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Coal bump prediction is one of the key problems in deep coal mining engineering. To predict coal bump disaster accurately and
reliably, we propose a depth neural network (DNN) prediction model based on the dropout method and improved Adam
algorithm. The coal bump accident examples were counted in order to analyze the influencing factors, characteristics, and
causes of this type of accidents. Finally, four indexes of maximum tangential stress of surrounding rock, uniaxial compressive
strength of rock, uniaxial tensile strength of rock, and elastic energy of rock are selected to form the prediction index system of
coal bump. Based on the research results of rock burst, 305 groups of rock burst engineering case data are collected as the
sample data of coal bump prediction, and then, the prediction model based on a dropout and improved Adam-based deep
neural network (DA-DNN) is established by using deep learning technology. The DA-DNN model avoids the problem of
determining the index weight, is completely data-driven, reduces the influence of human factors, and can realize the learning
of complex and subtle deep relationships in incomplete, imprecise, and noisy limited data sets. A coal mine in Shanxi Province
is used to predict coal bump with the improved depth learning method. The prediction results verify the effectiveness and
correctness of the DA-DNN coal bump prediction model. Finally, it is proved that the model can effectively provide a scientific
basis for coal bump prediction of similar projects.

1. Introduction

Coal bump is a dynamic phenomenon characterized by sud-
den, rapid, and violent destruction of coal (rock) around
roadway or mining face due to the instantaneous release of
elastic deformation energy [1]. This kind of disaster is a bot-
tleneck problem in underground mining engineering, which
directly threatens the safety of construction personnel and
equipment and then seriously affects the project progress.
Therefore, the prediction of coal bump is very important.
Prediction is the core of coal bump prevention and control.
Accurate and reliable prediction of high-intensity coal bump
disaster is to effectively avoid and control it [2]. The predic-
tion of coal bump has become a research hotspot in the fields
of large-scale underground geotechnical engineering and
deep coal mineral resources mining.

The current research on prediction of coal bump can be
generally divided into three categories: The first category is
the criteria established on the basis of coal bump mecha-
nism, such as Russense criterion, Barton criterion, Turchani-
nov criterion, and Hoek criterion [3]. The second category is
the prediction method based on field measurement, mainly
including the microgravity method [4], acoustic emission
method [5], and microseismic method [6]. The third type
is the prediction method considering the influence of various
factors. The third kind of method considers the problems
relatively comprehensively and has good guiding signifi-
cance for engineering practice. In recent years, this kind of
method has attracted extensive attention of scholars. The
third method is divided into two subcategories: (1) compre-
hensive prediction method based on coal bump index crite-
rion. Among them, Tan [7] proposed a prediction method
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for comprehensively judging the possibility and intensity of
coal bump based on fuzzy mathematics theory. Adoko
et al. [8] and Wang et al. [9] conducted in-depth research;
prediction models based on fuzzy mathematics theory are
established, respectively, but the determination of index
weight in this method depends on subjective factors. Hu
et al. [10] established an improved matter-element extension
model for coal bump intensity prediction, which is difficult
to predict mixed and intermediate coal bumps. Chen et al.
[11] established the prediction model of ideal point method
by calculating the index weight through the combination
weighting method, but the ideal point method is only an
evaluation and analysis method, and it is necessary to deter-
mine reasonable evaluation factors and ideal points when
using. Hu et al. [12] applied the combination weight to
assign weight to the index and established the coal bump
grade preside model based on the approximate ideal solution
ranking method. This method is difficult to determine the
index weight under the condition of multiple factors. Li
et al. [13] proposed an improved cloud model to predict coal
bump by fusing the index weights through cloud atomiza-
tion. The prediction accuracy will be reduced for the indexes
that do not obey the normal distribution. (2) The compre-
hensive prediction method of coal bump based on the sam-
ple data of examples, among which the representative ones
are as follows: Gong et al. [14] established a Bayesian dis-
criminant model for coal bump prediction, and the predic-
tion accuracy of the model is easily affected by the
representativeness of the original data and the sample size.
Luo and Cao [15] used principal component analysis to cal-
culate the weight matrix and established a weighted distance
discrimination model. This method is greatly affected by the
representativeness and accuracy of the original data. Wu
et al. [16] established the coal bump prediction model of
least squares support vector machine based on particle
swarm optimization algorithm. The kernel function is the
core of support vector machine, and its selection directly
affects the prediction accuracy and calculation time. Pu
et al. [17] established a coal bump prediction model based
on decision tree. The decision tree is suitable for high-
dimensional data, but it is easy to over fit.

