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A concave slope is a common type of slope. This paper proposes a simplified method to study the effect of a clay concave slope on
laterally loaded piles. The hyperbolic p-y curve model is selected as the lateral pile-soil interaction model of the concave slope.
Considering the two angles of the concave slope, the variation of the ultimate soil resistance with depth is divided into two
parts, and the ultimate soil resistance varies nonlinearly with depth. The reduction factor method and normalization method are
used to obtain the initial stiffness. The theoretical results will be compared with the calculation results of the 3D FE analysis to
prove the rationality of this method. Finally, the simplified method is used to analyze the response of laterally loaded piles under
different parameters.

1. Introduction

Pile foundation is one of the most commonly used founda-
tions in bridge engineering, offshore drillings, and offshore
wind turbines. These pile foundations are often used on
sloping ground, such as river valleys and the seabed [1, 2].
The pile foundation will be subjected to lateral loads caused
by traffic loads, lateral wind, and waves.

The bearing capacity of pile foundations depends on the
bearing capacity of the rock and soil around the pile. There
are three main approaches to study the bearing capacity of
rock and soil around the pile: theoretical methods [3, 4],
numerical simulations [5], and experimental methods [6].
In the past few decades, the p-y curve method is often used
to study the response of pile foundation bearing lateral load.
The main research includes the influence of laterally loaded
piles in flat ground and sloping ground. For the flat grounds,
many scholars and institutions proposed p-y curves for dif-
ferent types of soil [7–9]. For the sloping ground, the soil in
front of the pile is weakened, and the damage model of soil
is different from that in the horizontal ground [10–12].
Therefore, Reese et al. [13] proposed p-y curves that were
suitable for sand and clay sloping ground, respectively. Based

on the 3D FE analysis, Georgiadis and Georgiadis [14, 15]
obtained the p-y curves suitable for clay sloping ground. On
this basis, the p-y curves of clay sloping ground were pro-
posed, which considered the distance between the slope and
pile. But all the p-y methods mentioned above only consid-
ered level ground and single-angle slope.

However, due to the influence of external factors such as
rain erosion and soil accumulation, the slope has more than
two angles. Wu et al. [16] and Fan et al. [17] pointed out that
slope shapes could be roughly divided into four types, which
were the straight type with a single angle, the convex type
(the upper slope angle is smaller than the lower slope angle),
the concave type (the upper slope angle is greater than the
lower slope angle), and a mixed type.

The p-y method is widely used in engineering because of
its simple calculation and short calculation time. However,
compared to a slope with a single angle, the distribution
law of the concave slope’s ultimate soil resistance and initial
stiffness will change. But unfortunately, the existing p-y
curves of sloping ground can only consider the change law
of ultimate soil resistance and initial stiffness under a single
angle. It leads to errors in the analysis of the horizontal bear-
ing characteristics of piles using the existing p-y curve.
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Therefore, it is necessary to carry out further research on the
lateral load characteristics and calculation methods of con-
cave slope piles.

This paper focuses on giving a nonlinear analysis method
considering the bearing characteristics of the laterally loaded
pile in concave sloping ground. In this method, the pile-soil
interaction model adopts the hyperbolic p-y curve model.
And the calculation formula of the ultimate soil resistance
and the initial stiffness varying with depth in the concave
slope is given. Then, the derived p-y curve is brought into
MATLAB for a differential calculation to obtain the nonlin-
ear response of the pile under a lateral load. To prove the
correctness, the method is verified by the results of three-
dimensional finite element analysis considering the concave
clay slope. Furthermore, this article discusses the influence
of the different slope angles and upper slope height and
obtains the response law of piles under the influence of differ-
ent parameters.

2. Establish a p-y Curve of Clay Concave Slope

At present, the p-y curve method, which regards soil as a
nonlinear spring, is widely used to study the lateral load
response of the horizontal ground piles. There are many
kinds of mathematical models of the p-y curve. One of the
most widely used is the hyperbolic p-y curve [18–21]. The
expression is shown as follows:

p = y
1/kið Þ + y/puð Þ , ð1Þ

where pu =ultimate soil resistance of the soil along the pile,
Ki = initial stiffness of the foundation.

