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The Laoyingqing Pb–Zn deposit is located on the southwestern margin of the Yangtze block and on the east side of the Xiaojiang
deep fault in the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic triangle area (SYGT). This deposit was first discovered in the silty
and carbonaceous slate of theMiddle Proterozoic Kunyang Group that is structurally controlled by thrust faults and anticlines. This
study is aimed at investigating whether the Laoyingqing deposit has the same ore-forming age and type as other Pb–Zn deposits
related to the Pb–Zn metallogenic system and prospecting prediction of the deep and peripheral areas of the deposits in the
SYGT. Based on the sphalerite Rb–Sr age dating and S–Sr–Pb isotopic composition analysis of the Laoyingqing Pb–Zn deposit,
the following results were obtained. First, the Rb–Sr isochron age of sphalerite is 209:8 ± 5:2 million years (Ma), consistent with
the ages of most Pb–Zn deposits in the SYGT (approximately 200Ma), thereby potentially indicating that these Pb–Zn deposits
may have been formed synchronously during the late Indosinian orogeny. Second, the Pb isotopic compositions of sulfides show
a linear trend on the average crustal Pb evolution curve in 207Pb/204Pb vs. 206Pb/204Pb plot. In addition, Pb isotopic ratios were
consistent with the age-corrected Pb isotopic ratios of basement rocks, consequently suggesting that the source of mixed crustal
Pb is mainly derived from basement rocks. Combined with the initial 87Sr/86Sr ratios of sphalerite between the (87Sr/86Sr)200Ma
value of the basement rocks and that of the Upper Sinian–Permian carbonates, it can be concluded that the ore-forming metals
were mainly derived from basement rocks. Third, sulfur isotopic composition of sphalerite from the Laoyingqing deposits shows
δ34SCDT values that range mainly from -2.62‰ to 1.42‰, which is evidently lower than the δ34SCDT values of sulfides (8–20‰)
from other Pb–Zn deposits in the SYGT. This can be interpreted as a result of mixing with reduced S that was mainly derived
from the thermochemically reduced S in the overlying strata and a small amount of reduced S produced by the pyrolysis of S-
containing organic matter. We conclude that the Laoyingqing deposit and most of the Pb–Zn deposits in the SYGT are
Mississippi Valley-type deposits, thereby providing new ideas for investigating the deep and peripheral areas of Pb–Zn deposits.

1. Introduction

The contiguous Sichuan–Yunnan–Guizhou Pb–Zn metallo-
genic triangle area (SYGT) (Figure 1(a)), located in the
southwestern margin of the Yangtze Block in China, is an
important part of the South China low-temperature metallo-
genic domain [1–4]. There are more than 440 carbonate-
hosted Pb–Zn deposits distributed in the SYGT and the metal
resources exceed 26 million tons, which makes SYGT the

largest Pb–Zn mining area and the area with the highest
metallogenic potential in China [5]. These Pb–Zn deposits
have high grades of Pb+Zn (generally >15%) and are rich
in various elements, such as Cd, Ga, Ge, and Ag [6–8]. The
deposit concentration district in Northeast Yunnan is con-
fined by the NS-trending Xiaojiang Fault zone, NE-trending
Mile–Shizong Fault zone, and NW-trending Ziyun–Yadu
Fault zone. The area’s strong multistage structure superposi-
tion, variable geological environment with complex
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metallogenic dynamic mechanisms, and superior metallo-
genic conditions formed the unique Ge-rich Pb–Zn polyme-
tallic deposit concentration district and created a massive
world-class deposit (Huize Pb–Zn deposit, with a Pb–Zn
reserve of 7 million tons) of a rare super-high grade (Pb+Zn:
25–35%) (Figure 1(b)). The area is typical in the SYGT [9],
and it has become a hot spot for ore deposit studies.

In addition to the Huize Pb–Zn deposit, there are six
additional large Pb–Zn deposits in the SYGT, which are
referred to as Maoping [10, 11], Maozu [12], Lehong [13,
14], Daliangzi [13, 15], Tianbaoshan ([16, 17]), and Chipu
([13, 18]; Table 1). Previous studies have proposed different
models of the genesis of the SYGT Pb–Zn deposits, and the
main theories have posited a Mississippi Valley-type
(MVT) genesis and a sedimentary dominated strata-bound
genesis [6, 19–24]. Recent studies have suggested that most

of the Pb–Zn ore bodies in the SYGT are hosted in the Upper
Sinian to Lower Permian carbonate rocks [6, 9, 13, 25] and
that these deposits formed during the late Indosinian orog-
eny (approximately 200Ma, Table 1). Furthermore, the δ34S
value of these deposits is generally in the range of 8‰ to
20‰, which indicates that the reduced S within these
deposits was mainly derived by thermochemical sulfate
reduction (TSR) of seawater sulfates available in the host
rocks [2, 26–30].

The Kunyang or Huili Groups in the basement are gener-
ally considered as sources for ore-forming elements in the
Pb–Zn deposits of the SYGT [24, 32, 33]. Currently, two
Pb–Zn deposits hosted in the Mesoproterozoic strata have
been found in the SYGT. One is the Xiaoshifang Pb–Zn
deposit in Huili, whose ore body is hosted in the calcareous
slate of the Huili Group from the Mesoproterozoic; this is a
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Figure 1: Regional geological map. Panel A: simplified tectonic map of South China (after [7, 31]). Panel B: regional geological map of the
SYGT, SW China, showing the spatial relationships among the fault belts, Emeishan basalts, and major Pb–Zn deposits (modified from [6]).
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volcanic-hosted massive sulfide (VHMS) type Pb–Zn deposit
formed in the Early Cambrian [34, 35]. The other example is
the Laoyingqing Pb–Zn deposit located in the deposit con-
centration district in Northeast Yunnan. The ore body is
hosted in the fracture zone of the silty and carbonaceous slate
of the Kunyang Group from the Mesoproterozoic. The
Laoyingqing Pb–Zn deposit is unique within the SYGT and
evidently different from the Xiaoshifang Pb–Zn deposit.
Determining whether the Laoyingqing deposit has the same
ore-forming age and type as those of other Pb–Zn deposits
is directly related to understanding the Pb–Zn metallogenic
system of the region and can benefit the prospecting predic-
tion of the deep and peripheral areas of the deposits in the
SYGT. However, there are few previous studies on the ore-
forming age, material source, and genesis of the Laoyingqing
Pb–Zn deposit.

