties. The relationships among principal stress,
axial strain, and radial strain are obtained and shown in
Figure 7 and Figure S2. The axial and radial strains increase
with the principal stress increase, while the volumetric
strains show a hysteresis trend.
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Figure 8: The calculation procedure of (a) Young’s modulus and (b) Poisson’s ratio.
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Figure 9: Continued.
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Some rock mechanical parameters are also obtained by
stress and strain history. Figure 8 shows the calculation
methods of Young’s modulus and Poisson’s ratio, two typical
rock mechanical parameters. With the increase of those two
parameters, the resistance to compaction of the rock
increases. Detailed data are shown in Table S1.

4.2. Relationships between Mechanical Property Parameters
and Petrophysical Properties. The porosity and permeability
can reflect the petrophysical rock properties. Therefore, we
analyze the relationships between porosity/permeability and
mechanical property parameters. The porosity and perme-
ability of those eight samples are shown in Table S2.
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Figure 9: Relationships between petrophysical property and mechanical property parameters. UT: Upper Triassic; LP: Lower Permian.
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Figure 10: Continued.

10 Geofluids



R2 = 0.7706

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12
Potash feldspar (%)

Ro
ck

 fr
ac

tu
re

 ti
m

e (
s)

(d)

0 2 4 6 8 10 12
Potash feldspar (%)

R2 = 0.8225

0
2
4
6
8

10
12
14
16
18
20

Yo
un

g’s
 m

od
ul

us
 (G

Pa
)

(e)

0 2 4 6 8 10 12
Potash feldspar (%)

R2 = 0.7679 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Po
iss

on
’s 

ra
tio

(f)

Figure 10: Continued.

11Geofluids



300 10 20 40 50

R2 = 0.8902

0
2
4
6
8

10
12
14
16
18
20

Plagioclase (%)

Yo
un

g’s
 m

od
ul

us
 (G

Pa
)

(g)

R2 = 0.5191

0

50

100

150

200

250

300

300 10 20 40 50
Plagioclase (%)

Re
fle

ct
io

n 
str

es
s (

M
Pa

)

(h)

R2 = 0.7866

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25
Dolomite (%)

Ro
ck

 fr
ac

tu
re

 ti
m

e (
s)

(i)

Figure 10: Continued.

12 Geofluids



Figure 9(a) shows that the higher the porosity is, the longer
the rock fracture time. Figures 9(b) and 9(c) demonstrate
that porosity has negative correlations with Young’s
modulus and Poisson’s ratio. Those figures illustrate that
abundant pore space may resist the compression stress
and enhance rocks’ resistance ability. Similar to the
porosity, the permeability also has positive relationships
with mechanical property parameters. Besides, the Upper
Triassic sandstones have a distinct response, while the
Lower Permian ones do not have a typical trend, even
having an opposite trend, reflecting that the former ones
are more sensitive to the compression.

4.3. Relationships between Mechanical Property Parameters
and Mineral Compositions.Mineral compositions are closely
related to rock mechanical characteristics. The test results
are shown in Table S2. Figures 10(a)–10(c) show a good
positive correlation between quartz and rock fracture time,
maximum stress, and reflection stress, indicating that the
rocks abundant in quartz are more rigid. The Lower
Permian sandstones only have quartz, calcite, and clay, and
quartz plays a dominant role in the mineral content,
whereas the calcite is in trace amounts. Therefore, it is not
necessary to study the relationships between other minerals
and rock mechanical properties.
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Figure 10: Relationships between mineral composition and mechanical property parameters. UT: Upper Triassic; LP: Lower Permian.
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Figure 11: Relationships between elements (amount above 1%) and mechanical properties: (a) silicon, (b) aluminum, (c) calcium, (d) ferrum,
(e) magnesium, and (f) potassium. RFT: rock fracture time; MS: maximum stress; RS: reflection stress; YM: Young’s modulus; PR: Poisson’s
ratio; black point: Upper Triassic; red point: Lower Permian.
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It can be seen from Figure 10(d) that potash feldspar has
a good positive correlation with rock fracture time and dolo-
mite also shows the same trend with Young’s modulus
(Figure 10(j)). However, when potash feldspar, plagioclase,
dolomite, and clay increase, the rock mechanical properties
gradually deteriorate (Figures 10(e)–10(i), 10(k), and 10(l)).
Those different trends between potash feldspar, dolomite,
and rock mechanical properties demonstrate that, although
these minerals seem to have correlations with rock resistance,
they do not impact the mechanical properties due to the
restricted content. Those relatively abundant minerals, such
as plagioclase and clay, may increase the plasticity of the rock.