Yang [22] compared different types of p-y curves and
concluded that the hyperbolic p-y curve has the best fitting
effect with the data obtained from field experiments. There-
fore, this article adopts a hyperbolic p-y curve.

2.1. Basic Assumption. To analyze the influence of the con-
cave slope which has two angles on the horizontal bearing

characteristics of the pile, an analysis model is established,
as shown in Figure 1.

For simplicity, the following assumptions are made:

(1) The slope is stable without a sliding surface, and slope
failure and instability are not considered in the
calculation

(2) The soil resistance along the pile changes nonlinearly
with the increase in lateral displacement. When the
ultimate soil resistance is achieved, its value remains
constant as the increase in lateral displacement

(3) This article only considers concave slopes, the upper
slope angle is larger than the lower slope angle,
θ1 > θ2

2.2. Ultimate Soil Resistance of Concave Slope Varying with
Depth. For the ultimate soil resistance pu, its expression is
as follows:

pu =NpcuD, ð2Þ

where Np is the ultimate soil-resistance-bearing factor, cu is
the undrained shear strength of soil, D is the pile diameter.

Equation (3) shows that the value of Np changes nonli-
nearly with the increase in depth [14]. The initial value of
Np is Npo cos ðθÞ at the ground surface, and the maximum
value is Npu:

Np =Npu − Npu −Npo cos θð Þ� �
e −λ z/Dð Þð Þ/ 1+tan θð Þð Þð Þ: ð3Þ

The value of Npo, Npu, and λ are related to the adhesion
factor α of the pile-soil interface [23, 24]).

The adhesion factor α is the ratio of the interface shear
strength to the undrained shear strength of the soil. In this
article, α can be obtained from Figure 2 [14].

When 0 ≤ cu < 25, we have

α = 1: ð4Þ

When 25 ≤ cu < 80, we have

α = 14
11 −

3
275 cu: ð5Þ

When 80 ≤ cu < 200, we have

α = 0:5 − 1
800 cu: ð6Þ

λ is a dimensionless parameter that changes with the
adhesion factor. For smooth piles, λ is 0.55 (α = 0); for rough
piles, λ is 0.4 (α = 1):

λ = 0:55 − 0:15α: ð7Þ
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Figure 1: Analysis model of a laterally loaded pile on a concave
slope. Here, L is the length of the pile embedded in the soil, D is
the pile diameter, H0 is the lateral load on the pile head, θ1 is the
upper slope angle, θ2 is the lower slope angle, and Z1 is the upper
slope height.
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Npo is the ultimate soil-resistance-bearing factor at the
ground surface:

Npo = 2 + 1:5α: ð8Þ

Npu is the ultimate soil-resistance-bearing factor based on
the deep soil flow failure model by Randolph andHoulsby [25]:

Npu = π + 2Δ + 2 cos Δ + 4 cos Δ

2 + sin Δ

2

� �
, ð9Þ

where Δ = sin−1α.
To obtain the ultimate soil resistance along the pile in

concave sloping ground, the ultimate soil-resistance-bearing
factor Np is the key.

Jiang et al. [26] found that with the increase in the lateral
displacement of the pile in sloping ground, the stress and
strain of the soil show a wedge-shaped distribution in the

three-dimensional numerical simulation. Similarly, Georgia-
dis and Georgiadis [15] found the same rule when studying
the influence of the distance between the pile and slope on
laterally loaded piles, as shown in Figure 3.

It shows in Figure 3(a) that when the pile head deflection
is small, the soil has a damaged wedge in a shallow soil. The
sliding surface of the damaged wedge only intersects with the
level ground. Therefore, the slope will not affect the ultimate
soil resistance near the mudline. As the pile head deflection
augments, the depth of the damaged wedge increases. When
the depth of the damaged wedge reaches Zc, the sliding
surface of the wedge spreads to the slope. As shown in
Figure 3(b), when the depth of the damaged wedge is less
than Zc, the expression of the ultimate soil-resistance-
bearing factor Np is the same as that of the flat ground since
the pile is only affected by the level ground. When the sliding
surface of the damaged wedge intersects with the slope sur-
face, the ultimate soil resistance along the pile is weakened
compared to the level ground. The expression of Np needs
to consider the influence of the slope.
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Figure 2: The relationship between α and cu.