Isotopic geochemistry is a powerful tool for studying
hydrothermal deposits. Direct dating of hydrothermal
deposits is key for the correct evaluation of their relationships
with geotectonic events. However, due to the lack of suitable
minerals for traditional radioisotope dating, this process is
more difficult [36–38]. In recent decades, the sphalerite Rb–
Sr age dating method has been greatly improved and has
become an ideal tool for the direct dating of minerals in
Pb–Zn deposits [37, 39–43]. However, the reliability of the
sphalerite Rb–Sr dating method has been questioned due to
the possibility of contamination with carbonate, clay, or vol-
canic ash inclusions resulting in erroneous 87Sr/86Sr ratios
([44, 45]). It has been experimentally demonstrated that the
Rb–Sr isotopic compositions of residual solid samples after
crushing and cleaning can be used to date a deposit [46].
The Rb–Sr isochron ages obtained by this method in the
MVT deposits of the Polaris and upper Mississippi Valley
areas are the same as their paleomagnetic ages; therefore,
these ages were considered to represent the mineralisation
ages [46]. At present, in terms of constraining the geody-
namic settings of carbonate-hosted Pb–Zn deposits, the
sphalerite Rb–Sr geochronology has been widely used (e.g.,
[47–51]). For instance, it has been recently reported that
high-spatial in-situ Rb–Sr dating of fine-grained mineral
slickenfibres within faults can constrain the time of fault
activity and resolve the complex histories of fault reactiva-
tion[58]. The stable isotopes of S, Pb, and Sr are powerful
tools that can be used to constrain the source of ore-
forming metals and fluids, as well as fluid migration path-
ways (e.g., [57, 59–62]). However, there are few studies on
these isotopic systems in the Laoyingqing Pb–Zn deposit.

In this study, we performed a comparative analysis of the
Laoyingqing Pb–Zn deposit and other relevant Pb–Zn
deposits in the SYGT, in terms of ore deposit geology, ore-
forming ages, and ore-forming material sources, so as to
determine the genesis of the Laoyingqing Pb–Zn deposit
and the relationship with other deposits in the SYGT. The
comparison is based on sphalerite Rb–Sr isochron age dating
and systematics of S–Pb–Sr stable isotopes which helped
reveal the metallogenic dynamic background and the differ-
ences in the source of ore-forming materials of different
deposits in the SYGT. The results provide new insights into
the genesis of the Laoyingqing Pb–Zn deposit, a reference

for the study of Pb–Zn metallogenic systems in the SYGT,
and provide new ideas for investigating the deep and periph-
eral areas of Pb–Zn deposits in the SYGT.

2. Regional Geology

The SYGT is located in the southwestern margin of the Yang-
tze block (Figure 1(a)), which is a triangular area bounded by
the SN-trending Anninghe Fault, the NW-trending Yadu–
Ziyun Fault, and the NE-trending Mile–Shizong Fault. There
are many SN faults matched with NE and NW secondary
faults and folds in the area [63]. Five thrust-fold belts con-
trolled by NE structures have developed in the deposit con-
centration district in Northeast Yunnan, namely, Xundian–
Xuanwei, Kuangshanchang–Jinniuchang, Huize–Yiliang,
Qiaojia–Daguan, and Qiaojia–Jinshachang structural belts.
These belts are distributed in a “multi-character” pattern,
which is typical of the wide-scale patterns in Northeast Yun-
nan [10, 64, 65] (Figure 1(b)).

The regional strata are mainly composed of basement
and sedimentary covers. The basement is mainly composed
of the Archaeozoic–Palaeoproterozoic crystalline basement
and the Mesoproterozoic folded basement [6]. Exposures of
this region include the folded basement of the Dongchuan
and Kunyang Groups (Huili Group) which are a set of shal-
low marine flysch clastic rocks intercalated with volcanic
rocks mainly composed of graywackes, slates, and other car-
bonaceous to siliceous sedimentary rocks [66, 67]. Thick
marine sedimentary rocks were deposited from Neoprotero-
zoic to the early Mesozoic. Among them, Sinian rocks mainly
consist of thick dolomite; Cambrian deposits are charac-
terised by shale and sandstone; Ordovician to Silurian strata
are mainly composed of carbonate, argillaceous siltstone, and
shale; Devonian sediments mainly comprise sandstone, silt-
stone, and carbonate; Carboniferous to Permian strata are
mainly composed of carbonate and basalt; Triassic sediments
mainly comprise sandstone, mudstone, and partly carbonate
rock. During the Middle-Late Triassic, a strong oblique
thrust-slip was induced in the foreland basin due to the clo-
sure of the Paleo-Tethys Ocean and orogenic events in the
region (Indosinian orogeny, 250–230Ma; [68, 69]), which
resulted in the formation of a series of thrust-fold structures
(zones) [70–72].

The SYGT Pb–Zn deposits are mainly controlled by
thrust faults. The ore bodies occur in the carbonate rocks
fromNeoproterozoic to Permian and occur in stratiform len-
ticular and veined forms (Table 1). Metallic minerals that
occur in the deposits are mainly sphalerite, galena, and
pyrite, whereas the nonmetallic minerals are mainly calcite,
dolomite, and quartz. The wall rock alterations of the SYGT
deposit are mainly dolomitisation, calcitisation, and silicifica-
tion. The structural system in the region is very complex,
which controls the distribution of the Pb–Zn deposits. The
NS-trending faults in the west of the SYGT controlled the
distribution of the Daliangzi, Tianbaoshan, Maozu, and
Chipu deposits. The Tianqiao, Shaojiwan, and Shanshulin
deposits in the east are distributed along the NW-trending
Ziyun–Yadu Fault. The larger-sized deposits are usually dis-
tributed near the regional deep faults and the intersection of
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faults. The Laoyingqing Pb–Zn deposit is located at the inter-
section of the SN-trending Xiaojiang fault and the NE-
trending Dongchuan–Huize–Zhenxiong Fault (Figure 1(b)).

3. Geology of the Laoyingqing Deposit

The Laoyingqing Pb–Zn deposit is located towards the east of
the Xiaojiang Fault and in the core of the Wuxing anticline
located in the western portion of the NNE-trending Dong-
chuan–Wuxing–Luozehe structural belt. The strata cropping
out in the Laoyingqing ore-field include the Huangcaoling

(Pt2h) and Heishantou Formations (Pt2hs) of the Mesopro-
terozoic Kunyang Group, as well as the Sinian Dengying For-
mation (Zz2dn) and Quaternary deposits (Q). The faults and
folds in the ore-field mainly include NE-trending and NW-
trending secondary faults and the SN-trending Wuxing anti-
cline, which is a symmetrical anticline with a vertical axis and
a strong secondary fold in its core. No magmatic rocks were
exposed in the ore-field and surrounding areas. Under low-
temperature dynamic metamorphism, the Huangcaoling
(Pt2h) and Heishantou (Pt2hs) Formations of the Mesopro-
terozoic Kunyang Group in the ore-field formed a shallow
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metamorphic rock series such as slate and phyllite with meta-
morphic quartz sandstone and marble. The wall rock alter-
ations that are mainly distributed in the fault fracture zone
and the wall rocks near the ore body are strong and mainly
demonstrate signs of silicification and carbonatisation
(Figure 2(a)).

