
Research Article
A New Unified Solution for Deep Tunnels in Water-Rich Areas
considering Pore Water Pressure

Hao Fan , Lianguo Wang , Shuai Wang , and Chongyang Jiang

State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology,
Xuzhou 221116, China

Correspondence should be addressed to Lianguo Wang; cumt_lgwang@163.com

Received 26 December 2020; Revised 24 January 2021; Accepted 28 January 2021; Published 20 February 2021

Academic Editor: Yi Xue

Copyright © 2021 Hao Fan et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Pore water pressure has an important influence on the stresses and deformation of the surrounding rock of deep tunnels in water-
rich areas. In this study, a mechanical model for deep tunnels subjected to a nonuniform stress field in water-rich areas is developed.
Considering the pore water pressure, a new unified solution for the stresses, postpeak zone radii, and surface displacement is
derived based on a strain-softening model and the Mogi-Coulomb criterion. Through a case study, the effects of pore water
pressure, intermediate principal stress, and residual cohesion on the stress distribution, postpeak zone radii, and surface
displacement are also discussed. Results show that the tangential stresses are always larger than the radial stress. The radial
stress presents a gradually increasing trend, while the tangential stress presents a trend of first increasing and then decreasing,
and the maximum tangential stress appears at the interface between the elastic and plastic zones. As the pore water pressure
increases, the postpeak zone radii and surface displacement increase. Because of the neglect of the intermediate principal stress
in the Mohr-Coulomb criterion, the postpeak zone radii, surface displacement, and maximum tangential stress solved by the
Mohr-Coulomb criterion are all larger than those solved by the Mogi-Coulomb criterion. Tunnels surrounded by rock masses
with a higher residual cohesion experience lower postpeak zone radii and surface displacement. Data presented in this study
provide an important theoretical basis for supporting the tunnels in water-rich areas.

1. Introduction

Tunnels are one of the most basic facilities in water conser-
vancy engineering, civil engineering, and mining engineering
[1–3]. The stress distribution of the rock mass changes with
the excavation of the tunnel, and the surrounding rock of
the tunnel will be deformed if the redistributed stress exceeds
the peak strength of the rock mass. Therefore, accurate calcu-
lation for the stress of the surrounding rock plays an impor-
tant role in stability evaluation and support design of the
tunnel [4–6].

In the past decades, a series of unified solutions based on
different strength criteria have been proposed. Some com-
mon strength criteria, such as the Mohr-Coulomb criterion
[7–10] and the Hoek-Brown criterion [11–14], were widely
used to calculate the stress in the tunnel surrounding rock.

However, the intermediate principal stress is not considered
in these criteria, which caused an inaccurate result. In fact,
the surrounding rock of the tunnel is always in a true triaxial
stress environment [15, 16], and the intermediate principal
stress has a nonnegligible influence on the strength of the
rock mass. Therefore, it is of great significance that the inter-
mediate principal stress be taken into consideration in the
unified solution for deep tunnels.

Because of the underground faults, folds, and other spe-
cial structures, the ratio of the vertical stress to horizontal
stress is usually not equal to one. In this case, Galin [17] first
analyzed the tunnel in a nonuniform stress field and deduced
the radius of the plastic zone. However, Galin’s solution only
applies to frictionless rock mass. Detournay [18–20]
extended Galin’s result to other materials and obtained the
boundary of the elastic and plastic zones. Tokar [21],
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Leitman and Villaggio [22], and Ochensberger et al. [23] also
presented a series of analytical solutions for a circular well-
bore in some certain cases based on Galin’s solution.

It is known that the flowing water always exists in the
underground rock mass, which has a certain impact on the
stress distribution and deformation of the surrounding rock
of the tunnel. Therefore, the influence of the pore water pres-
sure should be considered in the elastic-plastic analysis for
deep tunnels in water-rich areas [24–26]. In the present
study, a mechanical model for deep tunnels subjected to a
nonuniform stress field in water-rich areas is first established.
Considering the pore water pressure, a new unified solution
for the stresses, postpeak zone radii, and surface displace-
ment is derived based on strain-softening model and Mogi-
Coulomb criterion. Through a case study, the sensitivity of
pore water pressure, intermediate principal stress, and resid-
ual cohesion on the stress distribution, postpeak zone radii,
and surface displacement is analyzed.

