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As the energy consumption of residential building takes a large part in the building energy consumption, it is important to promote
energy efficiency in residential building for green development. In order to evaluate the energy consumption of residential building
more effectively, this paper proposes a combined prediction model based on random forest and BP neural network (RF-BPNN). To
verify the prediction effect of the RF-BPNN combined model, experiments were performed by using the energy efficiency data set in
the UCI database, and the model was evaluated with five indicators: mean absolute error, root mean square deviation, mean
absolute percentage error, correlation coefficient, and coincidence index. Compared with the random forest, BP neural network
model, and other existing models, respectively, it is proven by the experimental results that the RF-BPNN model possesses
higher prediction accuracy and better stability.

1. Introduction

Global warming has become an important environmental
problem that needs to be solved urgently worldwide. Some
data shows that the average temperature has increased by
0.74°C in the last 10 decades, and the temperature increase
rate in the past 5 decades is twice that of the past 100 years
[1]. Climate change severely affects human life and health.
The main cause of climate change is that human beings emit
a large amount of greenhouse gases into the air, and the
sources of these gases are mainly the energy consumption
of transportation, industry, and building. With the develop-
ment of urbanization, the energy consumption of construc-
tion has increased significantly. According to the report
Buildings and Climate Change: Summary for Decision-
Makers published by the United Nations Environment
Programme in 2009, building energy consumption accounts
for 40% of all global energy consumption, and one-third of
global greenhouse gas emission is related to building energy
consumption [2]. It is reported that building energy con-

sumption in Europe and North America has increased at a
rate of 1.5% and 1.9%, respectively, from 1999 to 2004 [3].
In China, the growth rate in building energy consumption
is even more dramatic with an annual growth rate of 10%
in the past 2 decades [4]. The increasing building energy
consumption has a serious impact on human’s living envi-
ronment. One of the ways to reduce the extra energy con-
sumption effectively is to adopt a building design that is
energy efficient so that the interior environment of the
construction is comfortable and the energy consumption is
effectively reduced. In The 13th Five-Year Plan for Economic
and Social Development of the People’s Republic of China,
China has determined that the green building area will be
increased by more than 2 billion square meters at the end
of the period of 2016 to 2020; therefore, the building indus-
try, which is one of the largest energy-consuming industries,
is facing a great challenge [5].

Buildings include commercial buildings, office buildings,
and residential buildings. The unit energy consumption area
of residential buildings is small, but the total amount is large;
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thus, it cannot be ignored. For residential buildings, energy
consumption is mainly due to the use of heating, ventilation,
and air conditioning systems (HVAC) [6]. The parameters
that affect the energy consumption of residential building
are the environment and the structure of the house. Environ-
mental parameters include temperature, humidity, intensity
of sunlight exposure, etc. The structure of the building
includes the relative compactness (RC), surface area (SA),
wall area (WA), roof area (RA), overall height (OH), orienta-
tion (O), glazing area (GA), and glazing area distribution
(GAD). These factors have influence on the energy-saving
performance of buildings by affecting the heating load (HL)
and cooling load (CL) of buildings. HL and CL are energy
assessment methods that increase or remove part of the
thermal energy from the room through the HVAC system
to maintain the comfort of the indoor environment [7].
Therefore, accurate prediction of HL and CL is very impor-
tant for designing energy-efficient buildings.

Recently, many scholars have proposed simulation tools
to predict the HL and CL of buildings. Evcil [8] estimated
the energy consumption of houses in Cyprus, Turkey, by
calculating the average specific heat loss coefficient of houses
in this region. Koo et al. [9] used the finite element theory to
estimate the energy consumption of residential buildings. Li
et al. [10] estimated the energy consumption of residential
buildings in Chongqing City in China by taking the structure,
weather conditions, and the age of the house into account.
Simson et al. [11] established an overheating assessment
method for a single-zone model, multizone apartment
model, and multizone building model, which can dynami-
cally and timely simulate the energy consumption of residen-
tial buildings. With the development of artificial intelligence
technology, more and more researchers tend to use artificial
intelligence methods to predict energy consumption, such
as artificial neural network (ANN) [12–14], random forest
(RF) [15], and Extreme Learning Machine (ELM) [16]. In
residential building, the complex nonlinear relationships
among the features affecting building energy consumption
determine the prediction results of building energy con-
sumption. Machine learning methods can solve nonlinear
problems well, and typical machine learning methods mainly
include decision tree (DT), K-nearest neighbor (KNN), sup-