The V1 and V2 ore bodies in the Laoyingqing and Lao-
longtian sections, respectively, discovered in the Laoyingqing
Pb–Zn deposit occur in the silty and carbonaceous slate of
the Huangcaoling Formation (Pt2h) and are, respectively,
controlled by an NW-trending F1 reverse fault and NE-
trending F2 reverse fault. The occurrence of the ore body is
basically consistent with the fault. The F1 fault has an inclina-
tion of 55°–65°, a dip angle of 70°–83°, and a fault fracture
zone width of 1.6m–16m. The F2 fault has an inclination
of 292°–300°, a dip angle of 76°–78°, and a fault fracture zone
width of 1.5m–7.5m. Both fracture zones are composed of
zinc-bearing structural breccia and slate (fractured in F1
and fragmented in F2). The tunnels are used to control the
blind ore bodies due to the steep occurrence of the two ore
bodies (Figure 2(b)). The V1 ore body has a length of

288m, thickness of 3.56m, and depth of 130m. It contains
22764 tons of Zn metals and has a grade of 4.92wt.% Zn.
The V2 ore body has a length of 250m, a thickness of
3.10m, a depth of 56m, contains 10228 tons of Zn metals,
and has a grade of 5.26wt.% Zn (Figure 2(c)). The ore bodies
have irregular vein shapes and are locally expanded and con-
tinuous. The ore metal minerals are mainly sphalerite,
followed by a small amount of galena and pyrite; the ore
gangue minerals are mainly quartz and calcite, followed by
mica, dolomite, and chlorite. The ore contains inclusion
structures and filling metasomatic structures; these structures
are mainly breccia structures, followed by fine-grained star
point structures, disseminated structures, fine vein-network
structures, and massive structures (Figures 3(a) and 3(b)).

The ores of the Laoyingqing deposit have experienced
syn-sedimentary, hydrothermal, and supergene processes.
There are two main mineral assemblages formed during the
hydrothermal period (Figure 4). In the sphalerite-pyrite-
quartz assemblage formed in the early stage of mineralisa-
tion, the dark brown fine-grained sphalerite occurs in a
lumpy and patchy form, the fine-grained pyrite is patchy in
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Figure 3: Field photos of ore bodies and wall rocks of the Laoyingqing Pb–Zn deposit. (a) The primary ore body in the silty and carbonaceous
slate of the Huangcaoling Fm. in Mesoproterozoic Kunyang Group, and the distinctive boundary between the ore body and wall rocks. (b)
The gangue quartz, calcites, and dolomites in primary ores. (c) Fine- to coarse-grained sphalerite (Sp)+lumpy and patch quartz (Qz)+vein
pyrite (Py)+vein dolomite (Dol). (d) Fine-grained Sp+patch Qz+patch Py. (e) Coarse-grained Sp+cubic Py+vein Dol+quartz. (f) Fine-
grained Sp+fine-grained Py+quartz. Abbreviations: Sp: sphalerite; Py: pyrite; Qz: quartz; Dol: dolomite; Cal: calcite.
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the wall rocks around the ores, while quartz is both lumpy
and patchy (Figures 3(d) and 3(f)). In the sphalerite-pyrite-
quartz-dolomite assemblage of the middle-late stage minera-
lisation, the dark brown coarse-grained sphalerite occurs in a
lumpy and patchy form, the coarse-grained pyrite in a cubic
form as a fine vein, quartz in a lumpy and patchy form, and
dolomite in the form of a vein (Figures 3(c) and 3(e)).

4. Samples and Analytical Methods

4.1. Sample Collection. In this study, eight representative pri-
mary metal sulfide ore samples from different middle sec-
tions of the V1 and V2 ore bodies were collected—six in V1
and two in V2. In each sample, sphalerite, galena, pyrite,
quartz, calcite, and dolomite occurrence were observed, with
seven samples of sphalerite, one sample of pyrite, and eight
samples of quartz. Five sphalerites samples from V1 were
used for Rb–Sr radiogenic isotope analyses, and the seven
sphalerites samples and one pyrite sample were used to ana-
lyse S and Pb stable isotopes. Seven ore samples were pre-
pared by grinding them into double-sided polished fluid
inclusion sheets (approximately 200μm in thickness).

4.2. Analytical Methods. Microthermometry was performed
at the fluid laboratory of the Southwest Institute of Geologi-
cal Survey Centre for Non-ferrous Metal Resources. The
instruments used included the Linkam THMS600 heating
and freezing stage from the United Kingdom and a standard
microscope equipped with an image analysis system. Prior to
the experiment, the heating and freezing stages were cali-
brated with international synthetic fluid inclusion standard
samples. When the temperature was lower than 0°C and
higher than 200°C, the instrument error was ±0.1 and ±2°C,
respectively.

The ore samples from the Laoyingqing Pb–Zn deposit
were crushed to 40–60 mesh, and the minerals with high
purity, as determined by microscope, were selected. These
minerals were then ground to less than 200 mesh and sent
to the laboratory for isotopic analyses.

For the Rb–Sr isotope analyses, the sample was washed
with ultrapure water three times in an ultrasonic bath to

remove the salts coming from broken fluid inclusions. An
appropriate amount of mixed diluent of known concentra-
tion was added to the sample and dissolved with ultrapure
6mol/L HCl and HNO3 in a sealed Teflon cup. Then, the
sample was heated in an oven at 200°C and evaporated until
dry. Next, ultrapure 6mol/L HNO3 was used to redissolve the
sample. These samples were then transferred to a cation
exchange resin column to separate and purify Rb and Sr.
For a detailed description of the experimental process, please
refer to the description of Wang et al. [73, 74]. The isotopic
ratios were measured on a Triton (00682t) Multicollector
Thermal Ionization Mass Spectrometer (TIMS) at the
Wuhan Geological Survey center, China Geological Survey.
The instrument fractionation of the Sr isotope was corrected
by analysing the international standard NBS-987. The mea-
sured standard value of 87Sr/86Sr was 0:710233 ± 6, which
was consistent with the recommended value (0:71023 ± 5;
[47]). The errors (2σ) of the 87Rb/86Sr and 87Sr/86Sr ratios
were 2% and 0.02%, respectively. The Rb–Sr isochron age
was calculated using the Isoplot/Ex version 3.22 software
[75].

The S isotope analyses were performed at the Beijing
Kehui Testing Technology Co. Ltd. using a 253 plus 10 kV
Isotope Ratio Mass Spectrometer, a FlashSmart Elemental
Analyzer, and a ConFlo IV multipurpose interface of
Thermo Fisher Scientific of the United States. The sample
was fully burned, and all the gases generated were fully oxi-
dised through the redox reaction tube with the layered filling
of WO3 and Cu wires. Meanwhile, a small amount of gener-
ated SO3 was reduced to SO2 when passed through Cu wires.
Subsequently, the SO2 was separated from other impurity
gases by a chromatographic column and supplied to the mass
spectrometer for analysis. Three standard substances, IAEA-
S3, GBW04414, and GBW04415, were used in the analysis,
and the analysis accuracy of the standard samples was better
than 0.2‰.

The Pb isotope analyses were conducted using the GV
Isoprobe-T TIMS at Beijing Kehui Testing Technology Co.
Ltd. The sample was first decomposed with HF+HNO3
mixed acid, then evaporated to dryness after digestion. Con-
centrated nitric acid was added and evaporated to dryness

Mineral
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Galena

Quartz

Dolomite

Calcite

Synsedimentary Hydrothermal Supergene

Limonite

Figure 4: Mineral assemblages in the paragenetic sequence of the Laoyingqing Pb–Zn deposit.
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again. Then, the F ions were removed from the sample for
conversion to chloride. The chloride sample was dissolved
with 1mL of 2mol/L hydrochloric acid, and Pb was sepa-
rated by the resin exchange method. After evaporation to
dryness, the Pb isotopes were measured by thermal surface
ionization mass spectrometry. The laboratory background
level of Pb during the whole process was 1 × 10−10 g.