The above methods and theories of coal bump predic-
tion have achieved certain prediction results from different
angles, which have played a great role in promoting the
research of this problem. However, due to the complexity
of coal bump mechanism, the diversity of influencing fac-
tors, and the defects of various methods, there are still the
following deficiencies in practical engineering application:
(1) the main ideas of most methods belong to comprehen-
sive evaluation, and the core problem is the determination
of the weight of each index. However, the determination of
the weight will inevitably be subjective and arbitrary; the
rationality of weight is the key to the reliability of coal bump
prediction results. (2) Coal bump prediction is a complex
nonlinear problem. The occurrence of coal bump is the
result of the joint action of many factors. Some of these
influencing factors are determined and quantitative, while
others are random, qualitative, and fuzzy. It is difficult to
describe comprehensively and accurately by using mathe-

matical or mechanical methods and theories, which is
greatly affected by human factors and one sidedness. There-
fore, it is still necessary to explore new prediction methods
and carry out the research on coal bump intensity classifica-
tion prediction. In 1994, Feng [18] first proposed an adap-
tive pattern recognition method for rock burst prediction
by using neural network theory, and then, some scholars
also carried out research in this field. Jia et al. [19], Roohol-
lah and Abbas [20], and Wu et al. [21] established general-
ized regression neural network, emotional neural network,
and probabilistic neural network coal bump prediction
models, respectively. Coal bump is a special form of mine
pressure manifestation. The prediction of the breeding
mechanism, time of occurrence, and intensity of coal bump
has been an outstanding problem. The key to effective pre-
vention and control of coal bump lies in the research of
monitoring and early warning of coal bump. The current
mine monitoring mostly uses microseismic for global moni-
toring. For the monitoring of mine seismic and impact
ground pressure at the mining face, most of the traditional
monitoring means such as drill chip method and stress mon-
itoring are used at present. The accuracy of the prediction
needs to be enhanced, and the development and arrange-
ment of the monitoring system needs to be further opti-
mized. With the development of big data and artificial
intelligence technology, people gradually began to use com-
puter models to predict the impact hazard of coal bump.
However, the prediction is mostly based on geological fac-
tors and mining technology factors, as well as monitoring
data. The prediction methods and algorithms are relatively
single, and the prediction results are fixed, which is poor
guidance for the site. Further research is needed in the com-
prehensive utilization and integration analysis of the infor-
mation obtained by various techniques reflecting different
aspects of coal bump.

This paper studies the deep neural network model based
on the dropout method and improved Adam algorithm. The
model makes full use of the stronger nonlinear learning abil-
ity and deeper network depth of deep neural network
(DNN) [22]. The model avoids the problem of determining
the index weight and is completely data-driven. The qualita-
tive and quantitative analyses are effectively combined to
avoid the influence of human factors. It can mine complex
and subtle deep relationships in incomplete, imprecise, and
noisy limited data sets. Therefore, the research on the appli-
cation of depth neural network in coal bump prediction is of
great significance to expand the coal bump prediction sys-
tem and improve the ability of prediction.

2. Prediction Sample Database

2.1. Selection of Evaluation Indicators. The occurrence
mechanism of coal bump is complex, and there are many
influencing factors. The selection of indicators is the key to
prediction. Too many indicators will make it difficult to
obtain the measured values of some indicators and increase
the complexity of the prediction process. Too few indicators
cannot reflect the comprehensiveness of the prediction pro-
cess, resulting in the inconsistency between the results and
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the reality. The research of this paper is to determine the coal
bump prediction and evaluation index through the analysis of
three coal bump engineering examples of Qianqiu coal mine,
Zhaolou coal mine, and Wulong coal mine. The purpose of
analyzing coal bump engineering examples is to convert fuzzy
and nonquantifiable influencing factors into quantifiable
physical and mechanical indexes. At the same time, the
selected indexes should also be common, easy to measure in
practice, and recorded in previous coal bump examples.