port vector machine (SVM), BP neural network (BPNN),
random forest, etc., whereas all of the single models have
advantages and disadvantages and the advantages and disad-
vantages of each machine learning algorithm are listed in
Table 1.

Different prediction methods reflect the changing trend
of the objects and their influencing factors from different
aspects; meanwhile, different information will be provided
according to their respective principles. Therefore, any single
prediction method is faced with the fluctuation of incomplete
information and high prediction accuracy [20]. To overcome
the problems that single machine learning models are prone
to overfitting and sensitive to noisy data and have low predic-
tion accuracy, Chou and Bui [7] proposed a combined model
of SVR+ANN (support vector machine+artificial neural net-
work). Their experimental results showed that the proposed
SVR+ANN combined model has higher accuracy and is
more efficient compared with the single models SVR and
ANN. Kumar et al. [16] improved the Extreme Learning
Machine (ELM) to obtain OSELM (Online Sequential
ELM) and B-ELM (Bidirectional ELM) and combined these
two methods to predict residential energy consumption.
The above models have obtained satisfactory results for the
accuracy of residential building energy consumption pre-
diction. However, for energy saving and emission reduc-
tion in buildings, more accurate methods are needed to
estimate building energy consumption, which can be used
as a reference for building engineers to design energy-
saving buildings.

The energy consumption of residential buildings is
affected by the area of the house, the orientation of the house,
the relative compactness of the house, and other factors.
Meanwhile, the data distribution is complex with more
discrete attribute variables and noisy data. As shown in
Table 1, the BP neural network and random forest are more
suitable for residential energy consumption prediction as
they can handle nonlinear problems and are insensitive to
noisy data compared with other machine learning algo-
rithms. But it is pitiful that there is almost no research which
combines the RF method and the BPNN method to predict
building energy consumption in the current research. In
order to improve the accuracy of machine learning models

Table 1: Comparison of the advantages and disadvantages of machine learning algorithms.

Algorithm Advantages Disadvantages

DT [17]
Simple structure; suitable for handling large amount of data;

fast running speed
Not easy to deal with missing data and prone to overfitting;
ignore the association between attributes in the data set

KNN [17] No requirement for data distribution, faster training phase
Not easy to find the relationship between features; large

calculation amount and slow speed

SVM [18]
Solve small sample and nonlinear problems; better handling

of high-dimensional data; better generalization ability

Poor interpretation of the high-dimensional mapping ability
of kernel functions, especially radial basis kernel functions;
more sensitive to missing data values; longer training time

BPNN [17, 18]
Strong learning ability; strong robust and fault-tolerant to

noisy data; can handle nonlinear problems well
Difficult to determine the network structure; more

parameters; objectiveness of the selection of training data

RF [19]
Can handle higher dimensional problems with higher

prediction accuracy; insensitive to noisy data and less prone
to overfitting

Belong to the black box model; difficult to explain the
internal operation mechanism
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in predicting building energy consumption, RF and BPNN
are combined in this paper to obtain the RF-BPNN model,
and the energy consumption of heating and cooling systems
in different residential buildings in the energy efficiency data
set in UCI is predicated. The selection of the appropriate
weighted average coefficients of a single model in the com-
bined model is also a key issue which will affect the model
performance. Compared with the arithmetic average [21]
and induced ordered weighted averaging (IOWA) [22], the
variance-covariance (VC) [23] has better robustness. There-
fore, in this paper, the VC is used to combine RF and BPNN
to solve the problem of the dynamic weight allocation of a
single model.