5. Analytical Results

5.1. Microthermometry of Fluid Inclusions. The salinity and
homogenisation temperature of primary gas-liquid two-
phase fluid inclusions in 13 sphalerite and 51 quartz grains
were measured. The results are shown in Table 2. The
homogenisation temperature of fluid inclusions in sphalerite
ranges from 132.5 to 216.5°C, with an average of 174.4°C; the
salinity ranges from 12.39% to 20.67% NaCleqv, with an
average of 17.14% NaCleqv. The homogenisation tempera-
ture of fluid inclusions in quartz ranges from 130.0 to
275.0°C, with an average of 214.4°C; the salinity ranges from
7.17% to 19.60% NaCleqv, with an average of 13.43%
NaCleqv.

5.2. Rb–Sr Isotope Compositions and the Isochron Age. The
analysis results are shown in Table 3. All sphalerite samples
exhibited Rb and Sr concentrations ranging from 0.01197
to 0.1335 ppm and 0.09629 to 0.2523 ppm, respectively. The
87Rb/86Sr ratios varied from 0.3589 to 3.336 (mean = 0:7131
, n = 5), and the 87Sr/86Sr ratios varied from 0.71950 to
0.72829 (mean = 0:7131, n = 5). After excluding the outlier
sample LYQ-7, the remaining four sphalerite samples
showed a linear correlation on the 87Rb/86Sr vs. 87Sr/86Sr
plots (Figure 5(a)), which corresponded to an isochron age
of 209:8 ± 5:2Ma with an initial 87Sr/86Sr ratio of 0:71834
± 0:00012 and a mean squared weighted deviation (MSWD)
of 0.85.

5.3. Sulfur Isotope Compositions. S isotope compositions of
sphalerite and pyrite are shown in Table 4. The S isotope
compositions of sphalerite were homogeneous, except for
an outlier (δ34S =11.93‰) measured from pyrite (Figure 6).
The δ34S values ranged from -2.62‰ to 1.42‰ with an aver-
age of -1.11‰ at the Laoyingqing Pb–Zn deposit, thereby
indicating that S may have come from a single source. The
δ34S values of sphalerite in the Laoyingqing Pb–Zn deposit
were significantly lower than those of most Pb–Zn deposits
in the SYGT (Figure 7).

5.4. Lead Isotope Compositions. The Pb isotopic composi-
tions of the Laoyingqing Pb–Zn deposit are listed in
Table 5. The sulfide samples of different ore bodies, ore types,
and ore minerals in this deposit have a relatively homoge-
neous Pb isotopic composition, with 206Pb/204Pb ranging
from 17.9537 to 18.2907, 207Pb/204Pb ranging from 15.6504
to 15.6755, and 208Pb/204Pb ranging from 37.9921 to
38.4494; this result indicated that the Pb source was relatively
consistent.

The Pb isotopic composition of the Laoyingqing Pb–Zn
deposit was different from other major Pb–Zn deposits in
the SYGT. The Pb isotopic compositions of the Laoyingqing
deposit were comparable to those of the Chipu deposit which
extended horizontally as a linear array within the range of the
basement rocks. The Pb isotopic compositions of the Huize,
Maoping, Maozu, Daliangzi, Tianbaoshan, Tianqiao, Shaoji-
wan, and Qingshan deposits fell within the Pb isotopic range
of Devonian to Permian carbonates and basement rocks and
showing the greatest variability in the y-direction on the plot.

6. Discussion

6.1. Timing of the Pb–Zn Mineralisation in the Laoyingqing
Deposit. The basic premise of Rb–Sr dating of hydrothermal
minerals is to be simultaneous, homologous, closed, with a
consistent 87Sr/86Sr ratio and a different 87Rb/86Sr ratio

Table 2: Microthermometric data of the fluid inclusions from the Laoyingqing Pb–Zn deposit.

Hosted mineral Generation Quantity

Microthermometric data

Source
Tm-ice (°C)

Th (°C)
Salinity (wt.%
NaCleqv)

Range Mean Range Mean

Sphalerites Primary 13 -8.6– -17.6 132.5–216.5 174.4 12.39–20.67 17.14
This paper

Quartz Primary 51 -4.5– -16.2 130.0–275.0 214.4 7.17–19.60 13.43

Table 3: Sphalerite Rb–Sr isotopic compositions of the Laoyingqing Pb–Zn deposit.

Sample no. Object Rb/ppm Sr/ppm 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)200Ma Source

LYQ-2

Sphalerite

0.1335 0.1156 3.336 0:72829 ± 0:00006 0.7189

This paper

LYQ-3 0.04995 0.1193 1.208 0:72188 ± 0:00002 0.7185

LYQ-6 0.03368 0.2523 0.3852 0:71950 ± 0:00003 0.7184

LYQ-7 0.01197 0.09629 0.3589 0:72041 ± 0:00005 0.7194

LYQ-8 0.0664 0.1369 1.401 0:72257 ± 0:00003 0.7186

Note: ð87Sr/86SrÞt = 87Sr/86Sr − 87Rb/86Sr ∗ ðeλt − 1Þ, λRb = 1:41 ∗ 10−11 t−1, t = 200Ma.
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[86]. For the medium and low-temperature Pb–Zn deposits,
the difference between the homogenisation temperature of
the secondary inclusions and the primary inclusions in the
minerals was small, complicating the separation of inclusions

[15]. During the experiment, both crushing sphalerite to a
less than 200 mesh and ultrasonic cleaning greatly dimin-
ished the interference of primary and secondary fluid inclu-
sions; thus, the data obtained from the solid residue is more
likely to represent the mineralisation age [44, 87]. In this
study, dense massive ores from the same ore body and same
middle section were selected for analyses. The sphalerite
grains had a high purity, with no gangue mineral interpene-
tration and only a few fractures, which satisfied the pre-
condition of Rb–Sr isotopic dating to the greatest extent.
The 87Sr/86Sr and 1/Sr ratios of the sphalerite were not line-
arly correlated (Figure 5(b)), so the isochron (Figure 5(a))
was not a pseudoisochron of two-component mixing. There-
fore, the isochron age accurately reflected the timing of the
Pb–Zn mineralisation [40, 49, 51, 88]. The Rb–Sr dating of
sphalerite in the Laoyingqing Pb–Zn deposit showed that
the four samples were all located on the isochron
(Figure 5(a)), indicating that the Sr isotopes were homoge-
neous and the sealing conditions were adequate in the
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Figure 5: Plot of sulfide Rb–Sr isochron for the Laoyingqing Pb–Zn deposit (a) and plot of sulfide 87Sr/86Sr vs. 1/Sr for the Laoyingqing Pb–
Zn deposit (b).