2. Definition of the Problem

2.1. Mechanical Model of a Circular Tunnel.A circular tunnel
of radius R0 was excavated in an infinite rock mass (Figure 1).
The vertical and horizontal stresses are σ0 and λσ0, respec-
tively, where λ is the lateral stress coefficient. A support pres-
sure (Pi) is uniformly distributed along the excavation
surface. The surrounding rock of the tunnel is subdivided
into an elastic zone (“e”), plastic zone (“p”), and damage zone
(“d”). The radii of the elastic, plastic, and damage zones are
denoted by Re, Rp, and Rd , respectively.

We assume that there is a pore water pressure (P0) out-
side the elastic zone of the tunnel. Based on Darcy’s law,
the continuous differential equation of seepage is

d2Pw

dr2 + 1
r
dPw

dr = 0, ð1Þ

where Pw is the pore water pressure at any point of the tunnel
surrounding rocks.

Combined with the boundary condition of Pw = 0 at r =
R0 and Pw = P0 at r = Re, the pore water pressure can be
derived by solving Equation (1):

Pw = P0
ln R0/rð Þ
ln R0/Reð Þ : ð2Þ

2.2. Strain-Softening Model. As shown in Figure 2, the exper-
imental stress-strain curve of the rock mass can be simplified
into a three-section line. The three straight lines correspond
to the elastic zone, plastic zone, and damage zone,
respectively.

3. Analytical Solution

3.1. Basic Equations. The Mogi-Coulomb criterion can be
expressed as [27–29]

σθi =Mσri +Ni, ð3Þ

where σθi and σri are the tangential and radial stresses in the
“i” region, respectively;M = ð ffiffiffi

3
p

+ 2 sin φÞ/ð ffiffiffi
3

p
− 2 sin φÞ; φ

is the internal friction angle; Ni = 4ci cos φ/ð
ffiffiffi
3

p
− 2 sin φÞ;

and ci represents the cohesion in different zones. The symbol
“i” can be replaced by “e,” “p,” and “d.”

Taking the pore water pressure into consideration, the
equilibrium differential equation in the “i” zone can be
given as

dσri

dr + σri − σθi
r

+ η
dPw

dr = 0, ð4Þ

where η is the pore water pressure coefficient.
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Figure 1: Mechanical model of tunnels subjected to a nonuniform
stress field in water-rich area.
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Figure 2: Total stress-strain curve of rock mass.
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The geometric equation can be written as

εri =
dui
dr ,

εθi =
ui
r
,

8>><
>>: ð5Þ

where εri and εθi are the radial and tangential strains in the “i”
zone, respectively, and ui represents the displacement in the
“i” zone.

The constitutive equations can be denoted as

εr =
1 − μ2

E
σr −

μ

1 − μ
σθ

� �
,

εθ =
1 − μ2

E
σθ −

μ

1 − μ
σr

� �
,

8>>><
>>>:

ð6Þ

where μ and E are Poisson’s ratio and Young’s modulus of
the rock mass, respectively.

In addition, the volume of the rock mass is always chang-
ing in the postpeak failure zone; the plastic-strain relation-
ships can be developed based on the nonassociated flow
rule as follows:

εri + βiεθi = 0, ð7Þ

where βi = ð1 + sin ψiÞ/ð1 − sin ψiÞ; ψi is the dilation angle in
the “i” zone.