From the in situ stress level and the location of coal
bump in the example, coal bump usually occurs in the rock
mass with high stress concentration. Therefore, the maxi-
mum tangential stress of tunnel wall surrounding rock is
selected as one of the coal bump prediction indexes. In terms
of landform, coal bump usually occurs in mountains or deep
underground projects, or in rock mass with high tectonic
stress. From the structural layout, the more irregular the
excavation section, the greater the possibility of coal bump,

and the above factors can be reflected by the maximum tan-
gential stress of the surrounding rock. In the example, the
coal bump section form is mainly tensile failure, accompa-
nied by shear failure, so the tensile strength and shear
strength of rock are selected. Through reading the existing
literature, it is found that there are few records of shear
strength in the actual coal bump example, which is difficult
to analyze. Therefore, only the tensile strength of the rock
is selected as a predictor of coal bump, and the tensile
strength is considered to represent the tensile and shear
properties of the rock.

In addition, coal bump mainly occurs in hard coal or
rock with complete structure, and the common index to
measure the hardness of coal rock is the compressive
strength of coal rock, and the compressive strength of rock
should be measured in almost any coal mass engineering.
Therefore, the compressive strength of coal is also selected
as the prediction index of coal bump. The formation of
high-energy reservoir in surrounding rock must meet two
conditions: one is that the rock mass can store large elastic
strain energy and second is that the internal stress of the
rock mass is highly concentrated. The coal bump tendency
index reflects the energy storage and release performance
of rock mass. Under the same stress conditions, the greater
the rock mass, the better the energy storage and release per-
formance of rock mass. Therefore, the coal bump tendency
index is selected as the coal bump evaluation index.

Through the above analysis, it is considered that the role
of many influencing factors in coal bump can be reflected by
the four physical and mechanical indexes of maximum tan-
gential stress, uniaxial compressive strength, uniaxial tensile
strength, and elastic energy index of surrounding rock.
Therefore, four indexes are selected as the prediction and
evaluation indexes of coal bump in this study.
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Figure 1: Schematic diagram of perceptron.
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Figure 3: Number of coal bump mines in China.
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2.2. Acquisition of Sample Data. According to the selected
evaluation indexes and based on the research results of coal
bump [23–26], 305 groups of coal bump engineering case data
are collected as the sample data of coal bump prediction. All
data samples have complete independent four factors.

3. Improved Deep Neural Network Model

In recent years, deep learning technology has attracted
extensive attention. As a deep learning model fitting com-
plex nonlinear relationships, deep neural network has not
only made a breakthrough in image classification but also
significantly improved the accuracy of speech recognition.

3.1. Deep Neural Network Model. The DNN model is derived
from the perceptron model (as shown in Figure 1). The per-
ceptron model can only be used for binary classification and
is unable to learn more complex nonlinear models. DNN is

extended based on perceptron model by adding hidden
layer, expanding activation function, and adding neurons
in output layer. The interior of DNN can be divided into
three categories: input layer, hidden layer, and output layer.
Its structure is shown in Figure 2. The outstanding feature of
DNN is that it has multiple hidden layers. Each link between
network units is a causal chain that can be learned and
trained. If the same network unit is used, DNN has far more
expression ability than shallow network and stronger ability
to deal with complex problems. Figure 3 shows the trend of
the number of coal bump mines in China according to the
China Energy Statistics Yearbook 2013. Figure 4 shows the
history of the development of machine learning theory based
on a comprehensive analysis of previous literature.