2. Models and Methods

2.1. Benchmark Prediction Model

2.1.1. Random Forest (RF). The random forest (RF) evolved
from a classification and regression tree (CART), which is a
collection of many trees. The CART method is a powerful
nonlinear machine learning method with simple principle,
which usually yields more accurate prediction results. Using
a dichotomous recursive partitioning method, CART splits
the sample set into two subsets so that there will be two
branches at each nonleaf node above. The training process
of RF is the same as in CART, with the difference that a ran-
domly selected subset of candidate variables can be used to
select the best variables for each segmentation. Being flexible,
robust, usable, and efficient, RF can be used for analysis such
as classification, regression, prediction, and clustering [24].
The model has been widely used in recent years due to its
obvious advantages in parameter optimization, variable
ranking, and subsequent variable analysis and interpretation
[25–27]. Many experiments have shown that the RF algo-
rithm can get better prediction results in many different
applications [28]. However, the random forest belongs to
the black box models; therefore, researchers cannot under-
stand the internal operating mechanism of the random for-
est. Besides, the random forest is sensitive to noise.

2.1.2. BP Neural Network (BPNN). The artificial neural net-
work (ANN) is a supervised machine learning algorithm pro-
posed earlier. ANN is based on biological learning and has a
structure similar to the human nervous system. A typical
ANN structure envelops three layers, including an input
layer, implicit layer, and output layer. In ANN, the BP neural
network (BPNN) is one of the widely used neural networks,
which is a multilayer feedforward neural network with
backpropagation by error. During the training process, the
connection weights and thresholds between neurons are con-
tinuously adjusted until a set target value is reached. Since the
BP neural network can handle a large number of samples and
can deal with nonlinear problems effectively and quickly, it is
widely used in the fields of disease diagnosis [29, 30], traffic
flow prediction [31], and service quality evaluation [32].
However, there is an obvious drawback in using BPNN alone
to predict. Namely, the BP neural network is subjective in the
selection of training samples with poor prediction accuracy

and scalability. When solving problems with a larger scale
and more features, it cannot get a higher accuracy rate.
The main solution is to integrate models which can signif-
icantly improve the generalization ability of the BP neural
network by integrating multiple machine learning models
together [33].

2.2. RF-BPNN-Based Combined Prediction Model of Energy
Consumption. The prediction results of a single machine
learning method are not accurate, and in order to make use
of the advantages as well as overcome the shortcomings of
a single model, this paper combines the random forest (RF)
and BP neural network (BPNN) together to obtain the
RF-BPNN model. Actually, the combined model is a hetero-
geneous integration model which combines and supplements
the classification information provided by multiple single
models through integrated thought and finally obtains an
integration model. Therefore, both the prediction accuracy
and generalization performance of the combined model can
be further improved theoretically. The RF-BPNN model
refers to a combined model obtained by weighted combina-
tion of the RF model’s and the BPNN model’s respective
building energy consumption prediction results. The scope
of application of the BF-BPNN model and the single model
(RF model, BPNN model) is the same.

The flowchart of the RF-BPNN combined model for pre-
dicting building energy consumption is shown in Figure 1.
The specific process is as follows.

Step 1. Preprocessing of raw data of residential building
energy consumption. Data preprocessing includes data nor-
malization and data set partition

(1) Data normalization. The input data is normalized in
order to eliminate the dimension of the original data.
This article applies the widely used standard devia-
tion standardization method. And the normalization
process is shown in

x∗ = x − �x
σ

: ð1Þ

In Equation (1), x ∗ refers to the normalized data, x
denotes the original data, �x refers to the mean of the
data, and σmeans the standard deviation of the data.