3.2. Elastic Zone. The stress state of the circular tunnel in a
nonuniform stress field can be decomposed into two parts
(see Figure 3). In state I, the tunnel is subjected to a uniform
pressure (0:5ð1 + λÞσ0), pore water pressure (Pw), and sup-
port pressure (Pi); the differential equation can be obtained
by substituting Equations (2), (5), and (6) into Equation (3):

d2ue1
dr2 + 1

r
due1
dr −

ue1
r2

= Fv
rE

, ð8Þ

where F = ηP0/ln ðR0/ReÞ and v = ð1 + μÞð1 − 2μÞ/ð1 − μÞ.
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Figure 3: Mechanical model of surrounding rock in water-rich coal tunnel.
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Solving Equation (8), the displacement and strains in
state I can be easily obtained as

ue1 = C1r +
C2
r

+ Fvr ln r
2E ,

εre1 = C1 −
C2
r2

+ Fv
2E ln r + 1ð Þ,

εθe1 = C1 +
C2
r2

+ Fv ln r
2E ,

8>>>>>>><
>>>>>>>:

ð9Þ

where C1 and C2 are integral constants.
The radial and tangential stresses can be derived by inte-

grating Equations (6) and (9):

σre1 =
EC1

1 + μð Þ 1 − 2μð Þ −
EC2

1 + μð Þr2 + ηF ln r
2 1 − μð Þ + ηF

2 ,

σθe1 =
EC1

1 + μð Þ 1 − 2μð Þ + EC2
1 + μð Þr2 + ηF ln r

2 1 − μð Þ + μηF
2 1 − μð Þ :

8>>><
>>>:

ð10Þ

Considering the boundary condition σr = 0:5ð1 + λÞσ0
+ P0 at r = R0 and σr = σe−pr at r = Rp, the integral constants
can be solved as follows:

 C1 =
ν 1� μð Þ

E
1
2 1 + λð Þσ0 + P0

� �

+
Rp

2

Re
2 � Rp

2
v 1� μð Þ

E
1
2 1 + λð Þσ0 + P0 � σe�p

r

� �

  + ηFv
2E

Rp
2

Re
2 � Rp

2 ln
Rp

Re
� ηFv 1� μð Þ

2E � ηFv
2E lnRe,

 C2 =
1 + μ

E

Re
2Rp

2

Re
2 � Rp

2
1
2 1 + λð Þσ0 + P0 � σe�p

r

� �

  + ηF 1 + μð Þ
2E 1� μð Þ

Re
2Rp

2

Re
2 � Rp

2 ln
Rp

Re
: ð11Þ

The stresses in state I can be determined by substituting
Equation (11) into Equation (10):

σre1 =
1
2 1 + λð Þσ0 + P0 +

ηF
2 1 − μð Þ ln r

Re
+

Rp
2

Rp
2 − Re

2
Re

2

r2
− 1

� �
,

1
2 1 + λð Þσ0 + P0 − σe−pr + ηF

2 1 − μð Þ ln
Rp

Re

� �
,

σθe1 =
1
2 1 + λð Þσ0 + P0 +

ηF
2

ln r/Reð Þ + 2μ − 1
1 − μ

−
Rp

2

Rp
2 − Re

2
Re

2

r2
+ 1

� �
,

1
2 1 + λð Þσ0 + P0 − σe−pr + ηF

2 1 − μð Þ ln
Rp

Re

� �
:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð12Þ

In state II, the surrounding rock is subjected to a hor-
izontal tension (0:5ð1 − λÞσ0) and a vertical pressure
(0:5ð1 − λÞσ0). At r = Rs, the boundary condition can be
written as follows:

σx = −0:5 1 − λð Þσ0,
σy = 0:5 1 − λð Þσ0,
τrθ = 0:

8>><
>>: ð13Þ

Though coordinate transformation, Equation (13) can
be re written as follows:

σr = −0:5 1 − λð Þσ0 cos 2θ
τrθ = 0:5 1 − λð Þσ0 sin 2θ

(
ð14Þ

At r = R0, σx = τrθ = 0. Therefore, using semi-inverse
method, the stresses in state II can be deduced as follows:

σre2 = −
1
2 1 − λð Þσ0 1 − 4

Rp
2

r2
+ 3

Rp
4

r4

 !
cos 2θ,

σθe2 =
1
2 1 − λð Þσ0 1 + 3

Rp
4

R4

 !
cos 2θ:

8>>>>><
>>>>>:

ð15Þ

Therefore, the stresses in the elastic zone considering
pore water pressure can be obtained by superimposing
Equations (12) and (15):

 σre =
1
2 1 + λð Þσ0 + P0 +

ηF
2 1� μð Þ ln

r
Re

+
Rp

2

Rp
2 � Re

2
Re

2

r2
� 1

� �

  · 1
2 1 + λð Þσ0 +
�

P0 � σe�p
r + ηF

2 1� μð Þ ln
Rp

Re

�

 � 1
2 1� λð Þσ0 1� 4

R2
p

r2
+ 3

R4
p

r4

 !
cos2θ,

 σθe =
1
2 1 + λð Þσ0 + P0 +

ηF
2
ln r/Reð Þ + 2μ� 1

1� μ
� Rp

2

Rp
2 � Re

2
Re

2

r2
+ 1

� �

  · 1
2 1 + λð Þσ0 + P0 � σe�p

r + ηF
2 1� μð Þ ln

Rp

Re

� �

  + 1
2 1� λð Þσ0 1 + 3

R4
p

r4

 !
cos2θ: ð16Þ

At the interface between the elastic and plastic zones,
the radial and tangential stresses should satisfy Equation
(3). Thus, σe−pr can be derived by substituting Equation
(16) into Equation (3):
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The radial and tangential strains in the elastic zone can be
derived by substituting Equation (14) into Equation (6):

Using Equation (5), the displacement in the elastic zone
can be easily obtained as

ue = C1r +
C2
r

+ ηFvr ln r
2E + 1 + μ

2E 1 − λð Þσ0

� r − 4μ
Rp

2

r
+ 3

Rp
4

r3

 !
cos 2θ:

ð19Þ

3.3. Plastic Zone. In the plastic zone, the total strain of the
surrounding rock consists of two parts: the plastic and the
elastic part. Thus, the following equation can be easily
given as

εr = εrp + εr
e−p,

εθ = εθp + εθ
e−p:

(
ð20Þ

The displacement differential equation in the plastic
zone can be obtained by integrating Equations (5), (7),
and (20):

dup
dr + βp

up
r

= εr
e−p + βpεθ

e−p: ð21Þ

With the boundary condition of up = ue−p at r = Rp, the
displacement in the plastic zone can be deduced by solving
Equation (21):

up =
ue−p − εr

e−pRp

βp + 1

" #
Rp

r

� �βp

+
εr

e−p + βpεθ
e−p

� �
r

βp + 1 : ð22Þ

Using Equation (5), the strains in the plastic zone can
be obtained as

εrp =
βp εr

e−p − εθ
e−pð Þ

βp + 1
Rp

r

� �βp+1
+
εr

e−p + βpεθ
e−p

βp + 1 ,

εθp =
εθ

e−p − εr
e−p

βp + 1
Rp

r

� �βp+1
+
εr

e−p + βpεθ
e−p

βp + 1 :

8>>>><
>>>>:

ð23Þ

Previous studies indicated that the internal friction
angle of the rock does not change significantly in the post-
peak phase, and the rock strength is only related to cohe-
sion. Assuming that the cohesion in the plastic zone
decreases linearly (see Figure 4), the cohesion at any point
in the plastic zone can be expressed as

cp = c0 − α εθp − εθ
e−p	 


= c0 − α
εθ

e−p − εr
e−p

βp + 1
Rp

r

� �βp+1
+
εr

e−p + βpεθ
e−p

βp + 1 − εθ
e−p

" #

= c0 −
α εθ

e−p − εr
e−pð Þ

βp + 1
Rp

r

� �βp+1
− 1

" #
,

ð24Þ

where c0 is the initial cohesion and α is the softening coef-
ficient of the cohesion.