Npo

¦È

Z
c

Pile

b

Slope
(2)

(1)

(1) Effect of level ground

(2) Effect of slope

Damaged
wedge

Depth of
damaged wedge

Sliding
surface

Z

(a) (b)

Npu

Np

Figure 3: Ultimate soil resistance analytical model with the distance of piles from the crest of the slope. (a) Damaged wedge model of the
laterally loaded piles. (b) The Np curve varying with the depth.
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Georgiadis and Georgiadis [15] believed that the depth of
the damaged wedge would change with the increase of lateral
load, and it had a nonlinear relationship with the distance of
pile from the crest of the slope. When the sliding surface
intersects with the slope crest, the critical depth Zc is
expressed as follows:

Zc

D
= 8:5 − 10 log10

8 − bð Þ
D

, ð10Þ

where b indicates the distance from the pile core to the crest
of the slope. When b = 0:5D, the pile is at the crest of the
slope.

For concave slopes, this article will use the same method
to get the expression of Np, as shown in Figure 4.

Figure 4(a) shows that the sliding surface of the dam-
aged wedge intersects the slope with the angle of θ1 when
0 ≤ Z < Z2, and the ultimate soil resistance is only affected
by the upper slope. When the depth reaches Z2, the sliding
surface of the wedge intersects with the intersection of the
upper slope and lower slope. When the depth is greater
than Z2, the sliding surface intersects the slope with the
angle of θ2, and the lower slope begins to affect the ultimate
soil resistance. It is pointed out in Figure 4(b) the changing
law of Np in the concave slope with two angles. The expres-
sion of Np is only controlled by θ1 when the depth of the
damaged wedge is less than Z2. When the depth is greater
than Z2, the expression of Np is affected by θ2. It is reason-
able that the value of Np increases at Z2 relative to that of
the single-angle slope (θ1) because the lower slope increases

the volume of soil in front of the pile. To determine the
critical depth Z2, this paper adopts the modified critical
depth expression:

Z2 = 8:5 − 10 log10 8 − Z1/tan θ1ð Þð Þ + 0:5D
D

� �� �
D + Z1:

ð11Þ

Because the slope is a homogeneous medium, the expres-
sion of the ultimate soil resistance is continuous and deriv-
able when the depth increases, and there will be no sudden
change point. Therefore, when the depth reaches the critical
depth (Z2), the piecewise function of Np should be the same
value NpðZ2Þ, as shown in Figure 4(b). When the value of Np

is NpðZ2Þ, the corresponding depths are Z2 for the slope
with angle θ1 and Z3 for the slope with angle θ2. And the
difference betweenZ2andZ3is defined asX, as shown in
Figure 5.

When the depth is less than Z2, the expression ofNp1 is as
follows:

Np1 =Npu − Npu −Npo cos θ1ð Þ� �
e −λ z/Dð Þð Þ/ 1+tan θ1ð Þð Þð Þ:

ð12Þ

When the depth is greater than Z2, the expression of Np2
is as follows:
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Figure 4: Ultimate soil resistance analytical model of the concave sloping ground. (a) Damaged wedge model of laterally loaded piles on the
concave slope. (b) The Np curve along the pile on concave slope.
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Np2 =Npu − Npu −Npo cos θ2ð Þ� �
e −λ Z−xð Þð Þ/Dð Þ/ 1+tan θ2ð Þð Þð Þ,

Np Z2ð Þ =Npu − Npu −Npo cos θ1ð Þ� �
e −λZ2ð Þ/Dð Þ/ 1+tan θ1ð Þð Þð Þ,

Z3 = ln
Npu −Np Z2ð Þ

Npu −Npo cos θ2ð Þ

" #
D 1 + tan θ2ð Þð Þ

−λ
,

X = Z2 − Z3:

ð13Þ

2.3. Initial Stiffness of Concave Slope Varying with Depth.
Carter [27] proposed the expression of the initial stiffness
Kio of the clay level ground, and believed that the initial
stiffness is related to the initial elastic modulus of the soil,
Poisson’s ratio, and other factors:

Kio =
1:0EiD

1 − νs
2ð ÞDref

EiD
4

EpIp

 !1/12

, ð14Þ

where D is the pile diameter; Dref is the pile diameter reduc-
tion factor, usually taken as 1; EpIp is the bending stiffness of
the pile; νs is the Poisson’s ratio of the soil; Ei is the initial
elastic modulus of the soil.