Table 4: Sulfur isotopic compositions of sulfides from the
Laoyingqing Pb–Zn deposit.

Sample no. Mineral δ34SV-CDT‰ Source

LYQ-1 Sphalerite 0.12

This paper

LYQ-2 Sphalerite -2.62

LYQ-3 Sphalerite -1.87

LYQ-4-2 Pyrite 11.93

LYQ-5 Sphalerite 1.42

LYQ-6 Sphalerite -1.60

LYQ-7 Sphalerite -1.38

LYQ-8 Sphalerite -1.86
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process of ore mineral formation; thus, the fitted isochron
age had a high accuracy. Nakai et al.[40] interpreted that
the previous failure in Rb–Sr dating of sphalerite occurred
because either the ore-forming system was not closed or the
fluid inclusions in minerals were not cleaned out prior anal-
yses. It is possible that for similar reasons, e.g., interference of
fluid inclusions, the sample LYQ-7 in this study did not yield
results that fall on the isochron.

Geologically, the Laoyingqing Pb–Zn deposit is located in
the secondary fault in the core of the Wuxing anticline and is
spatially controlled by the fault-fold structure composed of
the Xiaojiang Fault and Wuxing anticline. This implies that
the Pb–Zn mineralisation should have occurred earlier than
the formation of the Wuxing anticline. However, there is
no data to constrain the timing of the formation of the Wux-
ing anticline. The youngest strata involved in the anticline are
the sediments of the Triassic Guanling Formation, which
were deposited at 240–230Ma. Therefore, the formation
may provide an upper age limit for the Laoyingqing deposit.
Thus, the formation of the Pb–Zn deposits may occur after
the deposition of the Guanling Formation. The sphalerite
Rb–Sr isochron age (209:8 ± 5:2Ma) for the Laoyingqing
deposit is in accordance with this conclusion. In comparison,
geological inferences, structural deformation screening,
structural paleo-stress analyses, and isotopic dating[5] infer
that the main age of the formation of the thrust-fold structure
and ore formation period of the deposits in the SYGT was the
late Indosinian (200–230Ma), and some ore-forming ages of
the deposits could be extended to the early Yanshan. The Rb–
Sr isochron age of sphalerite in the Laoyingqing Pb–Zn
deposit was also consistent with this conclusion.

The Laoyingqing Rb–Sr age is approximately the same as
that of most other SYGT Pb–Zn deposits within a reasonable
degree of uncertainty (Table 1 and Figure 7; [7, 12, 14, 55, 80,
89]). Although many ages are derived by Rb–Sr isotopic dat-
ing, this coincidence not only provides more credibility for
the Laoyingqing Rb–Sr date but also indicates that the Rb–
Sr geochronology is a suitable dating method for most SYGT
Pb–Zn deposits.

The presently available ages of the SYGT Pb–Zn deposits
show that most formed between 230 and 190Ma (Figure 8).
The age of the Laoyingqing deposit also falls within in this
period, indicating that deposits in the area may have been

formed synchronously under the background of a regional
hydrothermal event triggered by the orogenic collision event
in the late Indosinian ([68, 69, 90]).

6.2. Possible Sources of Sulfur. The composition of S isotopes
has always been one of the important methods used to under-
stand the sources of ore-forming materials. An S-source anal-
ysis of a deposit must be based on the total S isotope
composition in the hydrothermal fluid during sulfide precip-
itation [92]. Primary ores from the Laoyingqing Pb–Zn
deposit were composed primarily of sphalerite, with a small
amount of pyrite and galena. The lack of barite and other sul-
fate minerals in the ores indicated a low oxygen fugacity.
Therefore, the δ34S value of sulfide was mostly representative
of the total S isotope composition of the hydrothermal fluid,
which can be used to directly trace the S source [93].

The Xiaojiang Fault is a regional deep fault, which pro-
vides a channel for the flow of fluid in the rocks. The ore min-
eral assemblage of the Laoyingqing Pb–Zn deposit is simple,
and sulfate minerals are not developed in the wall rocks and
ore. However, previous studies have shown that sulfate layers
developed in the overlying Sinian and Cambrian marine car-
bonate rocks [6, 52]. The δ34S values of marine sulfate in the
Sinian Dengying period of the Yangtze Plate range from
20.2‰ to 38.7‰ [94], and the δ34S values of marine sulfates
in phosphorites of the Lower Cambrian Meishucun Forma-
tion (Yuhucun Formation) range from 17.4‰ to 33.6‰
[95]. Marine sulfate can form reduced S through bacterial
reduction of sulfur (BSR) and TSR [96], providing a sufficient
S source for metal deposits.

Generally, BSR mainly occurs at relatively low tempera-
tures (less than 120°C, generally 50–70°C) [97, 98]. The S iso-
tope fractionation caused by BSR is generally 4.0–46.0‰, and
the δ34S value of H2S is generally negative [97]. However,
TSR often occurs at relatively high temperatures (above
150°C), and TSR can cause 10–25‰ fractionation between
seawater sulfate rock and reduced S at 150°C. With an
increase in temperature, Δδ34S decreases as follows: at
100°C, Δδ34S = 20‰; at 150°C, Δδ34S = 15‰; and at 200°C,
Δδ34S = 10‰ [98–100]. The homogenisation temperature
of primary fluid inclusions in sphalerite and quartz grains
in the Laoyingqing Pb–Zn deposit ranges from 130 to
275°C, with an average of 206.3°C (Table 2). Therefore, at this
temperature, sulfate developed in the overlying marine strata
may produce reduced S through TSR, and provide the main S
source for the deposit through the fractures.

In the process of mineral precipitation, there is usually no
obvious S isotope fractionation between reduced S and metal
sulfides. For metal deposits with reduced S provided by TSR,
the δ34S value of ore minerals should be approximately 15–
20‰ lower than that of seawater sulfate in the formation
[13]. The δ34S value of pyrite in the sulfides of the deposit is
11.93‰, approximately 8–26‰ lower than that of marine sul-
fate in the overlying strata, which is close to the expected S iso-
tope fractionation caused by TSR. However, the δ34S value of
sphalerite grains ranges from -2.62‰ to 1.42‰, with an aver-
age of -1.11‰, which is 23‰ to 36‰ lower than that of
marine sulfate in the overlying strata. The S source may be a
contribution of deep mantle-derived S (-3.0‰–+3.0‰) or
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Figure 6: Histograms of the sulfur isotopic compositions of sulfides
from the Laoyingqing deposit.
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organic matter pyrogenic S (Figure 7). However, the main
magmatic rocks around the ore district and in the SYGT are
the Late Permian Emeishan basalts (256Ma) [101] and the
basic diabase vein (156–166Ma) [16], with the formation age
of the basalt being older than the ore-forming age
(209:8 ± 5:2Ma). The formation age of the diabase vein is
younger than the ore-forming age, and no magmatism that
coincides with the ore-forming age has been observed. Any
other instances of concealed Indosinian magma of unknown

depth that can provide mantle-derived S to participate in
mineralisation are unknown. However, some studies report
that there is a genetic link between the Emeishan basalts and
the Pb–Zn deposits, characterised in either providing ore-
forming materials or energy transfers [30, 102–104]. There-
fore, it cannot be ruled out that the ore-forming fluid activated
the Emeishan basalts to provide a small amount of S.