σe−pr =
−2Re

2 1/2ð Þ 1 + λð Þσ0 + P0½ � + ηF/2 1 − μð Þ Rp
2 − Re

2	 

ln Rp/Re

	 

+ 2μ − 1

	 

−

�
Rp

2 + Re
2	 


ln Rp/Re

	 
�
+ 2 1 − λð Þσ0 cos 2θ Rp

2 − Re
2	 


−Ne Rp
2 − Re

2	 
 �
M Rp

2 − Re
2	 


− Rp
2 − Re

2� � :

ð17Þ

εre = C1 −
C2
r2

+ ηFv
2E ln r + 1ð Þ − 1 + μ

2E 1 − λð Þσ0 1 − 4 1 − μð ÞRp
2

r2
+ 3

Rp
4

r4

" #
cos 2θ,

εθe = C1 +
C2
r2

+ ηFv ln r
2E + 1 + μ

2E 1 − λð Þσ0 1 − 4μ
Rp

2

r2
+ 3

Rp
4

r4

 !
cos 2θ:

8>>>>><
>>>>>:

ð18Þ
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The equilibrium differential equation in the plastic zone
can be rewritten by substituting Equations (2), (3), and (24)
into Equation (4).

dσr
dr + 1 −Mð Þσr

r
−

4 cos φffiffiffi
3

p
− 2 sin φ

� �

⋅
c0 − α εθ

e−p − εr
e−pð Þ/ βp + 1

� �
Rp/r
	 
βp+1 − 1
h in o

r

−
ηF
r

= 0

ð25Þ

Combining the boundary condition of σr = σr
e−p at r =

Rp, the radial stress in the plastic zone can be obtained by
solving Equation (25) as

σrp = σr
e−p −

Ne + ηF
1 −M

� �
Rp

r

� �1−M

+
4 cos φ/

ffiffiffi
3

p
− 2 sin φ

� �
α εθ

e−p − εr
e−pð Þ

βp + 1
� �

βp +M
� �

⋅
Rp

r

� �1+βp

−
Rp

r

� �1−M" #

+
4 cos φ/

ffiffiffi
3

p
− 2 sin φ

� �
α εθ

e−p − εr
e−pð Þ

βp + 1
� �

1 −Mð Þ

⋅ 1 −
Rp

r

� �1−M" #
+ Ne + ηF

1 −M
:

ð26Þ

3.4. Damage Zone. In the damage zone, the total strains of
the surrounding rock are also composed of two parts as:

εr = εrd + εr
p−d

εθ = εθd + εθ
p−d

(
ð27Þ

where εr
p−d and εθ

p−d are the radial and tangential strains at
the interface between the plastic and damage zones,
respectively.

The displacement differential equation in the plastic zone
can be obtained by integrating Equations (5), (7), and (27):

dud
dr + βd

ud
r

= εr
p−d + βdεθ

p−d: ð28Þ

Considering the boundary condition of ud = up−d at r =
Rd , the displacement in the plastic zone can be deduced by
solving Equation (28):

ud =
up−d − εr

p−dRd

βd + 1

� �
Rd

r

� �βd

+ εr
p−d + βdεθ

p−d	 

r

βd + 1 : ð29Þ

Using Equation (5), the strains in the damage zone can be
achieved as follows:

εrd =
βd εr

p−d − εθ
p−d	 


βp + 1
Rd

r

� �βp+1
+ εr

p−d + βdεθ
p−d

βd + 1 ,

εθd =
εθ

p−d − εr
p−d

βd + 1
Rd

r

� �βd+1
+ εr

p−d + βdεθ
p−d

βd + 1 :

8>>>><
>>>>:

ð30Þ

The equilibrium differential equation in the damage zone
can be rewritten by substituting Equations (2) and (3) into
Equation (4) as

dσr

dr + 1 −Mð Þσr −Nd

r
−
ηF
r

= 0: ð31Þ

Combining the boundary condition of σr = Pi at r = R0,
the radial stress in the plastic zone can be obtained by solving
Equation (31) as

σrd = pi −
Nd + ηF
1 −M

� �
R0
r

� �1−M
+ Nd + ηF

1 −M
,

σθd =M pi −
Nd + ηF
1 −M

� �
R0
r

� �1−M
+ MNd + ηF

1 −M
:

8>>>><
>>>>:

ð32Þ

3.5. Radius of Postpeak Failure Zone. Because of the continu-
ity of radial stress in the surrounding rock of the tunnel, the

c0

c

cd

𝜀𝜃
p-d 𝜀𝜃𝜀𝜃

e-p

𝛼

Figure 4: Softening model of the cohesion.
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relationship between Rp and Rd can be established by com-
bining with (26) and (32).