4.4. Relationships between Mechanical Property Parameters
and Elements. There is little research in the relationships
between geochemical elements and mechanical properties;
the data are shown in Table S3. Silicon is generally derived
from terrigenous debris, which represents the presence of
quartz. Silicon has a positive correlation with mechanical
properties in Upper Triassic sandstones while is negatively
correlated with mechanical properties in Lower Permian
sandstones (Figure 11(a)). These trends indicate that
abundant quartz may lead to the rocks becoming easy to
crack. Aluminum is associated with feldspar and clay, and
it has a positive correlation with mechanical properties
(Figure 11(b)). Calcium is closely related to carbonate, low
hardness, and easy cracking (Figure 11(c)). Ferrum,
magnesium, and potassium are closely related to the silica
formation environment. Therefore, they have the same or
opposite trend with silicon (Figures 11(a) and 11(d)–11(f)).
The proportion of the elements shown in Figure 11 are
above 1.00%; those below 1.00% are delivered in Figure S3.

4.5. Relationships between Mechanical Properties and Rock-
Electrical Results. Figure 12(a) shows that lower Permian
sandstones’ anticompression ability is stronger than that of

Upper Triassic sandstones. Besides, as a large m value repre-
sents complex pore networks, and large n indicates weak
water wettability, the Lower Permian sandstones have com-
plex pore structure and abundant hydrophilic minerals
(especially clay). Figures 11(b) and 11(c) show the reasons.
Strong heterogeneity of the rocks generally represents a high
proportion of clay minerals (Figure 2) and less pore space,
which mean that the detrital minerals are close to each other
and have a strong anticompression ability. Besides, strong
water ability is also indicated by abundant hydrophilic min-
erals (illite and I/S mixed layer); those clays occlude the pores
and increase the rocks’ mechanical strength (Figure 11(c)).

4.6. Mechanical Property Differences between Sandstones and
Shales. When compared with the sandstones’ mechanical
properties, those of the shales have some differences
(Figures 6, 7, and 13). The first one is that the shales’ curves
are more smooth than those of the sandstones, suggesting
that shales have distinct plastic deformation. Besides, the
shales’ breaking time is much shorter than that of the sand-
stones, indicating that although the shales have precise plas-
tic deformation, the shales are still easy to crack. However,
there some myths still exist. For example, Young’s modulus
and Poisson’s ratio for shales vary a lot, which means that
further analysis needs to be done to research the mechanical
properties of shales.

5. Conclusions

Mechanical properties of sandstones under uniaxial com-
pression and microscopic geological features were systemati-
cally studied using the developed equipment. The mineral
compositions, petrophysical properties, elements, and
mechanical properties were determined, and how those
microscopic geological features impact mechanical proper-
ties were investigated. The conclusions are as follows:

Strain (10−3)

0
5

10
15
20
25
30
35
40
45
50

−4.00 −3.00 −2.00 −1.00 0.00 1.00 2.00 3.00 4.00

Axial strain
Radial strain
Volumetric strain

Pr
in

ci
pa

l s
tre

ss
 (M

Pa
)

(d)

Figure 13: (a) Dynamic stress and strain history for shale 1, (b) stress and strain history for shale 1, (c) dynamic stress and strain history for
shale 2, and (d) stress and strain history for shale 2.
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(1) Quartz and plagioclase are essential minerals deter-
mining Upper Triassic sandstones’ compositions,
while quartz plays a dominant role in the Lower
Permian sandstones

(2) Due to microcrack occurrence, the relationships
between porosity and permeability of Upper Triassic
sandstones are better than those of Lower Permian
sandstones

(3) Observations have shown that silicon and aluminum
are the main elements of those rocks. The rocks
which have large porosity and permeability have a
strong capacity of anticompression resistance. There
are good consistencies between the mechanical
behavior and the high proportion of rigid minerals

(4) The rocks which have abundant silicon and alumi-
num could better support the structural integrity of
stones

(5) Strong structure heterogeneity and abundant hydro-
philic minerals generally correspond to good antic-
ompression ability.
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