Kondner and Robertson et al. [28, 29] proposed the equa-
tion of elasticity modulus E50 and believed that the initial
elastic modulus Ei can be related to the elastic modulus at
fifty percent of the failure stress E50:

E50 = Ei 1 −
Rfσ

σf

 !
, ð15Þ

where σ is deviatoric stress; E50 is elasticity modulus; σf is
deviatoric failure stress; Rf is the ratio of deviatoric failure
stress over deviatoric ultimate stress, usually taken equal to
0.8.

Setting Rf = 0:8, σ/σf = 0:5, and νs = 0:5, equation (14)
becomes

Z
1

Kio

(2)

6D

𝜇 (𝜃1)Kio 𝜇(𝜃2)Kio

𝜃 1

(1)

(3)

𝜃 2

Figure 7: Initial stiffness model of concave sloping ground. (a) The concave sloping ground under 3 cases. (b) The value of initial stiffness
under 3 cases.
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Kio = 2:3DE50
E50D

4

EpIP

 !1/12

: ð16Þ

Equation (16) reveals that the initial stiffness of the foun-
dation is only related to the characteristics of the soil and the
pile. The normalization method is commonly used to obtain
the initial stiffness expression of the sloping ground. On the
basis of the initial stiffness expression of the level ground,
many scholars adopt the reduction factor μ to establish the
initial stiffness expression of the sloping ground [14, 30]:
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Figure 9: Deflection curve of pile head for comparison.

Table 1: Summary of three-dimensional numerical analysis
conditions.

L (m) D (m) θ1 θ2 Z1 (m)

Case 1 20 1 40° 0° 1, 3

Case 2 20 1 50°, 40° 30° 2

Case 3 12 1
40° 30° 1

45° 30° 2

Figure 10: Three-dimensional model of the pile.

Figure 11: Three-dimensional model of concave slope.
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μ = Ki

Kio
≤ 1, ð17Þ

where Ki is the initial stiffness of the sloping ground; Kio is
the initial stiffness of the level ground.

When studying the influence of the initial stiffness of the
sloping ground, Georgiadis and Georgiadis [14] proposed
that the initial stiffness reduction factor is related to the depth
of the slope, as shown in equation (18). The reduction factor
μ changes linearly with the increase of depth, as shown in
Figure 6. For slopes at an arbitrary angle, when the depth Z
is less than 6D, the slope weakens the initial stiffness, and
the degree of weakening decreases when the depth becomes
greater. When the depth is greater than 6D, the initial stiff-
ness of the sloping ground is the same as that in level ground,
and remains constant with the increase of depth:

μ = cos θð Þ + Z
6D 1 − cos θð Þð Þ: ð18Þ

As shown in Figure 7, for a concave slope, when the value
of Z1 exceeds 6D (red line (1) in Figure 7(a)), the initial stiff-
ness of the concave sloping ground at Z1 reaches the value of
that in level ground. The lower slope does not affect the initial
stiffness, and the reduction factor μ is only controlled by the
upper slope (blue line in Figure 7(b)). When Z1 is 0, the con-
cave slope becomes a single-angle slope with θ2 (red line (2)
in Figure 7(a)). The reduction factor μ is controlled by the
slope with angle θ2 (red line in Figure 7(b)). When Z1 ranges
from 0 to 6D (red line (3) in Figure 7(a)), the reduction factor
μ varies with depth in the range between the two limit condi-
tions (shaded part in Figure 7(b)). Georgiadis and Georgiadis
[14] point out that the reduction factor has a small effect on
both pile head deflection and maximum bending moment.
This paper assumes that the initial value of the reduction

factor changes uniformly from μðθ2Þ to μðθ1Þ as Z1 increases
from 0 to 6D.