σr
e−p −

Ne + ηF
1 −M

� �
Rp

Rd

� �1−M
+ Ne + ηF

1 −M

+
4 cos φ/

ffiffiffi
3

p
− 2 sin φ

� �
α εθ

e−p − εr
e−pð Þ

βp + 1
� �

βp +M
� �

⋅
Rp

Rd

� �1−βp
−

Rp

Rd

� �1−M
" #

+
4 cos φ/

ffiffiffi
3

p
− 2 sin φ

� �
α εθ

e−p − εr
e−pð Þ

βp + 1
� �

1 −Mð Þ
1 −

Rp

Rd

� �1−M
" #

= pi −
Nd + ηF
1 −M

� �
R0
Rd

� �1−M
+ Nd + ηF

1 −M
:

ð33Þ

According to Equation (24), the cohesion at r = Rd can be
expressed as follows:

cd = c0 −
α εθ

e−p − εr
e−pð Þ

βp + 1
Rp

Rd

� �βp+1
− 1

" #
: ð34Þ

Subsequently, the radii Rp and Rd can be derived by inte-
grating (33) and (34).

4. Case Study

The stress distribution and deformation of the tunnel sur-
rounding rock are of great importance for the stability evalu-
ation and support design of the tunnel. In order to study the
influence of pore water pressure, intermediate principal
stress, and residual cohesion on the stresses and displace-
ment of the tunnel, the mechanical and geometrical parame-
ters of the rock mass are shown in Table 1.

4.1. Effect of Pore Water Pressure

4.1.1. Postpeak Zone Radii and Surface Displacement.
Figure 5 shows the postpeak zone radii and surface displace-
ment around the tunnel under different pore water pressure.
The radii of plastic and damage zones and surface displace-
ment all increase with the increase of pore water pressure.
For example, as P0 increases from 3MPa to 6MPa, the Rp,
Rd , and u0 values at the tunnel side increase by 0.85m,
0.83m, and 36.44mm, with an increment of 20.48%,
22.61%, and 67.31%, respectively, and the Rp, Rd , and u0
values at the tunnel crown increase by 0.77m and 0.75m,
and 72.06mm, with an increment of 13.62%, 14.24%, and
43.43%, respectively. Therefore, the pore water pressure
exerts a crucial influence on the radii of plastic and damage
zones and surface displacement.

4.1.2. Stress Distribution in Tunnel Surrounding Rock. Taking
the tunnel crown as an example, the stress distribution based

on different pore water pressure is shown in Figure 6. It can
be seen that the tangential stresses are always larger than
the radial stress. The radial stress presents a gradually
increasing trend, while the tangential stress presents a trend
of first increasing and then decreasing, and the maximum
tangential stress appears at the interface between the elastic
and plastic zones. As the pore water pressure increases, the
maximum tangential stress increases and is farther away
from the center of the tunnel.

4.2. Effect of Intermediate Principal Stress

4.2.1. Postpeak Zone Radii and Surface Displacement. In
order to research the influence of intermediate principal
stress on the tunnel deformation, the current analytical
results are compared with the data obtained based on the
Mohr-Coulomb criterion. As shown in Figure 7, because of
the neglect of the intermediate principal stress in the Mohr-
Coulomb criterion, the Rp, Rd , and u0 values solved by the
Mohr-Coulomb criterion are all larger than those solved by
the Mogi-Coulomb criterion. For example, the Rp, Rd , and
u0 values at the tunnel side from theMogi-Coulomb criterion
are 4.73m, 4.22m, and 76.71mm, respectively; however, the
results from the Mohr-Coulomb criterion are 6.83m, 5.95m,
and 130.69mm, with an increment of 44.40%, 40.99%, and
70.37%, respectively.