(2) Data set partitioning. In order to test the generaliza-
tion ability of the model, the data set is divided into
a training set and test set with a ratio of about 9 : 1.
The training set is used to estimate the model, and
the test set is used to test the performance of the
model

Step 2. The random forest (RF) model and BP neural network
(BPNN) model are, respectively, used to predict the residen-
tial building energy consumption.
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(1) Prediction of energy consumption in residential
buildings through the random forest. The specific
process is as follows

(i) Determine the number of decision trees in the
random forest N . A random forest is a collection
of many decision trees

(ii) Select n samples from the training set by the
bootstrap method and select k attributes among
all attributes

(iii) Select the optimal segmentation attribute. In the
regression problems, the segmentation principle
is the sum of error squares

(iv) Establish the CART decision tree

(v) Keep iterating processes (ii)–(iii) until all the
trees in the random forest have split. Each deci-
sion tree will have a prediction result of a test set,
and the average of the prediction results of all
decision trees will be taken as the random forest
prediction results

(2) Prediction of energy consumption in residential
buildings through the BP neural network. The BP
neural network is usually a three-layer network struc-
ture: input layer, hidden layer, and output layer. The
structure of the BP neural network is shown in
Figure 2

In this figure, ðx1, x2,⋯,xnÞ refer to the input sample of
energy consumption data sets. ðy1, y2Þ refer to the heat load

BPNN
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Energy consumption data
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Getting the model weight

Integration of the model
prediction

VC weight
distribution 

Construction of the system
model

RF initialization

RF training

End condition
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RF
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True
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True
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and the test sets

Prediction result of the
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network structure
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and thresholds
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error
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Figure 1: RF-BPNN energy consumption prediction flowchart.
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Figure 2: The structure of the BP neural network.
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of two output variables for energy consumption prediction,
respectively. The specific steps of the BP neural network for
energy consumption prediction are as follows.

(i) Determine the structure of the BP neural network.
The structure of the BP neural network mainly refers
to the number of neurons in the hidden layer

(ii) Determine the connection of weights w and thresh-
olds b. The neurons, which exist in the input and
implicit layers and the implicit and output layers,
are fully connected, and each connection has a
corresponding weight wi. Moreover, the threshold
b is set to fit the data better

(iii) Calculate the training error. If the error between the
training value and the real value is not within a rea-
sonable range, it has to return back to step (ii) until
the training error is within a reasonable range

(iv) Output the optimal weight matrix after training,
apply it to the test set, and output the prediction
results

Step 3. Combine the prediction results of the random forest
and BPNN energy consumption obtained in Step 2 to obtain
the final energy consumption prediction results. Given that
residential buildings are characterized by a small area, large
total volume, and various types, the single machine learning
model cannot effectively predict the energy consumption of
residential buildings. Combined prediction models can make
use of the advantages of the single models to improve the pre-
diction accuracy. The prediction results of different model
combination methods vary greatly. The advantage of the
variance-covariance (VC) combination method solves the
dynamic weight assignment problem; namely, the optimal
combination of weight coefficients can be found, and thus,
it can improve the robustness and prediction accuracy of
the model.

The variance of each prediction model is calculated by
the following equation.

δi =
1
n

e1 −�eð Þ2 + e2 −�eð Þ2+⋯+ en −�eð Þ2� �
: ð2Þ

In Equation (2), n denotes the number of training sam-
ples, e1, e2,⋯en represents the absolute percentage error of
each training sample, and �e refers to the average absolute
percentage error of all training samples.

The dynamic weights for each model are calculated as
follows.

w1 =
1

δ1 ∗ 1/δ1 + 1/δ2ð Þ½ � , ð3Þ

w2 =
1

δ2 ∗ 1/δ1 + 1/δ2ð Þ½ � : ð4Þ

The energy consumption prediction result of the com-
bined model is obtained by multiplying the weights obtained

from the above equation with the corresponding energy
consumption prediction values and then summing the
values.

p =w1 ∗ p1 +w2 ∗ p2: ð5Þ

In Equation (5), p denotes the energy consumption
prediction results of the combined model and p1, p2 refers
to the energy consumption prediction results of the two
single models, respectively. To obtain better adaptability
of the combined energy consumption prediction results,
corresponding weights are dynamically adjusted through
different training and testing results.