When 0 < Z1 < 6D, we have

μ1 = u1 +
Z
6D 1 − u1ð Þ,

u1 = cos θ1ð Þ + cos θ2ð Þ − cos θ1ð Þð Þ 6D − Z1
6D :

ð19Þ

When Z1 ≥ 6D, we have

μ1 = cos θ1ð Þ + Z
6D 1 − cos θ1ð Þð Þ: ð20Þ

And the initial stiffness of concave sloping foundation
Kiθ can be expressed as follows:

Kiθ = μ1Kio: ð21Þ

To verify the rationality of the above assumptions, three
cases of reduction factors μ are used to obtain the pile head
load-displacement curve. μ1 is calculated by the method in
this paper, μ2 is obtained by the calculation method consid-
ering the single-angle slope with angle θ1, and μ3 is obtained
from the calculation method considering the single-angle
slope with angle θ2. Undrained shear strength cu = 70 kPa,
and elastic modulus of soil E50 is 14MPa. Pile diameter
D = 1m; pile length L = 5m, 12m, and 20m; and elastic
modulus of piles Ep = 2:9 × 107 kPa. θ1 = 40° ; θ2 = 20°; and
upper slope height Z1 = 1m. The load-displacement curve
of the pile head under different conditions is shown in
Figure 8. It indicates that the load-displacement curve of
the pile head is almost unchanged even if μ is taken as two
limit conditions (μ2, μ3). For the pile length L = 5m, the max-
imum discrepancies are only 16%. The above simplifying
method is sufficient for determining the reduction factor.
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Figure 12: Load and displacement curve of pile head predicted for Case 2. (a) Considering Z1 = 1m. (b) Considering Z1 = 3m.
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3. Approach Verification

A series of three-dimensional finite element analysis models of
the laterally loaded pile in a concave slope is established to ver-
ify the correctness of the calculation method in this paper.

3.1. Establishment and Verification of 3D FEA Model. All the
basic parameters of the 3D finite element analysis model in
this paper are obtained from the literature [5, 14]. The basic
parameters of the pile are set as follows: pile length
L=20m; diameter D = 1m; elastic modulus of pile Ep = 2:9
× 107 kPa; Poisson’s ratio of pile νp is 0.1; and the density
of pile ρl is 2500 kg/m

3. Piles are all embedded in the soil,
the load is applied at the pile head, and the pile head is free.
Slope angles are 20° and 40°. The undrained shear strength
of the soil cu is 70 kPa, elastic modulus of the soil at 50% ulti-
mate stress E50 is 14MPa, Poisson’s ratio of soil νs is 0.49, and
bulk unit weight γs is 18 kN/m

3. C3D8R grids are used for
piles and soil. In addition, there is more detailed meshing
around the pile. The number of meshes in all models is
approximately 25,000. The bottom boundary of the model
is fixed in all directions, and the other boundaries, except
for the top boundary, are only fixed in the normal direction.
The soil is established based on the Mohr-Coulomb model.
The contact surface between pile and soil adopts normal
behavior and tangential behavior. Normal behavior is set
as a “hard” contact mode, and tangential behavior is set
as “ penalty” function. The “penalty” factor of the pile side
is 0.5, and that between pile tip and pile-tip soil is consid-
ered to approach 1 for the slender pile, and assumed to be
0.5 for rigid pile. The friction angle is taken as a smaller
value. In this paper, the friction angle is taken as 10° and
the results obtained from the 3D FEA model for different
working conditions are fitted to the data from Georgiadis
and Georgiadis, as shown in Figure 9. In general, the fitting
is well for any working conditions, proving that the model-

ing method and the selection of parameters in this paper
are reasonable and correct.

3.2. Verification of the Calculation Method. In this section,
the proposed method is validated by comparing the load-
displacement curve of the pile head and the ultimate soil
resistance with the 3D FE analysis results of three cases,
respectively. The three cases are shown in Table 1. The
modeling method and correlation parameters are the same
as those in Section 3.1. Figures 10 and 11 show the pile and
soil three-dimensional model of case 2 (θ1 = 50°; θ2 = 30°;
and Z1 = 2m).
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Figure 13: Load and displacement curve of pile head predicted for Case 2. (a) Considering θ1 = 50°. (b) Considering θ1 = 40°.
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Case 1 considers two upper slope heights (Z1 = 1m, 3m)
as variates under the same slope angle (θ1 = 40°; θ2 = 0°). The
pile head displacement of Case 1 is shown in Figure 12. The
theoretical calculation has a good agreement with the result
of the 3D FE analysis. And Figure 13 shows the load-
displacement curve of the pile head of Case 2. In Case 2,
two upper slope angles (θ1 = 50°, θ1 = 40°), one lower slope
angle (θ2 = 30°), and one upper slope height (Z1 = 2m) are
considered. The verification result is good.