4.2.2. Stress Distribution in Tunnel Surrounding Rock. The
stress distribution at the tunnel crown based on two different
criteria is shown in Figure 8. It can be seen that the interme-
diate principal stress has a significant effect on the stress dis-
tribution in the three zones. When the intermediate principal
stress is ignored, the stress concentration and maximum tan-
gential stress are larger, and the boundary between the plastic
and elastic zones is closer to the tunnel center.

4.3. Effect of Residual Cohesion

4.3.1. Postpeak Zone Radii and Surface Displacement.
Figure 9 shows the postpeak zone radii and surface displace-
ment around the tunnel under different types of residual

Table 1: Geometrical and mechanical parameters.

Parameters Values

Radius of the tunnel, R0 (m) 3

Initial stress, σ0 (MPa) 16.2

Support pressure, Pi (MPa) 0

Lateral stress coefficient 1.5

Pore water pressure, P0 (MPa) 5

Pore water pressure coefficient, η 1

Re/R0 12

Poisson’s ratio, μ 0.25

Young’s modulus, E (MPa) 2400

Initial cohesion, c0 (MPa) 3.5

Residual cohesion, cd (MPa) 1.5

Dilation angle, ψi (
°) 10
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cohesion. The radii of plastic and damage zones and surface
displacement all decrease with the increase of residual cohe-
sion. For example, as cd increases from 1.5MPa to 2.5MPa,
the Rp, Rd , and u0 values at the tunnel side decrease by
1.34m, 0.86m, and 37.39mm, with a reduction of 24.45%,
18.07%, and 37.59%, respectively, and the Rp, Rd , and u0
values at the tunnel crown increase by 2.41m and 1.94m,
and 164.56mm, with a reduction of 32.01%, 28.24%, and
52.63%, respectively. Therefore, some measures, such as
grouting, can be used to increase the residual cohesion of
the rock mass and reduce the deformation of the tunnel.

4.3.2. Stress Distribution in Tunnel Surrounding Rock. The
stress distribution based on different types of residual cohe-
sion is shown in Figure 10. It can be seen that the radial stress
is always in the increasing trend and the tangential stress is
always larger than the radial stress, which are similar to those
laws in Figures 6 and 9. As the residual cohesion increases,
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Figure 5: Postpeak zone radii and surface displacement around the tunnel under different pore water pressures.
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the maximum tangential stress increases slightly, but the
boundary between the plastic and elastic zones moves farther
away from the center of the tunnel.

5. Conclusions

Considering the pore water pressure, the stress distribution
and postpeak zone radii in the surrounding rock of a deep
tunnel in water-rich areas are deduced based on a strain-
softening model and the Mogi-Coulomb criterion. The influ-
ence of pore water pressure, intermediate principal stress,
and residual cohesion on the stress distribution and postpeak
zone radii is also discussed. The conclusions can be summa-
rized as follows:

(1) As for the stress distribution in the surrounding rock
of a tunnel, the tangential stresses are always larger
than the radial stress. The radial stress presents a
gradually increasing trend, while the tangential stress
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presents a trend of first increasing and then decreas-
ing, and the maximum tangential stress appears at
the interface between the elastic and plastic zones

(2) The postpeak zone radii and surface displacement
increase with the increasing pore water pressure
and decreasing residual cohesion. The greater the
pore water pressure, the farther the maximum tan-
gential stress is from the center of the tunnel. Resid-
ual strength has little effect on the maximum
tangential stress

(3) Because of the neglect of intermediate principal stress
in the Mohr-Coulomb criterion, the postpeak zone
radii, surface displacement, and maximum tangential
stress solved by the Mohr-Coulomb criterion are all
larger than those solved by the Mogi-Coulomb crite-
rion. Therefore, opportune consideration of the
intermediate principal stress can lead to a more rea-
sonable tunnel support design
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