Activation function simulates the threshold activation
characteristics of human brain neurons, introduces nonlin-
ear features into DNN, and realizes the transformation from
simple linear space to highly nonlinear space. The
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Improved Adam algorithm
1. Initialization: initial learning efficiency,η = 0:001; Exponential decay rate of first-order moment and second-order moment estima-
tion, β1 = 0:9, β2 = 0:999, β1, β2 ∈ ½0, 1Þ; Small constants for numerical stability, δ = 1e − 08
2. Initialization parameter θ
3. Initialization: first order moment vector m0 = 0, second order moment vector v0 = 0; time step t0 = 0; iterative direction of
improved Adam algorithm pλ0 = 0
4. When the stop criterion is not reached
5. A small batch of m samples fx1, x2,⋯⋯ , xmg was collected from the training set
6. Calculate the gradient yi for the target gt ⟵ 1/m∇θt−1

∑iLððxi ; θÞ, yiÞ
7. t⟵ t + 1
8. Updated biased first-order moment estimation: mt ⟵ β1 ⋅mt−1 + ð1 − β1Þ ⋅ gt
9. Updated biased second-order moment estimation: vt ⟵ β2 ⋅ vt−1 + ð1 − β2Þ ⋅ gt⊙gt
10. Correct the deviation of the first moment: m̂⟵mt/ð1 − β1

tÞ
11. Correct the deviation of the second moment: v̂⟵ vt/ð1 − β2

tÞ
12. The amount of update per iteration of the improved Adam algorithm: Pt

A = m̂t/
ffiffiffiffiffiffiffiffiffiffi
v̂ + δ

p
Pt

AM ⟵ λ ⋅ Pt‐1
AM + η ⋅ Pt

A

13. Parameter update: θt ⟵ θt−1 − Pt
AM

14. end while

Algorithm 1: Steps of improved Adam algorithm.
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commonly used activation functions include sigmoid func-
tion, Tanh function, ReLu function, and softplus function.
Considering the advantages of fast convergence and strong
generalization ability of model training using ReLu function
[27], ReLu is selected as the hidden layer activation function
in this paper, and its function form is as follows:

f l zl
� �

=max 0, zl
� �

: ð1Þ

The activation function of the output layer is determined
according to the problems to be solved. Coal bump predic-
tion belongs to the classification task, which usually adopts
softmax function, and its function form is as follows:

u = hLk =
exp zLk

� �
∑n

i=1exp zLi
� � , ð2Þ

where hk
L is the output of the kth neuron in the output layer.

Forward calculation cannot learn the best parameters
(weight and bias) based on learning samples. Therefore,
Rumelhart et al. [28] proposed the backpropagation (BP),
which outputs the parameters of each layer in turn from
the error of the predicted value and the actual value from
the output layer backwards. When using BP algorithm to
optimize parameters, for classification tasks, the loss func-
tion generally selects cross-entropy error, and its function
form is as follows:

E = −〠
N

i=1
〠
T

k=1
yki log yi

∧ k
, ð3Þ

where yki is the actual value, yi
∧k is the predicted value, N is

the learning sample number, and T is the number of
classifications.
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Figure 5: Flow chart of coal bump prediction based on improved neural network model.
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3.2. Algorithm Improvement of Neural Network Model.
Overfitting refers to the state that only the training data
can be fitted, but other data not included in the training data
cannot be well fitted. Generally, the reasons for overfitting
are as follows: (1) the model has many parameters and
strong expressiveness and (2) less training data. Since there
are few parameters in the model, only reason 2 can be con-
sidered. Considering the limitation of coal bump data, in
order to prevent overfitting in the training process of the
DNN model, this paper uses the dropout method to regular-
ize the model. The basic idea of the dropout method is to
randomly discard a certain proportion of neurons in the
input layer and hidden layer in the DNN training process.
Dropout reduces the feature extraction process of irrelevant
feature data.

The goal of DNN training is to reduce the error until the
global optimal or suboptimal solution is reached based on
stochastic gradient descent, momentum, AdaGrad, and

adaptive motion estimation (Adam). SGD is the simplest
and commonly used optimization algorithm in DNN train-
ing. Compared with SGD algorithm, Adam algorithm com-
bines the advantages of momentum algorithm and Adagrad
algorithm, automatically adjusts the learning rate, and effi-
ciently searches the parameter space. It is suitable for solving
the problem of coal bump prediction with high noise.
Although Adam algorithm theoretically solves the adaptive
problem of learning rate, Wilson et al. [29] found that Adam
algorithm not only has higher training effect but also brings
nearly half of the test error. To solve this problem, we inte-
grate the idea of momentum [30] into Adam’s algorithm,
which is more stable. The optimization and update steps of
the improved Adam algorithm are shown as Algorithm 1.