Case 3 carries out a verification between the theoretical
ultimate soil resistance and the results of 3D FE analysis
under different angles and heights. A higher degree polyno-
mial is used to accurately fit the shearing force curve of the
pile which is obtained from the three-dimensional model
[26, 31]. The curve of soil resistance p versus pile depth Z
under different lateral load H0 is obtained by differentiating
the fitted shearing force curve of the pile. Through combin-
ing p - Z curves and the pile displacement curves under
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Figure 16: Effect of θ1 on maximum bending moment. (a) Considering Z1 = 1m. (b) Considering Z1 = 2m.
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different lateral loads H0, the ultimate soil resistance of each
point of the pile is obtained. The verification result is dis-
played in Figure 14. The theoretical result is in good agree-
ment with the data of 3D FE analysis.

4. Parameter Analysis

4.1. The Effect of Upper Slope Angle θ1. In this section, the
effect of θ1 on the pile under lateral load is discussed for the
case of θ2 = 20°, and the height of upper slope Z1 = 1m and

2m by selecting 5 values of θ1 = 60°, 50°, 40°, 30°, 20° as var-
iables. And calculation parameters are pile length L = 15m,
diameter D = 1m, elastic modulus of pile Ep = 2:9 × 107 kPa,
the undrained shear strength of the soil cu = 70 kPa, and the
elastic modulus E50 = 14MPa.

Figures 15(a) and 15(b) show the influence of different θ1
on the load-displacement curve for the case of Z1 = 1m and
2m, respectively. Under the same lateral load, the deflection
of the pile head increases with the increment of θ1. And the
deflection growth rate of the pile head is greater when the
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Figure 17: Effect of θ2 on the load-displacement curve of pile head. (a) Considering Z1 = 1m. (b) Considering Z1 = 2m.
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Figure 18: Effect of θ2 on maximum bending moment. (a) Considering Z1 = 1m. (b) Considering Z1 = 2m.
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lateral load becomes larger. In addition, with the augmenta-
tion ofZ1, the influence of the upper slope is enhanced, and
the dispersion of load-displacement curves under different
slope conditions becomes larger. For example, considering
that θ1 goes up from 0° to 60°, the pile head deflection
increases by 34.3% under the condition that the lateral load
is 1500 kN and Z1 = 1m. And the maximum growth rate
can reach 51% for the case of Z1 = 2m.

Figure 16 investigates the curve of maximum bending
moment varying with the pile head displacement under the
effect of θ1. Compared with the load-displacement curve, θ1
has a similar but smaller influence on the maximum bending
moment of the pile. The maximum bending moment of the
pile becomes larger when the angle θ1 decreases under the
same displacement of the pile head. And the dispersion of
curves is pronounced for larger Z1. At a pile head displace-
ment y = 0:2m, the maximum bending moment of the pile
for θ1 = 20° is higher than that for θ1 = 60° by 4.4% and
7.2% for the Z1 = 1m and Z1 = 2m, respectively.

4.2. The Effect of Lower Slope Angle θ2. In order to investigate
the influence of θ2 on the laterally loaded pile, θ2 = 0°, 15°,
30°, 45°, and 60° are selected as variables in this section. When
Z1 = 1m, 2m, and θ1 is 60

°, the variation rules of pile head
deflection and maximum bending moment are analyzed.
The calculation parameters of pile and soil are the same as
those in Section 4.1.

Figures 17(a) and 17(b) show the influence of different θ2
on the load-displacement curve under the different upper
slope heights Z1, respectively. The figures represent that as
the angle θ2 increases, the displacement of the pile head
under the same load raises nonlinearly. And the growth rate
of deflection is positively correlated with θ2. Besides, the
influence of the lower slope can be weakened, and the
dispersion of load-displacement curves under different slope
conditions becomes smaller when the upper slope height Z1
increases. Considering that θ2 goes up from 0° to 60°, the pile
head deflection increases by 40% under the condition that the
lateral load is 1500 kN and Z1 = 1m. When Z1 is 2m, the
maximum growth rate is 20%.