At temperatures higher than 50°C, S-containing organic
matter can be thermally decomposed to produce H2S [59].
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Figure 7: Comparison of sulfur isotopic compositions between the Laoyingqing Pb–Zn deposit and themajor deposits in the SYGT (modified
from [26]). S isotope compositions of the Huize deposit are taken from Liu and Lin [6], Li et al. [76], Han et al. [52], and Zhang [15]; those of
the Maoping deposit are taken from Liu and Lin [6] and Wang et al. [11]; those of the Maozu deposit are taken from Liu and Lin [6], Zhang
[15], and Zhou et al. [12]; those of the Lehong deposit are taken from Zhang et al. [14]; those of the Daliangzi deposit are taken from Liu and
Lin [6], Zhang [15], Wu [13], and Yuan et al. [77]; those of the Tianbaoshan deposit are taken from Liu and Lin [6], Zhang [15], Zhou et al.
[17], Zhu et al. [78], and He et al. [79]; those of the Chipu deposit are taken from Zhang [15] andWu [13]; those of the Shanshulin deposit are
taken from Zhou et al. [54]; those of the Shaojiwan deposit are taken from Zhou et al. [55]; and those of the Tianqiao deposit are taken from
Zhou et al. [8].

Table 5: Lead isotopic compositions of sulfides from the Laoyingqing Pb–Zn deposit.

Sample no Mineral 206Pb/204Pb 2σ 207Pb/204Pb 2σ 208Pb/204Pb 2σ Source

LYQ-1 Sphalerite 17.9537 0.0004 15.6504 0.0004 37.9921 0.0009

This paper

LYQ-2 Sphalerite 18.2420 0.0003 15.6695 0.0003 38.2857 0.0007

LYQ-3 Sphalerite 18.2465 0.0004 15.6755 0.0003 38.3679 0.0007

LYQ-5 Sphalerite 18.0401 0.0003 15.6612 0.0003 38.1092 0.0008

LYQ-6 Sphalerite 18.2907 0.0004 15.6682 0.0003 38.4494 0.0008

LYQ-7 Sphalerite 18.1325 0.0004 15.6553 0.0003 38.2107 0.0009

LYQ-8 Sphalerite 18.1637 0.0003 15.6662 0.0003 38.2751 0.0007

LYQ-4-2 Pyrite 18.0048 0.0003 15.6562 0.0002 38.0799 0.0006
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The carbonaceous slate of the Kunyang Group contains a
large amount of dispersed carbonised S-containing organic
matter, and the δ34S value of organic S is generally negative
[18]. The thermal energy provided by the ore-forming
hydrothermal fluid causes the pyrolysis of S-containing
organic matter in the wall rock to produce reduced S, which
is mixed with the reduced S formed by the sulfate in the over-
lying strata through TSR. This mechanism is different from
other Pb–Zn deposits in the SYGT.

Therefore, the reduced S in the sulfide of the Laoyingqing
Pb–Zn deposit may have mainly been derived from the mix-
ture of the reduced S produced by the marine sulfate in the
overlying strata through TSR and the reduced S produced
by the pyrolysis of S-containing organic matter in the carbo-
naceous slate of the Kunyang group, with a possible addition
of a small amount of mantle-derived S at a later stage.

6.3. Possible Sources of Ore-Forming Metals

6.3.1. Pb Isotope Constraints. The Pb isotopic composition of
sulfides in the Laoyingqing Pb–Zn deposit is relatively homo-
geneous which implies that Pb was supplied from either a
completely mixed source or a single source. Although the
Pb isotope compositions of sulfides vary within a small range,
a clear linear trend can be observed on the
208Pb/204Pb–206Pb/204Pb diagram (Figure 9(b)), which is usu-
ally interpreted as a mixed source of Pb [105–107]. The Pb
isotopic compositions of all samples plot on the upper crust
evolution curve in a nearly EW-trending linear array in the
207Pb/204Pb vs. 206Pb/204Pb space (Figure 9(a)), thereby indi-

cating that the Pb ore had a predominantly upper crust
source, with a possible minor Pb contribution from an oro-
genic belt.

Most of the Pb–Zn deposits in the SYGT were hosted in
carbonate rocks, and large areas of Emeishan basalt distribu-
tion and basement rocks (Kunyang and Huili Groups) were
exposed in the region. Therefore, most scholars believe that
the ore-forming materials were provided by basement rocks,
carbonate rocks, and Emeishan basalts; however, their pro-
posed contribution compositions are different as follows:
(1) mainly provided by sedimentary rocks, that is carbonate
rocks [27]; (2) mainly originating from Precambrian base-
ment rocks [24]; or (3) Emeishan basalt providing the main
source of thermal power as well as part of the ore-forming
material [102].

The Pb isotopic compositions of sulfides in the Laoyingq-
ing Pb–Zn deposit were different from those of Cambrian sed-
imentary rocks, basalt, Sinian dolomite, and Devonian to
Permian carbonate rocks in this region. However, they were
mostly consistent with the basement rock (Kunyang Group)
(Table 6). The Pb isotopic compositions of sulfides in the
Laoyingqing Pb–Zn deposit showed high consistency with
the age-corrected Pb isotopic compositions of the basement
rocks, yet minimal consistency with the Devonian to Permian
carbonate rocks and the Sinian Dengying Formation of dolo-
mites (Figure 9(a)). This indicated that a mixture of multiple
Pb sources may have occurred, that is the Pb ore was largely
derived from the basement rocks and the Pb isotopes were
homogenised in the ore-forming process. This interpretation
supports the argument that the basement rocks provided

Passive continental margin

Emeishan
mantle
plume

Indosinian
orogeny

Intracontinental
tectonic evolution

Daliangzi

Huize

Maozu

Fulechang

Jinshachang

Lehong

Paoma

Tianqiao

Laoyingqing

Sphalerite Rb‑Sr
Calcite/fluorite Sm‑Nd
Illite K‑Ar

Lead model age
Bitumen Re‑Os

400 350 300 250 200 150 100 Ma

Chipu

Figure 8: Ages and geological settings of major Pb–Zn deposits in the SYGT (modified from [91]). Sources of the data are taken from Yin
et al. [53], Lin et al. [89], Wu [13], Zhou et al. [12], Zhang et al. [14], Zhang et al. [7], Zhou et al. [80], and this study.
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ore-forming materials, which is differed from the conclusion
that the Pb ore of the majority of other SYGT Pb–Zn deposits
was predominantly derived from carbonate rocks.