3.3. Prediction of Coal Bump Based on Improved Neural
Network Model. In this paper, the dropout method and
improved Adam algorithm are applied to the coal bump

0 20 40 60 80 100

Softplus

ReLU

Sigmoid

Tanh

Prediction accuracy (%)

Figure 6: Selection and comparison of activation functions.

Table 1: Parameters of coal bump prediction model.

Serial number Parameter Value

1 Number of neurons in input layer 6

2 Number of hidden layer neurons 32, 64, 16

3 Number of neurons in output layer 6

4 Hidden layer activation function ReLU

5 Output layer activation function Softmax

6 Loss function Cross-entropy error

7 Suppress overfitting Dropout method

8 Drop rate in dropout model P = 0:4
9 Training function Improved Adam algorithm

10 Initial learning rate η = 0:001
11 Momentum coefficient λ = 0:95
12 Error target value 0.001

13 Batch size 10

14 Training times 70
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prediction model based on DNN. The flow of the coal bump
prediction model based on DA-DNN is shown in Figure 5.
Considering the limited amount of coal bump sample data,
refer to the data set division method commonly used in
the field of deep learning; that is, the training set, verification
set, and test set are divided according to 6 : 2 : 2. Firstly, 61
groups are randomly selected from 305 groups of sample
data as the test set. The extracted data features can represent
the whole data set and are the same as those of the training
set. The remaining 244 groups of sample data are taken as
the learning samples of the DA-DNN model. During the
training process, 80% of the learning samples are taken as

the training set and 20% as the verification set. There is no
intersection between the training set and the verification
set. The training set is used for model training and updating
parameters. The validation set is used to test the accuracy of
the model, adjust the super parameters (training times,
learning rate, etc.), and monitor whether the model has been
fitted. The test set is used to evaluate the generalization abil-
ity and test the real prediction accuracy after the final train-
ing of the model.

The input layer includes 4 neurons. Comprehensively
considering the training accuracy, training time, and other
factors, according to the empirical formula, it is determined
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that the hidden layer is three layers, and the number of neuron
nodes is 32, 64, and 16, respectively. As shown in Table 1, coal
bump intensity is often divided into four levels, namely, no
coal bump (level I), slight coal bump (level II), intermediate
coal bump (level III), and strong coal bump (level IV). Consid-
ering that the input and output of the DA-DNN model are
numerical values, the above coal bump levels are coded, and
the four levels of “no rock burst”, “slight rock burst”, “interme-
diate rock burst”, and “strong rock burst” are represented by
numbers “0”, “1”, “2”, and “3”, respectively. The four neurons
in the output layer are “0”, “1”, “2”, and “3”.

The activation function of hidden layer is ReLu function.
Because coal bump prediction is a classification task, the
output layer activation function is softmax function, and
the loss function is cross-entropy error. To verify the superi-
ority of ReLu function, the prediction accuracy of test set is
taken as the verification target, which is compared with
other three common activation functions. It can be seen
from Figure 6 that the prediction accuracy of selecting ReLu
as the activation function is more than 95%, and the rest are
less than 85%. Obviously, the prediction accuracy of select-
ing ReLu function is higher.

The improved Adam algorithm is adopted in this study.
To verify the superiority of the improved Adam algorithm, it
is compared with SGD, Adam, and improved Adam. It can

be seen from Figure 7 that taking the prediction accuracy
of the test set as the verification target, when the training
times (epochs) are less than 700, the prediction accuracy of
SGD algorithm is less than 62%. When the training times
are 100, the accuracy of Adam and improved Adam algo-
rithm has reached more than 70%, while when the training
times are 300, the accuracy of improved Adam algorithm
has reached more than 95%. And it is obviously better than
Adam algorithm. Only when the training times are greater
than 700, the prediction accuracy of SGD algorithm can
reach more than 70%. As can be seen from Figure 8, the
training time of the improved Adam algorithm is signifi-
cantly lower than that of the Adam algorithm, indicating
that its loss convergence speed is better. The main parame-
ters of the DA-DNN coal bump prediction model are shown
in Table 1. In this paper, the DA-DNN algorithm is pro-
grammed in Python language, the development environ-
ment is Python 3.7, and the code implementation is based
on keras algorithm package.