Figure 18 shows the effect of θ2 in the maximum bending
moment. The maximum bending moment of the pile
becomes larger when the angle θ2 decreases under the same
displacement of the pile head. And the dispersion of curves
is smaller for larger Z1. At a pile head displacement y = 0:2
m, the maximum bending moment of the pile for θ1 = 0° is
higher than that for θ2 = 60° by 11.6% and 7.1% for the Z1
= 1m and Z1 = 2m, respectively.

4.3. The Effect of the Normalized Height Z1/D. To study the
influence of the normalized height Z1/D, this section con-
siders Z1/D as 0, 0.5, 1.0, 2.0, 4.0, and 5.0. And upper slope
angle θ1 = 60°, lower slope angle θ2 = 30°. Other calculation
parameters of pile and soil are the same as in Section 4.1.

Figure 19 shows the load-displacement curves of the
pile head considering different sloping conditions. It indi-
cates that the augmentation in Z1/D increases the deflec-
tion of the pile head. When the normalized height Z1/D
changes from 0 to 2, the pile head deflection increases

rapidly. For the lateral load H0 = 1500 kN, the growth rate
of pile head deflection is 32%. When the normalized
height is greater than 2, the growth rate of deflection grad-
ually becomes flat. For Z1/D = 5 and applied load H0 =
1500 kN, the deflection of the pile head is only 10% higher
than that for Z1/D = 2m. It also can be seen that the
deflection of the pile head is similar to that for the case
of Z1/D =∞ when the normalized height Z1/D exceeds 5
in Figure 19.

The influence of the normalized height Z1/D on the max-
imum bending moment of the pile is illustrated in Figure 20.
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Figure 19: Effect of Z1/D on the deflection of the pile head.
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Figure 20: Effect of Z1/D on maximum bending moment.
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The maximum bending moment is smaller for larger Z1/D
under the same deflection of the pile head. The max M of a
pile decreases steeply first and then gently with the increase
of the normalized height Z1/D. When the value of Z1/D
exceeds 5, the normalized height has no effect on the maxi-
mum bending moment. However, the effect of the increase
in Z1/D on max M is quite small. When the displacement
of the pile head y = 0:2m, the growth rate of maximum bend-
ing moment of the pile is only 9.2% with the normalized
height Z1/D range 0 to ∞.

5. Conclusion

This paper has proposed the p-y curve which is suitable for a
concave slope, and the lateral response of a pile has been
studied. Equations of initial stiffness Ki varying with depth
were obtained through the reduction coefficient method
and the normalization method. The nonlinear formulas of
the ultimate soil resistance with depth were obtained by using
the soil damaged model in front of piles. The rationality of
the theory in this paper was verified by comparing the result
of three-dimensional finite element analysis. The upper slope
angle θ1, the lower slope angle θ2, and the normalized height
Z1/D were discussed. The following conclusions can be
drawn:

(1) Both ultimate soil resistance and deflection of pile
head were predicted using a new method in this
paper, which is in good agreement with those calcu-
lated by 3D FE analysis

(2) The slope angle (θ1, θ2) has a significant effect on the
pile head deflection and a moderate effect on the
maximum bending moment. Both deflection and
maximum bending moment increase with the
increase in slope angle. In addition, the effects of
the angle and the height of the upper slope are
mutual. As Z1 increases, the influence of the lower
slope angle θ2 weakens and that of the upper slope
angle θ1 enhances

(3) The normalized height Z1/D is also a remarkable
factor for the concave slope. The increase of the
deflection and maximum bending moment is greater
for larger Z1/D under the same load. And the influ-
ence scope of Z1/D is 0 to 5

(4) The response of lateral load piles on concave slopes
differs markedly from the response of lateral load
piles on single-angle slopes. There is a large error
using the existing p-y curves to predict the response
of the laterally loaded pile on the concave slope. Thus,
the proposed p-y curve of a concave slope in this
paper has practical value
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