3. Empirical Results and Analysis

All experiments in this section are implemented in a unified
experimental environment. In the experiments, the operating
system is Windows 7, the CPU is Intel 1.60GHz with 4GB
RAM, and the programming tool is PyCharm 2018.2.

3.1. Data Description and Statistical Analysis. To verify the
effectiveness of the proposed RF-BPNN combined model
for predicting energy consumption in residential buildings,
the energy efficiency data set from the UCI, an authoritative
database for machine learning, was used for the experiments.
The energy efficiency data set consists of 768 data, 8 input
variables (X1-X8), and 2 output variables (Y1, Y2). The specific
data descriptions are shown in Table 2. More information on
the data description is given in Reference [15].

Figures 3 and 4 represent the scatter plots of HL and CL,
respectively. It can be seen from the figures that HL and CL
have similar trends and periodicity.

To further explore the strength of correlation between
each input attribute (X1-X8) and output variables (Y1 and Y2)
in residential buildings, the Pearson correlation coefficient
test was conducted, and the specific results are shown in
Table 3. It can be seen from the figures that the input features

X1(RC), X2(SA), X4(RA), and X5(OH) have strong linear
correlations with the output variables Y1(HL) and Y2(CL).
Also, some of them are highly correlated with two output
features. For example, the correlation coefficient between

X1(RC) and X5(OH) is 0.87, and the correlation coefficient
between X2(SA) and X4(RA) is also 0.87, which indicates that
there is a multicollinearity relationship between X1(RC) and

X5(OH) as well as X2(SA) and X4(RA), while the correlation
coefficient between X4(RA) and X5(OH) is -0.94, which is
because the roof area calculation needs to be calculated by
the roof height, so they show a negative correlation relation-
ship. Additionally, some of them do not have an obvious
linear correlation, such as X6(OR) and X8(GAD). Moreover,
the relationship between the input features is also compli-
cated. For example, X1(RC) and X2(SA) have a linear correla-
tion coefficient of -1, because the volume of the building (V)
is assumed to be constant here, and the relationship between
them is shown in

RC = V2/3 ⋅ SAð Þ−1: ð6Þ
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Figure 3: Heating load (HL).
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Figure 4: Cooling load (CL).

Table 2: Description of the data set.

Variables Property name Abbreviations
Number of

possible values
Minimum Maximum Average Median Standard deviation

X1 Relative compactness RC 12 0.62 1.00 0.76 0.76 0.10

X2 Surface area SA 12 2.00 808.50 670.83 661.50 91.28

X3 Wall area WA 7 3.00 416.50 318.08 318.50 45.05

X4 Roof area RA 4 4.00 220.50 176.37 147.00 45.56

X5 Overall height OH 2 3.50 7.00 5.24 5.00 1.75

X6 Orientation OR 4 2.00 6.00 3.50 4.00 1.12

X7 Glazing area GA 4 0.00 7.00 0.24 0.25 0.27

X8 Glazing area distribution GAD 6 0.00 8.00 2.81 3.00 1.56

Y1 Heating load HL 583 1.00 43.10 22.27 18.89 10.11

Y2 Cooling load CL 636 2.00 48.03 24.55 22.07 9.54
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It can be seen from Equation (6) that the relative com-
pactness of the house and the surface area of the house are
inversely related. In summary, the relationship between the
input attributes of residential buildings is very complex and
cannot be predicted accurately with simple linear models;
thus, more complex nonlinear models, such as neural net-
works, random forests, and support vector machines, are
needed.