4. Case Study of Coal Bumping Based on
Improved Neural Network Model

Taking a coal mine in Shanxi Province as an example, the
mining depth of the mine is 500m, there are many impact

Top coal

0.8 m

Bottom coal
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Floor carbonaceous mudstone

(a)

Stress curve

Before pressure relief
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Figure 9: Measures to prevent impact hazards. (a) Layout of tunnel floor pressure relief drilling. (b) Stress variation diagram of coal affected
by large-diameter pressure relief hole.
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dynamic phenomena during roadway excavation, and there
has been a rock burst accident, which belongs to a strong
rock burst mine. According to the prediction results of the
above indexes, it is consistent with the actual situation of
the mine. Borehole pressure relief is a method to form sur-
rounding rock fracture area by constructing large-diameter
holes on the coal wall to eliminate stress concentration and
reduce impact risk. The crushing zone formed by drilling
and unloading pressure can attenuate the vibration waves
caused by mine earthquakes, rapidly weaken the vibration
wave energy transmitted to the roadway, and protect the
roadway from vibration damage. The principle of pressure
relief by large-diameter drilling is shown in Figure 9.

During the mining of 401101 working face and the excava-
tion of central main roadway in a coal mine, the pressure is
relieved by drilling holes on both sides of the roadway. The dril-
ling direction is inclined along the coal seam, the hole spacing is
0.7m, the hole depth is 20m, and the hole is 1.2~1.5m from the
roadway floor. It can be seen from Figure 10 that the total daily
energy was in the low energy stage for five consecutive days
after the coal bump event on June 16, and the large energy
release event occurred again on June 22, but no coal bump acci-
dent was caused. Since then, the comprehensive prevention and
control scheme combined with composite support technology
and large-diameter borehole pressure relief was implemented
in the roadway, and the energy has been lower than 7:5 × 104
J for 4 consecutive days after the implementation of the scheme;
the frequency is less than 3 times, indicating that this scheme
can effectively reduce the energy stored in coal and rock mass
and its vibration frequency.

It can be seen from the above that after the comprehen-
sive prevention and control scheme is adopted in the road-
way excavation process, the occurrence frequency and

strength of coal bump are significantly reduced, while there
is no impact in the area with low stress level, indicating that
the effect of the comprehensive prevention and control
scheme has played a good control role and achieved certain
results in the prevention and control of coal bump.

5. Conclusions

(a) When the training times (epochs) are less than 700,
the prediction accuracy of SGD algorithm is less
than 60%. When the training times are 100, the
accuracy of Adam and improved Adam algorithm
has reached more than 70%, while when the training
times are 300, the accuracy of improved Adam algo-
rithm has reached more than 95%

(b) The comprehensive prevention and control scheme
combined with composite support technology and
large-diameter borehole pressure relief was imple-
mented in the roadway, and the energy has been
lower than 7:5 × 104 J for 4 consecutive days after
the implementation of the scheme; the frequency is
less than 3 times, indicating that this scheme can
effectively reduce the energy stored in coal and rock
mass and its vibration frequency

(c) After the comprehensive prevention and control
scheme is adopted in the roadway excavation pro-
cess, the occurrence frequency and strength of coal
bump are significantly reduced, while there is no
impact in the area with low stress level, indicating
that the effect of the comprehensive prevention and
control scheme has played a good control role and

0

50

100

150

200

250

Energy change after 
implementation of measures

06
.3

0

06
.2

8

06
.2

6

06
.2

4

06
.2

2

06
.2

0

06
.1

8

06
.1

6

06
.1

4

06
.1

2

Daily statistical energy
Frequency

Time (t)

En
er

gy
 (×

10
3 J)

0

5

10

15

20

25

Fr
eq

ue
nc

y

Figure 10: Variation of microseismic energy and frequency after borehole pressure relief.

9Geofluids



achieved certain results in the prevention and con-
trol of coal bump

(d) Coal bump data is growing rapidly and is being pro-
duced in large quantities in mining engineering. The
traditional data processing methods cannot adapt
gradually. It is an urgent direction to develop artifi-
cial intelligence data processing methods and use
deep learning technology to learn and mine coal
bump data
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