The age difference between the Emeishan basalt mag-
matic activity (approximately 260Ma) and the regional Pb–
Zn mineralisation (approximately 200Ma) may be more

than 50Ma [112, 113], thereby indicating that there is no
direct genetic link between the two events. However, the
ore-forming fluids likely activated part of the ore-forming
metals in Emeishan basalt, especially the ore-forming ele-
ment Zn, during the processes of atmospheric precipitation
or interlayer water infiltration [8].
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Figure 9: Plots of 207Pb/204Pb vs. 206Pb/204Pb for the Laoyingqing Pb–Zn deposit (Trends for the upper crust (U), orogen (O), mantle (M),
and lower crust (L) are taken from Zartman and Doe [108]) (a) and Plots of 208Pb/204Pb–206Pb/204Pb for the Laoyingqing Pb–Zn deposit (b).
Pb isotope compositions of the Huize deposit are taken from Zhou [109], Han et al. [65], and Li [110]; those of the Maoping deposit are taken
from Liu and Lin [6] and Wang et al. [11]; those of the Maozu deposit are taken from Liu and Lin [6] and Zhou et al. [12]; those of the Chipu
deposit are taken from Wu [13]; those of the Daliangzi deposit are taken from Zhu et al. [111]; those of the Tianbaoshan deposit are taken
from Zhou et al. [17]; those of the Tianqiao deposit are taken from Zhou et al. [8]; those of the Shaojiwan deposit are taken from Zhou
et al. [55]; those of the Shanshulin deposit are taken from Zhou et al. [54]. The age-corrected isotopic ranges (200Ma) for the Sinian (Z)
Dengying Formation dolostone, the Devonian to Permian (D–P) carbonates, the Proterozoic basement rocks, and the Emeishan basalts
are delineated by the data from Hu [33], Liu and Lin [6], Zhou et al. [24], Han et al. [52], and Yan et al. [84].
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6.3.2. Constraints from the Sr Isotopes. 87Sr/86Sr isotopes are
often used to trace the source of ore-forming materials, mag-
matic fluids, and crust-mantle mixing of deep source fluids
[106]. However, when a Sr isotopic composition is used to
trace the source of ore-forming fluids/materials, the Sr isoto-

pic composition of potential source areas must be corrected
by the ore-forming age. In recent years, considerable progress
has been made in the chronology of the Pb–Zn deposits in
the SYGT. The results of isotope dating indicate that the
deposits in the region were mainly formed in the Late

Table 6: Statistical results of the Pb isotope compositions of the Laoyingqing Pb–Zn deposit, Sinian dolomite, Cambrian sedimentary rocks,
Devonian to Permian carbonate rocks, Precambrian basement rocks (Kunyang Group), and Permian Emeishan flood basalts.

Statistical
object

Mineral/rock
Number

of
samples

(206Pb/204Pb)200Ma (207Pb/204Pb)200Ma (208Pb/204Pb)200Ma Source

Laoyingqing
Pb–Zn
deposit

Sphalerite,
pyrite

8 17.9537~18.2907 15.6504~15.6755 37.9921~38.4494 This paper

Cambrian sedimentary
rocks

4 20.950~22.354 15.837~15.930 40.878~41.928 Zhou et al. [80]

Sinian Dengying Fm.,
Dolostone

20 18.198~18.517 15.699~15.987 38.547~39.271

Han et al. [9, 52], Hu [33], Liu and
Lin [6], Wang et al. [81–83], Yan et al.
[84], Zheng and Wang [85], Zhou

et al. [24]

Devonian–Permian
carbonate rocks

80 18.120~18.842 15.500~16.522 38.235~39.685

Precambrian basement
rocks (Kunyang Group)

27 17.781–20.993 15.582–15.985 37.178–40.483

Permian Emeishan flood
basalts

56 18.175~19.019 15.528~15.662 38.380~39.928

Note: ð206Pb/204PbÞt = ð206Pb/204PbÞp − μðeλt − 1Þ, ð207Pb/204PbÞt = ð207Pb/204PbÞp − μ/137:88ðeλ′t − 1Þ, ð208Pb/204PbÞt = ð208Pb/204PbÞp − ωðeλ″t − 1Þ, λ =
1:55125 × 10−10 t−1, λ′ = 9:8485 × 10−10 t−1, λ″ = 0:49475 × 10−10 t−1, t = 200Ma.
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87Sr/86Sr200 Ma

Basement rocks

Upper mantle
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Upper Sinian to Permian Sedimentary rocks
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Shaojiwan
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Figure 10: Comparison of (87Sr/86Sr) t (t = 200Ma) ratios among the major SYGT Pb–Zn deposits, sedimentary rocks, basement rocks,
Emeishan basalts, and upper mantle. Sr isotope compositions of the Huize deposit are taken from Yin et al. [53]; those of the Maozu
deposit are taken from Zhen et al. (2015); those of the Maoping deposit are taken from Shen et al. [116]; those of the Daliangzi deposit are
taken from Zhang et al. [15]; those of the Shanshulin deposit are taken from Zhou et al. [54] and Cheng et al. [115]; those of the
Shaojiwan deposit are taken from Zhou et al. [55]; those of the Tianqiao deposit are taken from Zhou et al. [8] and Cheng et al. [115]. The
Sr isotopic compositions of the reservoirs are all calculated back to 200Ma with original data from Faure [117] for the upper mantle; from
Huang et al. [102] for the Emeishan basalts; from Deng et al. [32], Hu [33], Zhou et al. [55], and Zhou et al. [54] for the sedimentary
rocks; and from Li and Qin [118] and Chen Ran [119] and for the Proterozoic basement rocks.
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Triassic–Early Jurassic (approximately 200Ma). The sphaler-
ite Rb–Sr isochron age of the Laoyingqing Pb–Zn deposit
revealed in this study is 209:8 ± 5:2Ma, which was consistent
with this conclusion (Table 1). The age-corrected 87Sr/86Sr of
four sphalerite samples from the Laoyingqing Pb–Zn deposit
range from 0.7184 to 0.7189 (mean = 0:7186), and the initial
87Sr/86Sr value is 0.71834. In addition, the age-corrected Sr
isotopic compositions of major Pb–Zn deposits such as
Huize, Maozu, Maoping, Daliangzi, Shanshulin, Shaojiwan,
Tianqiao, Emeishan basalts, hosted sedimentary rocks, and
basement rocks in the SYGT are shown in Figure 10.

The initial 87Sr/86Sr value of sphalerite in the Laoyingqing
Pb–Zn deposit obtained in this study is 0.71834, which is
close, albeit slightly lower than the mean continental crust
87Sr/86Sr value of 0.719, and higher than the initial mantle
Sr value of 0.707 [114]. Therefore, the ore-forming material
of this deposit was likely predominantly derived from the
continental crust, which is consistent with the Pb isotopic
tracer results in this study.