3.2. Parameter Setting. The number of hidden layer nodes of
the BPNN has a crucial impact on the experimental results.
As there are different problems to be solved, there is no accu-
rate method to guide the selection of the appropriate number
of hidden layer nodes for BPNN. Therefore, according to the
study, a typical 3-layer BP neural network is established, in
which eight input attributes are used as input units and two
prediction targets are used as the number of neurons in the
output layer, and the method to determine the number of
nodes in the hidden layer is referred to in the literature [34]
with the following equation.

m =
ffiffiffiffiffiffiffiffiffi
n + l

p
+ a: ð7Þ

In Equation (7), n is the input layer neural unit, l refers to
the output layer neural unit, and a refers to the arbitrary con-
stant between 0 and 20. After several experiments, it is finally
determined that the best result is obtained by taking 20.
Therefore, the topology of BPNN is 8-23-2. And the remain-
ing parameters are determined by extensive experiments: the
maximum training number is 500, the minimum error rate of
the training target is 0.0001, and the training speed is 0.1.
After several experiments, when the number of random trees
in the random forest is set to 10, it predicts the best results.

To prevent overfitting, the 10-fold cross-validation
method is used and the average result of 100 repeated runs
is taken as the final result.

3.3. Model Assessment. In order to accurately assess the
predictive performance of the model, five regression model
evaluation criteria, mean absolute error (MAE), root mean
square deviation (RMSD), mean absolute percentage error
(MAPE), correlation coefficient (R), and index of agree-

ment (IA), were used. And the calculation equations are
as follows.

(1) Mean absolute error (MAE):

MAE = 1
n
〠
n

i=1
yi − ŷij j: ð8Þ

(2) Root mean square deviation (RMSD):

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
yi − y∧ið Þ2

s
: ð9Þ

(3) Mean absolute percentage error (MAPE):

MAPE = 1
n
〠
n

i=1

yi − ŷij j
yi

× 100%: ð10Þ

(4) Correlation coefficient (R):

R = ∑n
i=1 ŷi − �yð Þ yi − �yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1 y∧i − �yð Þ2∑n

i=1 yi − �yð Þ2
q : ð11Þ

(5) Coincidence indicator (IA):

IA = 1 − ∑n
i=1 y∧i − yið Þ2

∑n
i=1 y∧i − �yj j + yi − �yj jð Þ2 : ð12Þ

In abovementioned equations, n refers to the number of
samples in the test set, yi refers to the true value, �y denotes
the average of the true value, and ŷi means the predicted
value. MAE, RMSD, and MAPE all indicate the error
between the predicted and true values, so the smaller the
value, the better the model. R denotes the degree of correla-
tion between the predicted value and the true value, and the
larger the value, the stronger the correlation between them.
In addition, when R = 1, it means that the predicted value is

Table 3: Pearson correlation coefficient.

X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2

X1 1.00 -1.00 -0.26 -0.87 0.87 0.00 0.00 0.00 0.62 0.65

X2 -1.00 1.00 0.26 0.87 -0.87 0.00 0.00 0.00 -0.62 -0.65

X3 -0.26 0.26 1.00 -0.19 0.22 0.00 0.00 0.00 0.47 0.42

X4 -0.87 0.87 -0.19 1.00 -0.94 0.00 0.00 0.00 -0.80 -0.80

X5 0.87 -0.87 0.22 -0.94 1.00 0.00 0.00 0.00 0.86 0.86

X6 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.02

X7 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.19 0.32 0.29

X8 0.00 0.00 0.00 0.00 0.00 0.00 0.19 1.00 0.07 0.05

Y1 0.62 -0.62 0.47 -0.80 0.86 0.00 0.32 0.07 1.00 0.97

Y2 0.65 -0.65 0.42 -0.80 0.86 0.02 0.29 0.05 0.97 1.00
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completely correlated with the true value. Namely, there is a
linear relationship when the viability is 1. According to Equa-
tion (12), IA is to eliminate the effects of variable dimension

for comparison between different models, which usually has
a value between 0 and 1. For almost perfect models, IA will
generally be close to 1 [35, 36].
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3.4. Analysis of Results. To fully illustrate that the RF-BPNN
combined model has higher accuracy than a single model in
predicting building energy consumption, the relative accu-
racy of the prediction results of the two test sets (HL and
CL) is compared, and the results are shown in Figures 5
and 6.

As can be seen in Figures 5 and 6, the volatility of the sin-
gle models RF and BPNN is greater than that of the com-
bined model RF-BPNN, especially in predicting CL. The
VC combination method is used to solve the dynamic weight
assignment problem, and these models are combined to
obtain the RF-BPNN model. The combined weights of the
single models of RF and BPNN are 0.236 and 0.764, respec-
tively. And the combination results get better adaptability
of the training results by dynamically adjusting the corre-
sponding weights according to different training results.
Therefore, the volatility of RF-BPNN is the least, which indi-

cates that the prediction results of RF-BPNN are more accu-
rate compared with RF and BPNN.

To further compare the prediction accuracy of the pro-
posed combined model RF-BPNN with that of the single
models RF and BPNN, the regression model performance
evaluation methods introduced in Section 3.3 were applied,
respectively, and the results are shown in Table 4 with the
best model performance results indicated in bold.

As can be seen from Table 4, in terms of the prediction
result error—MAE and RMSE, the prediction result of BPNN
is the worse and that of RF-BPNN is better. In terms of the
correlation coefficient R, RF-BPNN obtained the largest
result, indicating that the predicted value of RF-BPNN has
the strongest correlation with the true value. Finally, in terms
of the evaluation criterion IA, RF-BPNN also obtained the
largest value, which is closer to 1, indicating that this model
is almost perfect and the prediction accuracy is relatively

Table 4: Comparison of prediction results of RF, BPNN, and RF-BPNN models.

Evaluation criteria RF BPNN RF-BPNN

HL

MAE 0:3243 ± 0:0384 0:3451 ± 0:0475 0:3199 ± 0:0900
RMSE 0:4870 ± 0:0679 0:4799 ± 0:0685 0:4550 ± 0:0601

MAPE (%) 1:3971 ± 0:0019 1:6306 ± 0:0031 1:4591 ± 0:0023
R 0:9988 ± 0:0004 0:9989 ± 0:0004 0:9990 ± 0:0003
IA 0:9994 ± 0:0002 0:9994 ± 0:0004 0:9995 ± 0:0001

CL

MAE 0:9783 ± 0:1472 0:8101 ± 0:1309 0:7765 ± 0:1212
RMSE 1:6338 ± 0:2200 1:1911 ± 0:2092 1:1614 ± 0:1841

MAPE (%) 3:3800 ± 0:0042 3:2300 ± 0:0050 3:0000 ± 0:0043
R 0:9853 ± 0:0039 0:9919 ± 0:0003 0:9924 ± 0:0026
IA 0:9922 ± 0:0020 0:9958 ± 0:0016 0:9960 ± 0:0013

Note: the results in the table represent the mean of the results of 100 repeated runs and standard deviation.
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Figure 7: Comparison of HL’s true value and predicted value.
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high. In terms of the standard deviation of the results of 100
runs, except for MAE and MAPE, RF-BPNN has the smallest
standard deviation, which indicates that this model is more
stable. Overall, the combined model RF-BPNN has more
accurate and stable prediction results than the single models
RF and BPNN, and this advantage of RF-BPNN is more obvi-
ous especially in the prediction of CL.

Figures 7 and 8 represent the comparison of the true
values of HL and CL with the predicted values of each model,
respectively. The black dots in the figures indicate the pre-
dicted values of the BPNN model, the green squares refer to
the predicted values of RF, the red triangles refer to the pre-
dicted values of the combined RF-BPNN model, and the
black lines denote y = x. Namely, the closer the predicted
values are to the y = x line, the more accurate the prediction
results are.