Previous studies have suggested that the source of ore-
forming fluids in the SYGT may have flowed through the
basement rocks [65, 102], implying they are likely the result
of a mixture of basement rocks, sedimentary rocks in differ-
ent strata, and Emeishan basalt [8, 80, 115]. According to
Figure 10, the (87Sr/86Sr)200 Ma values of the main deposits
in the SYGT were significantly higher than the mantle and
Emeishan basalt, which seemed to exclude the possibility that
the ore-forming materials were completely provided by the
mantle and Emeishan basalt. According to several previous
geological and geochemical studies on ore deposits, the pos-
sibility of the Emeishan mantle plume contributing a large
amount of ore-forming materials and fluids has mostly been
excluded [8, 36, 120]. The (87Sr/86Sr)200 Ma value of the main
deposits in the SYGT was higher than the Upper Sinian–
Permian sedimentary rocks and lower than the basement
rocks, thereby suggesting that the ore-forming materials were
not entirely derived from the hosted sedimentary rocks or
basement rocks. The Laoyingqing, Huize, and Daliangzi
deposits all show high (87Sr/86Sr)200Ma values, indicating that
Sr was predominantly derived from the basement rocks; in
comparison, the (87Sr/86Sr)200Ma values of the Maoping,
Shanshulin, Shajiwan, and Tianqiao deposits are more simi-
lar to the range (0.7073–0.7111) of the Upper Sinian to Perm-
ian carbonate rocks, thereby indicating that Sr was
predominantly derived frommarine carbonate rocks and less
from the basement rocks. At the same time, the initial Sr iso-
topic values of sphalerite residues in the Laoyingqing, Maop-
ing, Shanshulin, Shaojiwan, and Tianqiao deposits show
minimal change, thereby indicating that the Sr isotopes in
the ore-forming fluids of each deposit were relatively homo-
geneous and had the same source. This dynamic may have
been detrimental in yielding accurate and reliable Rb–Sr ages
of sphalerite.

Therefore, we conclude that the Laoyingqing Pb–Zn
deposit has the same characteristics as the major deposits in
the SYGT. The main source of metal-rich ore-forming fluids
may be predominantly derived from the mixture of the fluid
flowing through the basement rock and the fluid flowing
through the sedimentary rock of the caprock; however, most

of the metal in the ore-forming fluid of the Laoyingqing Pb–
Zn deposit is provided by the basement rock, consistent with
the Pb isotopic tracer results in this study.

6.4. Possible Ore Genesis and Mineralisation Mechanism

6.4.1. Ore Genesis. The MVT Pb–Zn deposit is a shallow epi-
genetic deposit that is separated from the dense basin brine at
approximately 75–200°C [56]. These deposits occur in the
platform carbonate rocks; they are not related to the mag-
matic activity [56] and are associated with the extensional
basin setting [57, 121]. Many previous studies have suggested
that the SYGT carbonate-hosted Pb–Zn deposits belong to
the MVT considering their similarities in host rocks, tectonic
setting, and ore-forming fluids [2, 7, 24, 85, 122]. By compar-
ison (Table 1), the Laoyingqing Pb–Zn deposit may have
formed synchronously with most deposits under the back-
ground of a regional hydrothermal event triggered by an oro-
genic collision event in the late Indosinian (~200Ma) in the
SYGT. This deposit demonstrates a series of characteristics
that are prevalent in most deposits, such as a clear compres-
sional tectonic setting, ore bodies controlled by a thrust-fold
structure, an epigenetic structure, simple ore mineral compo-
sitions, vein and lenticular ore bodies, silicification, carbona-
tisation of wall rocks, and a minimal relationship with
magma (Emeishan mantle plume) activity. Moreover, the
homogenisation temperature of primary fluid inclusions in
sphalerite and quartz grains in the Laoyingqing Pb–Zn
deposit ranges from 130 to 275°C, the salinity ranges from
7.17 to 20.67wt% NaCleqv (Table 2), and the ore-forming
fluid is the gas-rich fluid with medium-high temperature
and medium-low salinity, which is consistent with most of
the SYGT Pb–Zn deposits (fluid inclusion homogenisation
temperature ranges from 115 to 280°C, and salinity ranges
from 0.9 to 20wt% NaCleqv; Table 1). Therefore, the origin
of the Laoyingqing Pb–Zn deposit is obviously different from
the VHMS type and Sedimentary Exhalative type (SEDEX)
Pb–Zn deposits, and most likely belongs to theMVT deposits
like most deposits in the SYGT.

6.4.2. Ore-Forming Mechanism. The ore-forming mechanism
of the deposit should be mainly described in terms of its
metal sources, compositional characteristics of fluid compo-
nents, ability to carry ore-forming metal ions, migration
mode, and metal precipitation mechanisms. Therefore, the
ore-forming mechanism of the Laoyingqing Pb–Zn deposit
can be described as follows. The late Indosinian (~200Ma)
collision orogenic event and the closure of the Tethys Ocean
induced a strong oblique strike-slip in the foreland basin on
the southwestern margin of the Yangtze Block, forming a
large number of thrust nappe fold structures (i.e., Xiaojiang
Fault and the Wuxing anticline) [5]. At the same time,
large-scale basin brine migrated along regional faults and fis-
sures in the basement and overlying strata, extracted metal
elements (such as Pb and Zn), and finally migrated to the
basement rocks (Kunyang Group). Simultaneously, extensive
hydrothermal flow and circulation reduced S in the sulfate in
the overlying strata into thiosulfuric acid and hydrogen sul-
furic acid, migrated with the infiltrating fluid, and finally
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mixed with the reduced S produced by the pyrolysis of S-
containing organic matter in the wall rock (Kunyang group).
The thermochemically reduced S of sulfate is the main source
of reduced S. When metal-containing fluids and reduced S-
containing fluids mixed at favourable fracture sites in the
core of the Wuxing anticline, accompanied by changes in
ore-forming conditions, metal sulfides precipitated to form
ore bodies of industrial value.

Leach et al. [123] calculated the paleomagnetic ages of six
major MVT Pb–Zn deposits in North America, and the
results showed that the mineralisation process can last for
25Ma. The S, Pb, and Sr isotope tracing results in this paper
cannot entirely exclude the possibility that the Emeishan
basalt provided ore-forming metals and reduced sulfur.
Therefore, extensive hydrothermal flow may have activated
the Emeishan basalt and extracted part of the ore-forming
metals or reduced sulfur into the fluid. The ore-forming
materials migrated with the infiltration of the fluids and par-
ticipated in the formation of the ore in the late stage of the
ore-forming process.

7. Conclusions

The sphalerite Rb–Sr dating results show that the Laoyingq-
ing Pb–Zn deposit and most of the Pb–Zn deposits in the
SYGT were formed at approximately 200Ma. These deposits
are related to the strong regional hydrothermal event trig-
gered by the orogenic collision event in the late Indosinian,
and the hydrothermal event had no direct relationship with
the Emeishan mantle plume. The low δ34S value of sphaler-
ites is the result of mixing between reduced S produced by
the marine sulfate in the overlying strata through the TSR
and reduced S produced by the pyrolysis of S-containing
organic matter in the carbonaceous slate of the Kunyang
group. Thermochemical reduction of sulfate is the main
mechanism for reducing S. However, the addition of a small
amount of mantle-derived S in the later period cannot be
excluded. The Pb and Sr isotopic compositions indicate that
the ore-forming metal was predominantly derived from wall
rocks (Kunyang Group) and the contribution of dolomite of
the Sinian Dengying Formation and Devonian–Permian car-
bonate rocks was minimal. It cannot be entirely excluded that
the Emeishan basalt provided a small amount of metal ele-
ments. This deposit and most of the Pb–Zn deposits in the
SYGT belong to the MVT deposits.
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