As seen in Figure 7, almost all the points are close to the
y = x straight line, but the RF-BPNN model gets the largest R
of 0.9990. The advantage of the RF-BPNN model is more
obvious in Figure 8, where the red triangles are almost all
gathered in the y = x straight line, which indicates that the
RF-BPNN model has the most accurate prediction results.

In addition, to further verify the effectiveness of the RF-
BPNN method proposed in this paper, the experimental
results obtained in this paper are compared with the results
of existing models. Because the results of the existing models
are not publicly available, the results from the original litera-
ture are cited. And the results of the comparison are shown in
Table 5, and the best model performance is indicated in bold.

As can be seen in Table 5, as far as HL prediction is
concerned, the prediction results of the SVR+ANN model
proposed in the literature [7] have the smallest MAE and
RMSE values of 0.3000 and 0.4280, respectively, but the eval-
uation criteria MAE and RMSM obtained by the RF-BPNN
model are 0.3199 and 0.4550, respectively, whose numerical
gap is very small from that of the SVR+ANN. The other
methods obtained MAE and RMSE which differ greatly from

the results of SVR+ANN, especially the IRLS (iteratively
reweighted least squares) method in the literature [15] that
obtained very poor results, which further indicates that the
common regression methods are not applicable to the
prediction of building energy HL and CL. In terms of the
indicator MAPE, the HYBRID-LIN method proposed in
the literature [6] predicts more accurate results. For MAE,
RMSE, and MAPE of CL prediction results, RF-BPNN
obtains the smallest values. Overall, RF-BPNN has a higher
prediction accuracy compared to the existing models.

4. Conclusion

Recently, in order to effectively curb global warming, China
has put forward new requirements for energy saving and emis-
sion reduction in succession. Building energy consumption,
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Figure 8: Comparison of the true and predicted values of CL.

Table 5: Comparison of RF-BPNN with existing model results.

Methods MAE RMSE MAPE (%)

HL

IRLS [15] 2.1400 3.1400 10.0900

SVR [16] 0.4320 0.6100 —

CART [16] 0.4370 0.8000 —

ANN-SVR [7] 0.3000 0.4280 1.5570

HYBRID-LIN [6] 0.5100 0.7874 0.4700

KNN 1.9529 2.3329 8.4504

RF-BPNN 0.3199 0.4550 1.4591

CL

IRLS [15] 2.2100 3.3900 8.4100

SVR [16] 0.8900 1.6470 —

CART [16] 1.1570 1.8410 —

ANN-SVR [7] 0.973 1.5660 3.4550

HYBRID-LIN [6] 1.1800 2.0372 3.3300

KNN 1.8193 2.2651 7.1413

RF-BPNN 0.7765 1.1614 3.0000

10 Geofluids



the main cause of climate change, is facing great challenges.
Therefore, it is very important to predict building energy
consumption accurately. To this end, this paper predicts
the heating and cooling energy consumption of different
residential buildings in the energy efficiency data set of the
UCI database by proposing the RF-BPNN combined model.
The 10-fold cross-validation method is applied to prevent
overfitting, and the average result of 100 model runs is used
as the final prediction result to eliminate the effect of ran-
dom data selection on the generalization ability of the
model. Five model evaluation metrics which include mean
absolute error, root mean square deviation, mean absolute
percentage error, correlation coefficient, and coincidence
index are applied to verify the performance of the RF-
BPNN combined model. The experimental results show that
the RF-BPNN combined model proposed in this paper can
accurately predict the HL and CL of residential building
energy consumption compared with the prediction results
of the single RF and BPNN models. In addition, the advan-
tages of the RF-BPNN combined model are further illus-
trated by comparing the prediction results with those of
existing models (Table 5). It is demonstrated that the RF-
BPNN combined model is easy to apply and has great value
in building energy consumption.

Data Availability

Statistics used in this paper are from the UCI. The data
can be downloaded from http://archive.ics.uci.edu/ml/
datasets/Energy+efficiency.
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